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Quelques valeurs numériques

Grandeur physique Symbole Valeur

Constante de Planck h 6.626× 10−34 J·s

Constante de Planck réduite ℏ 1.055× 10−34 J·s

Vitesse de la lumière c 2.998× 108 m/s

Constante de Boltzmann kB 1.381× 10−23 J/K

Charge élémentaire q 1.602× 10−19 C

Masse de l’électron me 9.11× 10−31 kg

Masse du proton mp 1.673× 10−27 kg

Masse du neutron mn 1.675× 10−27 kg

Rapport gyromagnétique de l’électron γe −2.0023 |q|
2me

γe
2π ≈ −28.0 GHz/T

Rapport gyromagnétique du proton γp 5.59 |q|
2mp

γp
2π ≈ 42.6 MHz/T

Rapport gyromagnétique du neutron γn −3.83 |q|
2mn

γn
2π ≈ −29.1 MHz/T

Constante de structure fine α = e2

ℏc 1/137

Energie d’ionisation de l’hydrogène EI 13.6 eV

Rayon de Bohr a1 0.053 nm

L’image de couverture représente une illustration numérique de l’effet Aharonov-Bohm (6.4).
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Chapitre 1

Principes fondamentaux

Ce premier chapitre constitue un rappel succinct des principes fondamentaux de la physique
quantique tels qu’ils ont été introduits au chapitre 5 du cours de mécanique quantique (PHY3X061).
Il sera utile de relire au préalable ce dernier chapitre, de même que le chapitre 8 du cours PHY3X061
introduisant les notions de produit tensoriel et d’intrication. Quelques notions nouvelles sont toute-
fois introduites ici, notamment l’utilisation des distributions de Dirac pour décrire les bases continues
(1.1.3), ainsi que les conséquences de la commutation – ou non-commutation – entre deux obser-
vables. On évoquera enfin la première révolution quantique, la seconde révolution quantique faisant
quant à elle l’objet du chapitre 10.

1.1 Etat quantique d’un système

1.1.1 Espace des états

Rappelons tout d’abord le premier principe de la physique quantique :

Principe 1 : Espace des états
À chaque système physique est associé un espace de Hilbert approprié EH , l’état
physique du système étant défini par un vecteur normé – appelé ket et noté |ψ⟩ –
appartenant à cet espace.

Nous nous limiterons dans ce cours au cas d’un espace de Hilbert séparable, ce qui signifie
qu’il admet au moins un ensemble dénombrable (éventuellement infini) de kets |ψn⟩ (avec n ∈ N)
constituant une base orthonormée de l’espace. A l’aide d’une telle base, que l’on appellera base
hilbertienne, tout état |ψ⟩ ∈ EH pourra donc s’écrire selon l’expression

|ψ⟩ =
∑
n

cn|ψn⟩ =

 c0
c1
...

 , (1.1)

où les cn sont des coefficients complexes. La base {|ψn⟩} étant orthonormée, chaque coefficient
cn peut être déterminé comme le produit scalaire hermitien de |ψ⟩ avec le vecteur de base cor-
respondant, soit cn = ⟨ψn|ψ⟩. En outre, le produit scalaire hermitien entre le ket |ψ⟩ et le ket

11



12 CHAPITRE 1. PRINCIPES FONDAMENTAUX

|ψ′⟩ =
∑

n c
′
n|ψn⟩ s’écrit

⟨ψ|ψ′⟩ = (c∗0 c
∗
1 · · · )

 c′0
c′1
...

 =
∑
n

c∗nc
′
n. (1.2)

La notation de Dirac employée ci-dessus consiste à introduire le bra ⟨ψ|, conjugué hermitien du
ket |ψ⟩, et que l’on peut interpréter comme le vecteur ligne (c∗0 c

∗
1 · · · ). Cette notation permet de

faire un usage très naturel de l’associativité du produit de matrices (carrées ou non). Par exemple,
l’éq. 1.1 peut encore s’écrire

|ψ⟩ =
∑
n

⟨ψn|ψ⟩|ψn⟩ =
∑
n

|ψn⟩⟨ψn|ψ⟩ =

(∑
n

|ψn⟩⟨ψn|

)
|ψ⟩ (1.3)

ce qui permet d’écrire l’opérateur identité sous la forme ci-dessous, appelée relation de fermeture

Î =
∑
n

|ψn⟩⟨ψn|, (1.4)

où l’opérateur |ψn⟩⟨ψn| est le projecteur sur l’état |ψn⟩.

1.1.2 Espace des états pour une particule ponctuelle sans spin à une dimension

L’espace de Hilbert approprié pour décrire le mouvement à une dimension d’une particule ponc-
tuelle sans spin est l’espace noté L2(R) des fonctions de R vers C dont le carré est sommable. Cet
espace est naturellement de dimension infinie. Le ket |ψ⟩ correspond alors à une fonction d’onde qui
à la coordonnée x de la particule associe la grandeur complexe ψ(x), dont le module élevé au carré,
|ψ(x)|2, représente la densité de probabilité de présence. Le produit scalaire hermitien est dans ce
cas défini par l’intégrale

⟨ψ|ψ′⟩ =
∫ +∞

−∞
ψ∗(x)ψ′(x)dx. (1.5)

La condition de normalisation de notre état s’écrit alors ⟨ψ|ψ⟩ =
∫ +∞
−∞ |ψ(x)|

2dx = 1. Considé-
rons une base hilbertienne {|ψn⟩} de L2(R), par exemple les fonctions propres de l’hamiltonien de
l’oscillateur harmonique. Traduite en termes de fonctions d’onde, l’éq. 1.1 devient

ψ(x) =
∑
n

cnψn(x) (1.6)

avec
cn = ⟨ψn|ψ⟩ =

∫ +∞

−∞
ψ∗
n(x)ψ(x)dx. (1.7)

Introduisons maintenant la transformée de Fourier

φ(px) =
1√
2πℏ

∫ +∞

−∞
ψ(x)e−ipxx/ℏdx. (1.8)

Nous pouvons alors exprimer la fonction d’onde ψ(x) à l’aide de la transformée de Fourier inverse

ψ(x) =
1√
2πℏ

∫ +∞

−∞
φ(px)e

ipxx/ℏdpx. (1.9)
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Cette dernière équation peut encore s’écrire

ψ(x) =

∫ +∞

−∞
φ(px)

eipxx/ℏ√
2πℏ

dpx (1.10)

qui présente une structure similaire à celle de l’éq. 1.6, à savoir une décomposition de ψ(x) sur une
base, sauf qu’il s’agit ici non pas d’une base dénombrable mais d’une base continue. En effet, si on
appelle |px⟩ la fonction qui à x associe eipxx/ℏ/

√
2πℏ, alors l’éq. 1.10 peut s’écrire

|ψ⟩ =
∫ +∞

−∞
φ(px)|px⟩dpx (1.11)

ce qui correspond bien à la décomposition du ket |ψ⟩ sur la base continue {|px⟩}, l’ensemble continu
des valeurs φ(px) jouant ici le rôle des coefficients cn. De plus, le coefficient φ(px) s’exprime lui aussi
comme un produit scalaire hermitien puisqu’on peut reformuler l’éq. 1.8 sous la forme

