Modifier and Type | Field and Description |
---|---|
(package private) PointCloud |
MeanShiftClustering.N |
(package private) PointCloud |
SlowRangeSearch.N |
private PointCloud |
MedianWithSorting.N |
private PointCloud |
LinearTimeMedian.N |
PointCloud |
PointCloud.next |
private PointCloud |
KdTree.points |
(package private) PointCloud |
MeanShiftClustering.seeds |
Modifier and Type | Method and Description |
---|---|
PointCloud |
MeanShiftClustering.detectCluster(Jcg.geometry.Point_d seed,
int clusterIndex)
Single cluster detection -- returns approximate peak and cluster points
The output is a list of point containing:
- all the points belonging to the detected cluster
- the peak point (at the top of the list)
|
PointCloud |
FastRangeSearch.NN(X q,
double sqRad)
Main search procedure (for Range search queries)
|
PointCloud |
FastRangeSearch.OrthogonalRangeSearch(X q,
double sqRad)
Perform range search using KdTrees
|
PointCloud |
KdTree.OrthogonalRangeSearch(X q,
double sqRad)
Range search: return the list of nearest point to a given query point q.
|
PointCloud |
SlowRangeSearch.OrthogonalRangeSearch(X q,
double sqRad)
Linear time search (exhaustive search)
Useful for point clouds of small size
|
PointCloud |
RangeSearch.OrthogonalRangeSearch(X q,
double sqRad)
Range search: return the list of nearest points to a given query point q.
|
static PointCloud |
IO.pointsFromDataFile(java.lang.String fileName)
Load point clouds from file
|
static PointCloud |
IO.pointsFromImage(java.lang.String imageFile)
Load point clouds from image file
|
static PointCloud |
PointCloud.randomPoints(int n,
int dim)
return a point cloud of n random points (in the unit hyper-square in dimension dim)
|
static PointCloud |
PointCloud.randomPointsOnCircle(int n,
int dim)
return a point cloud of n random points sampled on a circle
(according to normal distribution)
|
static PointCloud |
ImageManipulation.rasterToPointCloud(java.awt.image.Raster r,
int dimx,
int dimy,
int dim) |
static PointCloud[] |
KdTree.split(PointCloud N,
double cutValue,
int cutDim)
Split a point cloud into two sub-point clouds (lower an upper point clouds)
|
Modifier and Type | Method and Description |
---|---|
static double[] |
PointCloud.boundingBox(PointCloud N) |
static <X extends Jcg.geometry.Point_> |
KdTree.constructDataStructure(PointCloud N,
int pDim)
Construct a Kd-Tree from a point cloud (in dimension pDim)
|
static Jcg.geometry.Point_d[] |
PointCloud.copy(PointCloud N,
int size) |
static void |
Draw.draw2D(PointCloud N,
java.lang.String title)
Draw a point cloud in a 2D frame (using x and y coordinates)
|
static void |
Draw.draw3D(PointCloud N)
Draw a point cloud in a 3D frame (with no colors)
|
static void |
Draw.draw3D(PointCloud N,
Cluster<Jcg.geometry.Point_d> cluster)
Draw a point cloud in 3D with colors.
|
static void |
Draw.draw3D(PointCloud N,
java.awt.Color[] colors) |
static void |
Draw.draw3DNColors(PointCloud N)
Draw a point cloud in a 3D frame (with no colors)
|
(package private) void |
MeanShiftClustering.initMSC(PointCloud n,
PointCloud s,
double cr,
double ar,
double ir,
double mr) |
static Jcg.geometry.Point_d |
PointCloud.mean(PointCloud N) |
int |
MeanShiftClustering.mergeCluster(PointCloud cluster,
Jcg.geometry.Point_d[] clusterCenters)
Perform cluster merging
Remark: cluster center is at top of cluster cloud
|
static void |
ImageManipulation.PointCloudToRaster(PointCloud n,
Cluster<Jcg.geometry.Point_d> cluster,
java.awt.Color[] cols,
java.awt.image.WritableRaster r,
int dimx,
int dimy,
int dim) |
static int |
PointCloud.size(PointCloud N)
return the size (number of points)
|
static PointCloud[] |
KdTree.split(PointCloud N,
double cutValue,
int cutDim)
Split a point cloud into two sub-point clouds (lower an upper point clouds)
|
static void |
TestKdTree.testConstructionKdTree(PointCloud N) |
static void |
TestMeanShift.testDetectCluster(PointCloud N,
double bandwidth) |
static void |
TestMeanShift.testMeanShift(PointCloud N,
double bandwidth) |
static void |
TestMedian.testMedianComputing(PointCloud N) |
Constructor and Description |
---|
FastRangeSearch(PointCloud N)
Construct the data structure for range search
|
KdTree(PointCloud N,
int pDim,
int cutDim)
Constructor -- builds the entire Kd-tree at once recursively
|
LinearTimeMedian(PointCloud points) |
MeanShiftClustering(PointCloud n,
double bandWidth) |
MeanShiftClustering(PointCloud n,
PointCloud s,
double cr,
double ar,
double ir,
double mr) |
MedianWithSorting(PointCloud points) |
PointCloud(Jcg.geometry.Point_d p,
PointCloud n,
boolean copy)
Constructor: add a new point to the cloud (copying or not)
|
SlowRangeSearch(PointCloud N) |