| Modifier and Type | Field and Description | 
|---|---|
| (package private) PointCloud | MeanShiftClustering. N | 
| (package private) PointCloud | SlowRangeSearch. N | 
| private PointCloud | MedianWithSorting. N | 
| private PointCloud | LinearTimeMedian. N | 
| PointCloud | PointCloud. next | 
| private PointCloud | KdTree. points | 
| (package private) PointCloud | MeanShiftClustering. seeds | 
| Modifier and Type | Method and Description | 
|---|---|
| PointCloud | MeanShiftClustering. detectCluster(Jcg.geometry.Point_d seed,
             int clusterIndex)Single cluster detection -- returns approximate peak and cluster points
 The output is a list of point containing:
  - all the points belonging to the detected cluster
  - the peak point (at the top of the list) | 
| PointCloud | FastRangeSearch. NN(X q,
  double sqRad)Main search procedure (for Range search queries) | 
| PointCloud | FastRangeSearch. OrthogonalRangeSearch(X q,
                     double sqRad)Perform range search using KdTrees | 
| PointCloud | KdTree. OrthogonalRangeSearch(X q,
                     double sqRad)Range search: return the list of nearest point to a given query point q. | 
| PointCloud | SlowRangeSearch. OrthogonalRangeSearch(X q,
                     double sqRad)Linear time search (exhaustive search)
 Useful for point clouds of small size | 
| PointCloud | RangeSearch. OrthogonalRangeSearch(X q,
                     double sqRad)Range search: return the list of nearest points to a given query point q. | 
| static PointCloud | IO. pointsFromDataFile(java.lang.String fileName)Load point clouds from file | 
| static PointCloud | IO. pointsFromImage(java.lang.String imageFile)Load point clouds from image file | 
| static PointCloud | PointCloud. randomPoints(int n,
            int dim)return a point cloud of n random points (in the unit hyper-square in dimension dim) | 
| static PointCloud | PointCloud. randomPointsOnCircle(int n,
                    int dim)return a point cloud of n random points sampled on a circle 
 (according to normal distribution) | 
| static PointCloud | ImageManipulation. rasterToPointCloud(java.awt.image.Raster r,
                  int dimx,
                  int dimy,
                  int dim) | 
| static PointCloud[] | KdTree. split(PointCloud N,
     double cutValue,
     int cutDim)Split a point cloud into two sub-point clouds (lower an upper point clouds) | 
| Modifier and Type | Method and Description | 
|---|---|
| static double[] | PointCloud. boundingBox(PointCloud N) | 
| static <X extends Jcg.geometry.Point_>  | KdTree. constructDataStructure(PointCloud N,
                      int pDim)Construct a Kd-Tree from a point cloud (in dimension pDim) | 
| static Jcg.geometry.Point_d[] | PointCloud. copy(PointCloud N,
    int size) | 
| static void | Draw. draw2D(PointCloud N,
      java.lang.String title)Draw a point cloud in a 2D frame (using x and y coordinates) | 
| static void | Draw. draw3D(PointCloud N)Draw a point cloud in a 3D frame (with no colors) | 
| static void | Draw. draw3D(PointCloud N,
      Cluster<Jcg.geometry.Point_d> cluster)Draw a point cloud in 3D with colors. | 
| static void | Draw. draw3D(PointCloud N,
      java.awt.Color[] colors) | 
| static void | Draw. draw3DNColors(PointCloud N)Draw a point cloud in a 3D frame (with no colors) | 
| (package private) void | MeanShiftClustering. initMSC(PointCloud n,
       PointCloud s,
       double cr,
       double ar,
       double ir,
       double mr) | 
| static Jcg.geometry.Point_d | PointCloud. mean(PointCloud N) | 
| int | MeanShiftClustering. mergeCluster(PointCloud cluster,
            Jcg.geometry.Point_d[] clusterCenters)Perform cluster merging
 Remark: cluster center is at top of cluster cloud | 
| static void | ImageManipulation. PointCloudToRaster(PointCloud n,
                  Cluster<Jcg.geometry.Point_d> cluster,
                  java.awt.Color[] cols,
                  java.awt.image.WritableRaster r,
                  int dimx,
                  int dimy,
                  int dim) | 
| static int | PointCloud. size(PointCloud N)return the size (number of points) | 
| static PointCloud[] | KdTree. split(PointCloud N,
     double cutValue,
     int cutDim)Split a point cloud into two sub-point clouds (lower an upper point clouds) | 
| static void | TestKdTree. testConstructionKdTree(PointCloud N) | 
| static void | TestMeanShift. testDetectCluster(PointCloud N,
                 double bandwidth) | 
| static void | TestMeanShift. testMeanShift(PointCloud N,
             double bandwidth) | 
| static void | TestMedian. testMedianComputing(PointCloud N) | 
| Constructor and Description | 
|---|
| FastRangeSearch(PointCloud N)Construct the data structure for range search | 
| KdTree(PointCloud N,
      int pDim,
      int cutDim)Constructor -- builds the entire Kd-tree at once recursively | 
| LinearTimeMedian(PointCloud points) | 
| MeanShiftClustering(PointCloud n,
                   double bandWidth) | 
| MeanShiftClustering(PointCloud n,
                   PointCloud s,
                   double cr,
                   double ar,
                   double ir,
                   double mr) | 
| MedianWithSorting(PointCloud points) | 
| PointCloud(Jcg.geometry.Point_d p,
          PointCloud n,
          boolean copy)Constructor: add a new point to the cloud (copying or not) | 
| SlowRangeSearch(PointCloud N) |