φ(px) =

∫ +∞

−∞

e−ipxx/ℏ√
2πℏ

ψ(x)dx = ⟨px|ψ⟩. (1.12)

Rappelons que les vecteurs de base {|px⟩} sont les vecteurs propres de l’opérateur impulsion

p̂x =
ℏ
i

d

dx
(1.13)

puisque
ℏ
i

d

dx

eipxx/ℏ√
2πℏ

=
ℏ
i

ipx
ℏ
eipxx/ℏ√

2πℏ
= px

eipxx/ℏ√
2πℏ

(1.14)

soit
p̂x|px⟩ = px|px⟩. (1.15)

Enfin, la grandeur |φ(px)|2 représente la densité de probabilité associée à l’impulsion. Il faut toutefois
souligner une difficulté de taille, à savoir que les vecteurs propres |px⟩ n’appartiennent pas à l’espace
de Hilbert. En effet, le module de la fonction d’onde correspondante est constant et celle-ci ne saurait
donc être de carré sommable. Comme on peut le vérifier avec l’exercice C.1, cette propriété est une
conséquence inéluctable de la nature continue du spectre de l’opérateur p̂x.

1.1.3 Distribution de Dirac

Compte tenu de la symétrie entre transformée de Fourier et transformée de Fourier inverse, il est
clair que les fonctions ψ(x) et φ(px) sont deux manières parfaitement équivalentes de représenter
l’information contenue dans le ket |ψ⟩. Si la fonction φ(px) = ⟨px|ψ⟩ peut s’interpréter comme la
décomposition du ket |ψ⟩ dans la base continue {|px⟩}, la symétrie entre les deux représentations
nous incite à chercher une décomposition similaire pour la fonction d’onde ψ(x). Pour y parvenir,
introduisons pour ϵ > 0 la fonction représentée Fig. 1.1 qui à x′ associe δ(ϵ)x (x′) = δ(ϵ)(x′ − x), par
définition égale à 1/ϵ pour |x′−x| ≤ ϵ/2 et nulle à l’extérieur de cet intervalle (la fonction δ(ϵ) étant
quant à elle une fonction paire centrée sur l’origine). La fonction δ

(ϵ)
x , dont l’intégrale est égale à

1, permet de calculer la valeur moyenne prise par toute fonction dans un petit voisinage autour du
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(a) (b)

Figure 1.1 – Représentation de la fonction qui a x′ associe (a) δ(ϵ)(x′) et (b)
δ
(ϵ)
x (x′) = δ(ϵ)(x′ − x). Les flèches verticales correspondent à la représentation

schématique de la limite de ces fonctions lorsque ϵ tend vers 0.

point x à l’aide du produit scalaire hermitien

⟨δ(ϵ)x |ψ⟩ =
∫ +∞

−∞
δ(ϵ)x (x′)ψ(x′)dx′ =

∫ +∞

−∞
δ(ϵ)(x′ − x)ψ(x′)dx′ = 1

ϵ

∫ x+ϵ/2

x−ϵ/2
ψ(x′)dx′. (1.16)

La Fig. 1.2 représente cette moyenne glissante, qui est proche de ψ(x) dès lors que ϵ est suffisamment
petit. On peut en effet observer sur la figure que la fonction initiale est assez bien reproduite, même
si ses variations les plus rapides sont lissées sous l’effet du produit de convolution.

Figure 1.2 – Représentation de la fonction ψ(x) (en bleu) et de ⟨δ(ϵ)x |ψ⟩ (en
rouge) en fonction de x.

On peut montrer que lorsque la grandeur ϵ tend vers zéro, cette moyenne glissante sur un
intervalle de plus en plus petit va converger vers la valeur exacte de la fonction ψ(x), ce que l’on
peut écrire sous la forme

lim
ϵ→0
⟨δ(ϵ)x |ψ⟩ = ψ(x). (1.17)

On peut ainsi introduire le bra ⟨δx| défini de la manière suivante

⟨δx| = lim
ϵ→0
⟨δ(ϵ)x |, (1.18)

tel que pour tout état |ψ⟩, on ait la relation

⟨δx|ψ⟩ = ψ(x). (1.19)

Ce bra correspond à ce qu’on appelle en mathématiques la distribution de Dirac (voir le cours
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FMA42032). Considérons maintenant le ket |δx⟩ correspondant. La fonction associée à ce ket s’écrit
a priori

δx(x
′) = lim

ϵ→0
δ(ϵ)x (x′). (1.20)

Le problème est que cette fonction n’en est pas une. En effet, la grandeur δx(x′) est nulle dans tout
l’espace, sauf en x′ = x où elle prend une valeur infinie (c’est à dire qu’elle n’est pas définie au seul
point où elle est non nulle). Un usage largement répandu en physique consiste néanmoins à faire
comme si la distribution de Dirac était une fonction comme une autre. Ainsi, on écrira l’éq. 1.19
sous la forme d’une simple intégrale

ψ(x) =

∫ +∞

−∞
δx(x

′)ψ(x′)dx′ =

∫ +∞

−∞
δ(x′ − x)ψ(x′)dx′ (1.21)

où
δ(x) = lim

ϵ→0
δ(ϵ)(x) (1.22)

est la fonction de Dirac centrée sur l’origine. Cette fonction de Dirac peut encore être définie de
manière unique par la relation

ψ(0) =

∫ +∞

−∞
δ(x)ψ(x)dx, (1.23)

valable pour toute fonction ψ(x). Dans toute la suite, le bra ⟨δx| et le ket |δx⟩ seront notés respec-
tivement ⟨x| et |x⟩, ce qui nous permettra de reformuler l’éq. 1.19 de façon plus intuitive

ψ(x) = ⟨x|ψ⟩. (1.24)

L’équation ci-dessus est ainsi parfaitement analogue à la formulation correspondante pour la trans-
formée de Fourier φ(px) = ⟨px|ψ⟩. L’analogie va plus loin car on peut remarquer que x′δx(x′) =

xδx(x
′), puisque δx(x

′) est nul pour x′ ̸= x. Cette équation montre que la fonction de Dirac
x′ 7→ δx(x

′) est une fonction propre de l’opérateur position puisque son produit par la fonction
x′ 7→ x′ revient simplement à la multiplier par la constante x. En d’autres termes, on a

x̂|x⟩ = x|x⟩. (1.25)

Calculons la transformée de Fourier de la distribution de Dirac, ⟨px|x⟩. Nous pouvons soit faire le
calcul explicitement

⟨px|x⟩ =
1√
2πℏ

∫ +∞

−∞
δ(x′ − x)e−ipxx′/ℏdx′ = e−ipxx/ℏ√

2πℏ
, (1.26)

soit remarquer que la quantité recherchée est le complexe conjugué d’une quantité déjà connue

⟨px|x⟩ = (⟨x|px⟩)∗ =

(
eipxx/ℏ√

2πℏ

)∗

=
e−ipxx/ℏ√

2πℏ
, (1.27)

les deux méthodes donnant bien entendu le même résultat. Si la transformée de Fourier de la fonction
de Dirac est la fonction e−ipxx/ℏ/

√
2πℏ, on peut en déduire d’après l’éq. 1.9 que la transformée de
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Fourier inverse de cette dernière fonction redonne la fonction de Dirac, soit

δx(x
′) =

1√
2πℏ

∫ +∞

−∞

e−ipxx/ℏ√
2πℏ

eipxx
′/ℏdpx (1.28)

ou encore
δ(x) =

1

2πℏ

∫ +∞

−∞
eipxx/ℏdpx, (1.29)

qui est une autre façon de définir la fonction de Dirac. Enfin, la fonction de Dirac permet d’écrire
le produit scalaire entre deux éléments d’une base continue (voir exercice C.1). On écrit ainsi

⟨x|x′⟩ = δx′(x) = δ(x− x′) = δ(x′ − x) (1.30)

qui est la définition même du ket |x′⟩, et

⟨px|p′x⟩ = δ(px − p′x) = δ(p′x − px). (1.31)

La fonction de Dirac nous permet ainsi de disposer d’une notation mettant clairement en évidence
la symétrie parfaite entre position et impulsion, comme résumé dans le tableau ci-dessous.

Position Impulsion

ψ(x) = ⟨x|ψ⟩ φ(px) = ⟨px|ψ⟩
x̂|x⟩ = x|x⟩ p̂x|px⟩ = px|px⟩

x̂ψ(x) = xψ(x) p̂xφ(px) = pxφ(px)

p̂xψ(x) = (ℏ/i)dψ/dx x̂φ(px) = iℏ dφ/dpx
⟨x|x′⟩ = δ(x− x′) ⟨px|p′x⟩ = δ(px − p′x)
Î =

∫
|x⟩⟨x|dx Î =

∫
|px⟩⟨px|dpx

1.1.4 Produit tensoriel

L’espace de Hilbert approprié s’écrit souvent sous la forme d’un produit tensoriel d’autres es-
paces, notamment lorsque le système considéré est un système composite constitué de deux sous-
systèmes ou plus (voir section 8.2 du cours PHY3X061).

1.2 Mesure

Le second principe de la physique quantique porte sur le problème de la mesure. L’encadré
ci-dessous énonce ce principe dans le cas d’une observable de spectre discret, les valeurs propres
pouvant être éventuellement dégénérées.



1.2. MESURE 17

Principe 2 : Mesure

(i) À toute grandeur physique A on associe un opérateur auto-adjoint Â appelé
observable et agissant dans l’espace de Hilbert.

(ii) Une mesure de la grandeur physique A ne peut donner comme résultat que l’une
des valeurs propres an de l’observable Â.

(iii) Pour un système se trouvant dans l’état |ψ⟩ juste avant la mesure, la probabilité
de mesurer la valeur an s’écrit

P(an) = ⟨ψ|P̂n|ψ⟩ = ||P̂n|ψ⟩||2 (1.32)

où P̂n est le projecteur sur le sous-espace propre associé à la valeur propre an.

(iv) Si la mesure de A donne le résultat an, alors juste après la mesure le système
est dans l’état

|ψ′⟩ = P̂n|ψ⟩
||P̂n|ψ⟩||

. (1.33)

Le théorème spectral stipule que les vecteurs propres d’un opérateur auto-adjoint forment une
base de l’espace de Hilbert. Si ce théorème ne pose pas de difficulté dans un espace de Hilbert
de dimension finie, son application est parfois plus délicate en dimension infinie. En effet, comme
nous l’avons vu plus haut, dans le cas d’un spectre continu les vecteurs de base n’appartiennent
pas à l’espace, qu’ils peuvent pourtant engendrer dans sa totalité. Dans un premier temps, nous
allons supposer que le spectre de l’observable Â est discret et nous appelons {an} l’ensemble de ses
valeurs propres. Pour prendre en compte explicitement la possibilité de valeurs propres dégénérées,
appelons |ψn,r⟩ les vecteurs propres associés aux valeurs propres an, où l’indice r peut prendre
gn valeurs différentes, gn étant la dégénérescence de la valeur propre an. L’ensemble des vecteurs
propres {|ψn,r⟩} constituant une base orthonormée de l’espace de Hilbert, tout état |ψ⟩ pourra
s’écrire

|ψ⟩ =
∑
n,r

cn,r|ψn,r⟩, (1.34)

où cn,r = ⟨ψn,r|ψ⟩. La matrice de l’observable Â étant diagonale dans la base {|ψn,r⟩}, on peut
écrire

Â =
∑
n,r

an |ψn,r⟩ ⟨ψn,r| , (1.35)

ou encore
Â =

∑
n

anP̂n, (1.36)

où
P̂n =

∑
r

|ψn,r⟩ ⟨ψn,r| (1.37)

est le projecteur sur le sous-espace propre associé à la valeur propre an. Avec ces notations, la
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relation de fermeture (eq. 1.4) peut s’écrire

Î =
∑
n,r

|ψn,r⟩ ⟨ψn,r| =
∑
n

P̂n. (1.38)

Le point (i) du principe de la mesure permet d’affirmer que toute valeur propre a de l’observable
Â est bien réelle (et donc, d’après (ii), qu’il en va de même pour tout résultat de mesure). En effet,
pour un vecteur propre |ψ⟩ associé à la valeur propre a, on peut écrire

a = ⟨ψ|Â|ψ⟩ = (⟨ψ|Â†|ψ⟩)∗ = (⟨ψ|Â|ψ⟩)∗ = a∗. (1.39)

Le point (ii), en association avec (iii) et (iv), permet d’assurer la reproductibilité de mesures
successives. En effet, si on a obtenu le résultat an, alors le système est d’après (iv) projeté dans
l’état |ψ′⟩ donné par l’éq. 1.33. Si on mesure immédiatement après la même grandeur, on a alors
d’après (iii)

P(an) = ||P̂n|ψ′⟩||2 = ||P̂
2
n |ψ⟩||2

||P̂n|ψ⟩||2
= 1 (1.40)

car P̂ 2
n = P̂n (puisque P̂n est un projecteur). On est donc bien certain de retrouver le même résultat

si la seconde mesure suit immédiatement la première (i.e. sans que le système n’ait le temps d’évoluer
entre les deux mesures).

La valeur moyenne ⟨A⟩ de la grandeur physique peut être évaluée à l’aide du point (iii) du
principe de la mesure :

⟨A⟩ =
∑
n

P(an)an =
∑
n

an ⟨ψ| P̂n |ψ⟩ = ⟨ψ|

(∑
n

anP̂n

)
|ψ⟩ , (1.41)

soit
⟨A⟩ = ⟨ψ| Â |ψ⟩ . (1.42)

On peut remarquer que le projecteur P̂n est un opérateur auto-adjoint qui a, d’après l’éq. 1.37,
une structure très similaire à celle de l’observable Â (éq. 1.35). P̂n peut en effet être représenté dans
la base propre de Â comme une matrice diagonale, les éléments diagonaux de Â ayant été remplacés
par 0 lorsqu’ils sont différents de an et par 1 lorsqu’ils sont égaux à an. Ainsi, P̂n peut être considéré
comme une observable binaire répondant à la question "la mesure de A a-t-elle donné le résultat
an ?". Il n’est donc pas surprenant que la probabilité de mesurer an soit égale à la valeur moyenne
de l’observable P̂n dans l’état |ψ⟩ (eq. 1.32).

Concernant le point (iv), on peut remarquer que l’expression postulée permet d’assurer que
l’état |ψ′⟩ après la mesure appartient bien au sous-espace propre (ce qui est indispensable pour que
la mesure soit reproductible) tout en perturbant le moins possible le système par rapport à son état
initial |ψ⟩. En effet, l’opération de projection |ψ⟩ 7→ P̂n |ψ⟩ se contente d’annuler tous les coefficients
qui doivent disparaître (cn′,rn′ pour n′ ̸= n) tout en laissant inchangés les coefficients que l’on peut
conserver (cn,r).

Dans le cas où la valeur propre an n’est pas dégénérée, le vecteur propre associé peut s’écrire
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simplement |ψn⟩ et le projecteur devient alors P̂n = |ψn⟩ ⟨ψn|. On a ainsi

P(an) = ⟨ψ| (|ψn⟩ ⟨ψn|) |ψ⟩ = | ⟨ψn|ψ⟩ |2 (1.43)

ce qui nous permet de formuler plus simplement les deux derniers points du principe de la mesure.

Principe 2 : Mesure (cas d’une valeur propre non dégénérée)

(iii) Pour un système placé dans l’état |ψ⟩ juste avant la mesure, la probabilité de
mesurer la valeur an s’écrit P(an) = | ⟨ψn|ψ⟩ |2, où |ψn⟩ est le vecteur propre
associé à la valeur propre an.

(iv) Si la mesure de A donne le résultat an, alors juste après la mesure le système
est dans l’état |ψn⟩.

Pour l’état du système après la mesure (iv), on s’autorise ici à ne pas conserver le facteur de
phase ⟨ψn|ψ⟩ /| ⟨ψn|ψ⟩ | qui devrait normalement apparaître devant |ψn⟩ suite à l’application du
projecteur P̂n = |ψn⟩⟨ψn| (éq. 1.33). Cette simplification est sans conséquence puisque, d’après le
principe de la mesure dans sa version la plus générale, aucune mesure physique n’est sensible à un
facteur de phase global. En effet, en remplaçant |ψ⟩ par eiθ |ψ⟩, on obtient de manière générale

⟨ψ| e−iθP̂neiθ |ψ⟩ = ⟨ψ| P̂n |ψ⟩ , (1.44)

si bien que l’application de l’éq. 1.33 donne la même probabilité de mesure, avec ou sans facteur de
phase. Aucune mesure physique (i) ne pourra ainsi faire la distinction entre les états |ψ⟩ et eiθ |ψ⟩,
qui sont donc également légitimes pour représenter l’état du système.

1.3 Evolution temporelle

Principe 3 : Évolution temporelle
L’évolution de l’état |ψ(t)⟩ du système est gouvernée par l’équation de Schrödinger

iℏ
d |ψ(t)⟩
dt

= Ĥ(t)|ψ(t)⟩ (1.45)

où Ĥ(t) est l’hamiltonien du système.

On rappelle que dans le cas d’un système isolé, l’hamiltonien Ĥ ne dépend pas du temps et il
devient fructueux de déterminer ses états propres {|n⟩} définis par

Ĥ|n⟩ = En|n⟩ = ℏωn|n⟩. (1.46)

Pour une condition initiale
|ψ(t0)⟩ =

∑
n

cn(t0) |n⟩ , (1.47)

(i)Bien entendu, cette remarque ne porte que sur un facteur de phase affectant la totalité du système. Un déphasage
n’affectant qu’une partie du système pourra être mesuré en faisant interférer le terme considéré avec un chemin de
référence non déphasé.
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avec cn(t0) = ⟨n|ψ(t0)⟩, la solution générale de l’équation de Schrödinger s’écrit

|ψ(t)⟩ =
∑
n

e−iωn(t−t0)cn(t0)|n⟩ =
∑
n

exp

(
−iEn(t− t0)

ℏ

)
cn(t0)|n⟩. (1.48)

La valeur moyenne d’une quantité physique s’écrit alors

⟨A⟩ = ⟨ψ(t)|Â|ψ(t)⟩ (1.49)

=
∑
m,n

⟨m|eiωm(t−t0)c∗m(t0)Âe
−iωn(t−t0)cn(t0)|n⟩ (1.50)

=
∑
m,n

c∗m(t0)cn(t0)e
−iωnm(t−t0) ⟨m| Â |n⟩ (1.51)

où
ωnm = ωn − ωm =

En − Em
ℏ

. (1.52)

L’évolution temporelle d’une grandeur physique, quelle qu’elle soit, est donc une superposition de
fonction périodiques associées aux fréquences ωnm/(2π). En particulier, dans le cas d’un système à
deux niveaux, l’évolution temporelle de n’importe quelle grandeur physique sera toujours sinusoï-
dale.

Rappelons enfin que dans le cas particulier où l’état initial est un état propre de l’hamiltonien,
i.e. Ĥ |ψ(t0)⟩ = E |ψ(t0)⟩, alors le ket

|ψ(t)⟩ = e−iE(t−t0)/ℏ|ψ(t0)⟩ (1.53)

est l’unique solution de l’équation de Schrödinger. L’évolution temporelle se résume alors à un facteur
de phase global, dont nous avons vu plus haut qu’il n’avait pas d’effet sur les valeurs moyennes des
grandeurs physiques. La valeur moyenne ⟨A⟩ est alors indépendante du temps, conformément à
l’éq. 1.51 lorsqu’un seul coefficient cn(t0) est non nul. Pour cette raison, un tel état est appelé état
stationnaire.

1.4 Commutation des observables

De manière générale, les opérateurs intervenant en physique quantique (par exemple la position
et l’impulsion d’une particule, ou encore deux composantes cartésiennes du moment cinétique) ne
commutent pas nécessairement entre eux. On caractérise cette propriété à l’aide du commutateur

[Â, B̂] = ÂB̂ − B̂Â. (1.54)

Rappelons que le calcul d’un commutateur se trouvera simplifié en exploitant sa bilinéarité – qui
pourra souvent éviter un développement fastidieux. On donne également les identités bien utiles

[ÂB̂, Ĉ] = [Â, Ĉ]B̂ + Â[B̂, Ĉ] (1.55)

[Â, B̂Ĉ] = B̂[Â, Ĉ] + [Â, B̂]Ĉ. (1.56)
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1.4.1 Deux observables qui commutent

Dans le cas où deux opérateurs commutent ([Â, B̂] = 0), on peut affirmer que tout sous-espace
propre de Â est stable sous l’action de B̂. En effet, soit |ψ⟩ ∈ Ea, où Ea est le sous-espace propre de
Â associé à la valeur propre a. On a alors Â|ψ⟩ = a|ψ⟩ et on peut écrire

ÂB̂|ψ⟩ = B̂Â|ψ⟩ = B̂a|ψ⟩ = a
(
B̂|ψ⟩

)
(1.57)

ce qui signifie que B̂|ψ⟩ ∈ Ea. L’espace Ea est donc bien stable sous l’action de l’opérateur B̂.

On peut en déduire une propriété très importante : il existe une base propre commune aux
deux observables Â et B̂. En effet, comme Ea est stable par B̂, on peut se placer à l’intérieur de
cet espace et y diagonaliser la restriction de B̂ pour construire une base propre de Ea pour les
restrictions de Â (qui dans cet espace est proportionnelle à l’identité) et de B̂. En répétant cette
opération pour chaque sous-espace propre de Â, on construit ainsi une base propre commune à ces
deux observables pour l’ensemble de l’espace. En appelant am et bn les valeurs propres de Â et B̂,
on peut noter la base propre commune {|ψm,n,p⟩}, avec

Â|ψm,n,p⟩ = am|ψm,n,p⟩ (1.58)

B̂|ψm,n,p⟩ = bn|ψm,n,p⟩ (1.59)

L’indice p est nécessaire car les espaces propres communs à Â et B̂ pour un couple donné de valeurs
propres (am, bn) peuvent a priori être de dimension supérieure à 1.

On dit de deux observables qui commutent entre elles qu’elles sont compatibles, ce qui signifie
qu’il est possible d’avoir simultanément connaissance des valeurs prises par les deux grandeurs
physiques associées. En effet, supposons que le système soit dans l’état initial

|ψ⟩ =
∑
m,n,p

cm,n,p |ψm,n,p⟩ . (1.60)

Mesurons dans un premier temps la grandeur A et supposons que l’on obtienne le résultat am. A
l’issue de cette mesure, le postulat de la mesure stipule que le système est projeté dans le sous-espace
propre associé à la valeur propre am, de sorte que l’état après la mesure est proportionnel à

|ψ′⟩ =
∑
n,p

cm,n,p |ψm,n,p⟩ . (1.61)

Si l’on mesure maintenant la grandeur B et que l’on obtient le résultat bn, on va projeter le vecteur
|ψ′⟩ dans le sous-espace propre associé à la valeur propre bn, ce qui – après normalisation – nous
donne l’état

|ψ′′⟩ =
∑

p cm,n,p |ψm,n,p⟩∑
p |cm,n,p|2

. (1.62)

Pour un même couple (am, bn) de valeurs mesurés, l’état obtenu aurait évidemment été le même si on
avait mesuré les deux grandeurs physiques dans l’ordre inverse. Par abus de langage, on pourra donc
dire que l’on a mesuré les deux grandeurs simultanément. L’état |ψ′′⟩ est un état propre commun
aux deux observables, ce qui signifie qu’une nouvelle mesure de A et B effectuée immédiatement
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après donnerait avec certitude les mêmes valeurs am et bn. Comme annoncé plus haut, on a donc
bien une connaissance simultanée des deux grandeurs. Comme on le verra plus loin, la situation
sera très différente pour deux observables qui ne commutent pas.

1.4.2 Ensemble Complet d’Observables qui Commutent

Un ensemble {Â, B̂, Ĉ, · · · } d’observables est appelé Ensemble Complet d’Observables
qui Commutent (ECOC) lorsque les deux propriétés ci-dessous sont vérifiées :

• Les observables de l’ECOC commutent entre elles deux à deux.

• Leurs espaces propres communs sont de dimension égale à 1.

Compte tenu de la définition même d’un ECOC, il existe une et une seule base propre commune
à toutes les observables de l’ECOC. Par exemple, pour un ECOC {Â, B̂, Ĉ} constitué de trois
observables, on pourra écrire

Â|ψm,n,p⟩ = am|ψm,n,p⟩ (1.63)

B̂|ψm,n,p⟩ = bn|ψm,n,p⟩ (1.64)

Ĉ|ψm,n,p⟩ = cp|ψm,n,p⟩ (1.65)

où les vecteurs de base |ψm,n,p⟩ sont définis de manière unique (chacun à une phase près). La notion
d’ECOC est importante d’un point de vue expérimental car elle nous donne une procédure pour
préparer le système dans un état parfaitement déterminé. En effet, à l’issue d’une mesure de toutes
les grandeurs physiques associées aux observables de l’ECOC, compatibles entre elles d’après ce
que nous avons vu plus haut, on disposera d’un triplet de nombre (am, bn, cp) nous indiquant avec
certitude que le système est dans l’état |ψm,n,p⟩. En d’autres termes, pour préparer le système dans
un état donné (choisi bien entendu parmi les états propres commun de l’ECOC), il suffit de répéter
la mesure des observables jusqu’à obtenir l’ensemble de valeurs propres souhaitées.

1.4.3 Deux observables qui ne commutent pas

A l’inverse de la situation discutée en 1.4.1, deux observables Â et B̂ qui ne commutent pas sont
associées à des grandeurs physiques incompatibles. En d’autres termes, il ne sera pas possible de
connaître avec certitude les deux grandeurs physiques associées. En effet, une mesure de Â projette
l’état initial |ψ⟩ dans un état |ψ′⟩, état propre de Â pour la valeur mesurée a. Une mesure ultérieure
de B̂ va projeter l’état |ψ′⟩ dans un état |ψ′′⟩, état propre de B̂ pour la valeur mesurée b. Mais
comme [Â, B̂] ̸= 0, l’état |ψ′′⟩ n’a a priori aucune raison d’être un état propre de l’observable Â.
La mesure de B̂ pourra donc nous faire perdre tout ou partie de l’information dont nous disposions
à l’issue de la mesure de Â.

On peut formaliser cette incompatibilité à l’aide d’une version généralisée de la relation d’incer-
titude de Heisenberg, que l’on peut écrire

∆a∆b ≥ 1

2

∣∣∣⟨ψ| [Â, B̂] |ψ⟩
∣∣∣ . (1.66)
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Cette relation, dont la démonstration fait l’objet de l’exercice C.6, peut s’interpréter de la manière
suivante. Préparons le système de manière reproductible un grand nombre N de fois dans l’état |ψ⟩
et mesurons N/2 fois la grandeur A, et N/2 fois la grandeur B. On obtient alors deux histogrammes
de valeurs mesurées nous permettant de déterminer les valeurs moyennes ⟨A⟩ et ⟨B⟩ ainsi que les
écarts quadratiques moyens ∆a et ∆b. A la limite où N est suffisamment grand, le produit ∆a∆b

sera contraint par l’inégalité donnée par l’éq. 1.66, que l’on appelle souvent inégalité de Heisenberg
généralisée.

Par exemple, dans le cas des observables position et impulsion, on a le commutateur

[x̂, p̂] = iℏÎ (1.67)

comme établi à l’exercice C.2. L’éq. 1.66 nous permet alors de retrouver l’inégalité de Heisenberg

∆x∆px ≥
ℏ
2
. (1.68)

1.4.4 Théorème d’Ehrenfest généralisé

Intéressons-nous à l’évolution temporelle de la valeur moyenne ⟨ψ(t)| Â(t) |ψ(t)⟩ d’un opérateur
Â(t). Cette variation au cours du temps peut avoir deux origines. D’une part, même pour un
opérateur indépendant du temps, la valeur moyenne ⟨A⟩ de cet opérateur peut dépendre du temps
lorsque l’état |ψ(t)⟩ du système n’est pas un état stationnaire. D’autre part, l’opérateur Â(t) peut
lui-même dépendre explicitement du temps. A titre d’exemple, l’opérateur position x̂ ne dépend pas
explicitement du temps, même si la position moyenne ⟨x⟩ d’une particule peut dépendre du temps
par l’intermédiaire de l’évolution temporelle de l’état du système. Mais si nous plaçons cette particule
dans un champ électrique oscillant dérivant du potentiel électrique U(x, t), alors l’opérateur énergie
potentielle V (x̂, t) = qU(x̂, t) est un opérateur qui dépend explicitement du temps. La dérivée par
rapport au temps de la valeur moyenne comprendra ainsi trois termes :

d

dt
⟨ψ(t)| Â(t) |ψ(t)⟩ = d ⟨ψ(t)|

dt
Â(t) |ψ(t)⟩+ ⟨ψ(t)| Â(t)d |ψ(t)⟩

dt
+ ⟨ψ(t)| ∂Â

∂t
|ψ(t)⟩ (1.69)

où on écrit par convention la dérivée de l’opérateur par rapport au temps comme une dérivée
partielle, pour souligner le fait que ce n’est pas la seule contribution à la variation de la valeur
moyenne. L’équation de Schrödinger nous permet de calculer la dérivée du ket par rapport au
temps, d |ψ(t)⟩ /dt = 1/(iℏ)Ĥ(t) |ψ(t)⟩. Par conjugaison, on obtient la dérivée du bra d ⟨ψ(t)| /dt =
−1/(iℏ) ⟨ψ(t)| Ĥ(t). En remplaçant dans l’éq. 1.69, on obtient

d⟨A⟩
dt

=
1

iℏ

(
−⟨ψ(t)| Ĥ(t)Â(t) |ψ(t)⟩+ ⟨ψ(t)| Â(t)Ĥ(t) |ψ(t)⟩

)
+ ⟨ψ(t)| ∂Â

∂t
|ψ(t)⟩ (1.70)

ce qui nous permet d’établir le théorème d’Ehrenfest généralisé :

d

dt
⟨ψ(t)| Â(t) |ψ(t)⟩ = 1

iℏ
⟨ψ(t)| [Â(t), Ĥ(t)] |ψ(t)⟩+ ⟨ψ(t)| ∂Â

∂t
|ψ(t)⟩ . (1.71)



24 CHAPITRE 1. PRINCIPES FONDAMENTAUX

Dans le cas d’un opérateur Â ne dépendant pas explicitement du temps, on écrira simplement

d

dt
⟨ψ(t)| Â |ψ(t)⟩ = 1

iℏ
⟨ψ(t)| [Â, Ĥ(t)] |ψ(t)⟩ . (1.72)

Ce théorème permet d’établir facilement plusieurs résultats importants :

• Toute grandeur physique associée à une observable Â ne dépendant pas explicitement du
temps et commutant avec l’hamiltonien se conserve. En effet, pour une observable Â telle que
[Â, Ĥ(t)] = 0, l’éq. 1.72 nous donne directement d⟨A⟩/dt = 0. Ce résultat important sera
exploité dès le prochain chapitre.

• Pour un système isolé, l’énergie se conserve. Il s’agit d’un cas particulier du résultat précédent,
puisque pour un système isolé l’hamiltonien ne dépend pas explicitement du temps et commute
évidemment avec lui-même.

• Pour une particule dont le mouvement unidimensionnel est gouverné par l’hamiltonien Ĥ =

p̂2x/(2m) + V (x̂), on peut montrer (exercice C.4)

d⟨x⟩
dt

=
⟨px⟩
m

(1.73)

d⟨px⟩
dt

= −
〈
dV

dx

〉
(1.74)

Ce sont en fait ces deux relations, effectivement dues à Ehrenfest, que l’on appelle théorème
d’Ehrenfest au sens strict, tandis que le résultat que nous avons appelé théorème d’Ehrenfest
généralisé est dû à Heisenberg. Les deux relations ci-dessus ressemblent beaucoup aux équa-
tions classiques d’Hamilton-Jacobi, sans donner toutefois exactement le même résultat puisque
la valeur moyenne de la force n’est pas égale à la force appliquée à la position moyenne.

1.5 La première révolution quantique

L’avènement de la physique quantique a donné lieu à une véritable révolution conceptuelle, re-
mettant en cause une grande part de nos intuitions classiques, comme les notions de trajectoire et de
déterminisme en mécanique classique. Cette remise en cause, rendue incontournable par l’accumula-
tion de faits expérimentaux, a permis une nouvelle compréhension du monde physique, en particulier
à l’échelle nanométrique. La plupart des champs thématiques de la physique s’en sont trouvés bou-
leversés. Ainsi, en physique des hautes énergies, la radioactivité, la fusion thermonucléaire comme
la nucléosynthèse primordiale sont des conséquences directes de l’effet tunnel. De même, la physique
quantique a permis une compréhension intime des atomes et des molécules, associée à une précision
quantitative remarquable au niveau théorique comme au niveau expérimental.

Cette révolution conceptuelle s’est accompagnée d’une révolution technologique, la plupart des
technologies modernes étant de fait issues de la physique quantique. Les moyens importants investis
dans ces nouvelles technologies ont permis un contrôle sans précédent de la qualité des matériaux
utilisés, comme par exemple le silicium (pour le développement de l’électronique) ou la silice (pour
le développement des télécommunications par fibre optique). L’augmentation exponentielle de la
densité de transistors dans les circuits intégrés [4] est allée de pair avec l’essor des nanotechnologies.
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Des techniques comme l’épitaxie par jet moléculaire permettent désormais de contrôler la croissance
de matériaux semiconducteurs couche atomique par couche atomique, comme illustré Fig. 1.3, ce
qui rend possible la fabrication de systèmes à puits ou à boîtes quantiques optimisés pour des
applications très diverses. La physique quantique est ainsi devenue un outil indispensable pour la
conception de nouveaux dispositifs électroniques ou opto-électroniques.

Structure à puits quantiques

Image microscopie STEM Gilles Patriarche et al. (C2N)

5 nm

GaN InGaN GaN

Figure 1.3 – Structure à puits quantique constituée de l’empilement de deux
matériaux semiconducteurs, GaN et InGaN, observée par microscopie électro-
nique en transmission à balayage (STEM). Image fournie par Gilles Patriarche
(Centre de Nanosciences et Nanotechnologies, CNRS - Université Paris-Saclay).

Pour illustrer ce concept d’ingénierie quantique, considérons l’exemple du laser à cascade quan-
tique [5], dispositif à semiconducteur pouvant émettre de manière efficace un rayonnement laser
dans le domaine spectral de l’infrarouge. Il s’agit d’un problème a priori difficile car l’énergie hc/λ
d’un photon infrarouge est faible en raison de la grande valeur de la longueur d’onde λ, de sorte
qu’un laser semiconducteur conventionnel (pour lequel un électron ne produit qu’un seul photon)
aurait un rendement énergétique trop faible. Pour pallier cette difficulté, la structure à puits quan-
tiques représentée Fig. 1.4 permet de recycler un même électron en lui faisant émettre plusieurs
photons infrarouges. A la manière de cascades successives, le système consiste en un empilement
périodique de deux zones appelées respectivement région active et injecteur. L’émission stimulée

55 nm

Figure 1.4 – Schéma de principe d’un laser à cascade quantique, représen-
tant l’énergie potentielle résultant d’une part de l’alternance de deux alliages
semiconducteurs (AlInAs et GaInAs) et d’autre part d’un terme linéaire dû au
champ électrique E⃗ appliqué pour faire circuler un courant électrique dans le
dispositif [6].

a lieu dans la région active, qui consiste en un double puits conçu de sorte à maximiser le dipôle
électrique impliqué dans la transition optique. L’injecteur consiste quant à lui en une succession
de puits quantiques de largeurs de plus en plus petites, afin de compenser la pente résultant de
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la présence du champ électrique accélérant l’électron. On obtient ainsi une quasi-dégénérescence
entre les niveaux des différents puits, ce qui permet d’obtenir une mini-bande (représentée en gris)
grâce au couplage par effet tunnel entre les différents puits. Cette mini-bande, similaire aux bandes
d’énergies qui seront étudiées en 2.5.3, assure une conduction efficace de l’électron vers la zone active
suivante, où un nouveau photon pourra être émis.

Un laser à cascade quantique constitue une source laser accordable pouvant couvrir l’essentiel du
spectre infrarouge. Les différents systèmes démontrés couvrent en effet des longueurs d’onde pouvant
s’étendre de 3.5 à 19 µm [6]. Les nombreuses applications portent notamment sur la spectroscopie

Nombre d’onde [cm-1]Nombre d’onde [cm-1]

Figure 1.5 – Deux extraits (avec des échelles horizontales différentes) du
spectre de transmission du gaz N2O, mesuré en balayant la longueur d’onde λ
d’un laser à cascade quantique [6]. L’axe horizontal représente le nombre d’onde
1/λ.

moléculaire, comme illustré par la Fig. 1.5 qui représente une portion du spectre infrarouge de
la molécule de protoxyde d’azote, N2O. Il s’agit d’une molécule linéaire, l’atome d’oxygène étant
situé à l’une des extrémités de la molécule. Le spectre observé peut s’interpréter comme résultant
d’une combinaison d’un mouvement de vibration de la molécule (associé à un mode correspondant
à un nombre d’onde de 2282 cm−1) et du mouvement d’un rotateur rigide comme celui discuté en
4.5 dans le cas d’une molécule diatomique. Le spectre infrarouge constitue une véritable empreinte
digitale de la molécule considérée, qui pourra être identifiée à distance par spectroscopie infrarouge.
En résumé, cet exemple illustre comment la physique quantique intervient de manière essentielle
tant dans la conception du dispositif laser que dans l’interprétation des spectres infrarouges ainsi
mesurés.

On pourrait multiplier les exemples de telles technologies quantiques, en citant notamment les
horloges atomiques (voir 7.5), qui ont rendu possibles des méthodes de géolocalisation aujourd’hui
omniprésentes, ou encore la magnétorésistance géante, phénomène quantique à l’origine du déve-
loppement de la spintronique et qui a permis une amélioration spectaculaire de la densité des têtes
de lecture des disques durs [7].



Chapitre 2

Symétries et physique quantique

Dans tous les domaines de la physique, il est très souvent utile de tirer parti des propriétés de
symétrie, ou d’invariance, du problème considéré. Par exemple, en mécanique céleste, l’invariance
par rotation du problème de Kepler nous permet d’affirmer que le moment cinétique se conserve et
donc que les trajectoires des planètes sont planes. La physique quantique pourra elle-aussi bénéficier
de cette approche, qui permettra non seulement de simplifier considérablement la résolution d’un
problème donné mais aussi de mieux comprendre l’origine profonde des propriétés physiques du
système étudié.

2.1 Opérateur d’évolution

2.1.1 Définition

L’équation de Schrödinger,

iℏ
d|ψ(t)⟩
dt

= Ĥ(t)|ψ(t)⟩, (2.1)

est une équation différentielle linéaire du premier ordre par rapport au temps. Nous savons donc
que si l’état |ψ(t0)⟩ du système est connu à l’instant t0, il existe une et une seule solution |ψ(t)⟩
à un instant t quelconque. Le fait que |ψ(t)⟩ soit déterminé de manière unique à partir de |ψ(t0)⟩
nous permet d’introduire un opérateur, noté Û(t, t0) et appelé opérateur d’évolution, défini par la
relation

|ψ(t)⟩ = Û(t, t0)|ψ(t0)⟩. (2.2)

On a évidemment la relation triviale
Û(t0, t0) = Î . (2.3)

2.1.2 Linéarité

L’équation de Schrödinger étant une équation différentielle linéaire, l’opérateur d’évolution est
bien entendu un opérateur linéaire. Cette linéarité de l’opérateur d’évolution permet notamment de
retrouver le principe de superposition linéaire : si un état |ψ1(t0)⟩ évolue vers l’état |ψ1(t)⟩, et si un
état |ψ2(t0)⟩ évolue vers l’état |ψ2(t)⟩, alors la superposition linéaire c1|ψ1(t0)⟩+ c2|ψ2(t0)⟩ évoluera

27
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vers l’état

Û(t, t0) (c1|ψ1(t0)⟩+ c2|ψ2(t0)⟩) = c1Û(t, t0)|ψ1(t0)⟩+ c2Û(t, t0)|ψ1(t0)⟩ (2.4)

= c1|ψ1(t)⟩+ c2|ψ2(t)⟩. (2.5)

2.1.3 Composition

La composition de deux opérateurs d’évolution portant sur des intervalles de temps consécutifs
[t0, t1] et [t1, t2] obéit à la relation

Û(t2, t1)Û(t1, t0) = Û(t2, t0). (2.6)

Il suffit pour s’en convaincre de faire agir le membre de gauche de l’équation ci-dessus sur un état
|ψ(t0)⟩ quelconque

Û(t2, t1)Û(t1, t0)|ψ(t0)⟩ = Û(t2, t1)|ψ(t1)⟩ (2.7)

= |ψ(t2)⟩ (2.8)

= Û(t2, t0)|ψ(t0)⟩. (2.9)

Cette relation étant valable pour tout état initial |ψ(t0)⟩, on en déduit la validité de la relation de
composition exprimée par l’éq. 2.6. Une conséquence immédiate de cette relation et de l’éq. 2.3 est
naturellement que

Û(t0, t1) = Û(t1, t0)
−1. (2.10)

2.1.4 Évolution temporelle

En remplaçant |ψ(t)⟩ par l’expression 2.2 dans l’équation de Schrödinger (éq. 2.1), on obtient

iℏ
∂Û(t, t0)

∂t
|ψ(t0)⟩ = Ĥ(t)Û(t, t0)|ψ(t0)⟩. (2.11)

L’égalité ci-dessus étant valable pour tout état |ψ(t0)⟩, elle implique que les deux opérateurs agissant
sur |ψ(t0)⟩ de part et d’autre de l’égalité sont identiques, ce qui nous donne l’équation

iℏ
∂Û(t, t0)

∂t
= Ĥ(t)Û(t, t0). (2.12)

ou encore
∂Û(t, t0)

∂t
= − i

ℏ
Ĥ(t)Û(t, t0). (2.13)

Cette équation différentielle linéaire du premier ordre, associée à la condition initiale Û(t0, t0) = Î

(eq. 2.3), gouverne l’évolution temporelle de l’opérateur d’évolution. Elle ressemble à s’y méprendre
à l’équation de Schrödinger, à ceci près qu’elle porte sur un opérateur et non sur un vecteur d’état.
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2.1.5 Unitarité de l’opérateur d’évolution

Comme démontré à l’annexe B.1, l’opérateur d’évolution est un opérateur unitaire. Cela signifie
que son adjoint est son propre inverse, propriété que l’on caractérise par la relation

Û †(t, t0)Û(t, t0) = Û(t, t0)Û
†(t, t0) = Î . (2.14)

Une conséquence importante est que l’évolution du vecteur d’état est unitaire. En d’autres termes,
le produit scalaire entre deux vecteurs d’état se conserve au cours du temps :

⟨ψ1(t)|ψ2(t)⟩ = ⟨ψ1(t0)|Û †(t1, t0)Û(t1, t0)|ψ2(t0)⟩ = ⟨ψ1(t0)|ψ2(t0)⟩. (2.15)

Cette relation permet notamment de démontrer le théorème de non clonage (voir exercice C.7). En
particulier, la norme du vecteur d’état est constante, ce qui est heureux puisque celle-ci doit être
toujours égale à 1 pour un ket décrivant l’état d’un système physique.

2.1.6 Cas d’un système isolé

Dans le cas d’un système isolé, il est possible de calculer l’expression explicite de l’opérateur
d’évolution en s’appuyant sur le fait que l’hamiltonien est alors indépendant du temps. On peut
effectuer le calcul en se plaçant dans la base propre {|n⟩} de l’hamiltonien Ĥ. D’après l’éq. 1.48, on
peut alors écrire

|ψ(t)⟩ =
∑
n

cn(t0) exp

(
−iEn

ℏ
(t− t0)

)
|n⟩ (2.16)

où cn(t0) = ⟨n|ψ(t0)⟩. En plaçant ce dernier coefficient à droite du ket |n⟩ dans l’expression ci-dessus
et en utilisant |n⟩cn(t0) = |n⟩ ⟨n|ψ(t0)⟩ = (|n⟩⟨n|) |ψ(t0)⟩, on obtient

|ψ(t)⟩ =

(∑
n

exp

(
−iEn

ℏ
(t− t0)

)
|n⟩⟨n|

)
|ψ(t0)⟩ (2.17)

ce qui correspond bien à l’action d’un opérateur sur l’état initial |ψ(t0)⟩, l’opérateur en question
s’écrivant

Û(t, t0) =
∑
n

exp

(
−iEn

ℏ
(t− t0)

)
|n⟩⟨n| (2.18)

ou encore, sous forme matricielle,

Û(t, t0) =


e−iE0(t−t0)/ℏ 0 0

0 e−iE1(t−t0)/ℏ 0
...

0 0 e−iE2(t−t0)/ℏ

. . .
. . .

 (2.19)

Il s’agit là de l’expression dans la base propre d’une exponentielle d’opérateur (voir A.2), ce qui
nous permet d’obtenir l’expression plus compacte

Û(t, t0) = exp

(
−iĤ

ℏ
(t− t0)

)
. (2.20)
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Une seconde méthode, développée à l’annexe B.2, permet d’établir l’expression ci-dessus en vérifiant
que cette dernière convient à l’aide d’un développement en série entière.

2.2 Invariance et commutation

2.2.1 Groupe de symétrie

Considérons le groupe des isométries de l’espace euclidien à trois dimensions, c’est à dire le
groupe des transformations (rotations, symétries, translations) qui conservent le produit scalaire
euclidien (donc les distances et les angles). A l’intérieur de ce groupe, on peut considérer le sous-
ensemble des isométries laissant invariant le système physique considéré. Ce sous-ensemble constitue
lui-même un groupe, que l’on appelle le groupe d’invariance ou encore le groupe de symétrie du
système (même si ce groupe ne comprend pas que des symétries au sens strict du terme). En
effet, si deux isométries R1 et R2 laissent le système invariant, alors la composition de ces deux
transformations, R2◦R1, laisse également le système invariant. De plus, l’identité laisse trivialement
le système invariant. On a donc bien un groupe au sens mathématique du terme. Ce groupe peut être

(a) (b) (c)

(a) (b)
Figure 2.1 – (a) La molécule de benzène est invariante sous l’action des ro-
tations d’angles multiples de 2π/6 autour d’un axe perpendiculaire au plan de
la molécule. (b) Ce cristal bidimensionnel, défini comme la répétition périodique
du motif grisé, est invariant sous l’action des translations de pas ma⃗ + n⃗b, ou
(m,n) ∈ Z2.

discret (fini ou infini) ou continu. A titre d’exemple, l’ensemble des six rotations d’angle n×2π/6, où
n ∈ {0, 1, 2, 3, 4, 5}, constitue un groupe fini laissant la molécule de benzène inchangée (Fig. 2.1(a)).
Un cristal, qui par définition est construit comme la répétition périodique d’un même motif, admet
un groupe de symétrie infini mais discret (i.e. dénombrable), constitué de toutes les translations
dont le pas est un multiple de la période du réseau cristallin (Fig. 2.1(b)). Citons enfin deux exemples
de groupes continus : d’une part, le groupe des translations (de pas quelconque), qui est le groupe
de symétrie approprié pour un système homogène, et d’autre part le groupe des rotations (voir
chapitre 4), qui est le groupe de symétrie approprié pour un système totalement invariant par
rotation, comme par exemple un atome. Pour de tels groupes continus, dont on peut montrer qu’ils
sont différentiables par rapport à un paramètre continu (le pas de la translation ou l’angle de la
rotation), on parlera de groupes de Lie.

D’après un théorème dû à Emmy Noether et qui dépasse le simple cadre de la physique quan-
tique, à toute invariance du système on peut associer une quantité physique conservée. Comme nous
pourrons le voir dans la suite de ce cours, l’invariance par translation donne ainsi lieu à la conser-
vation de l’impulsion, tandis que l’invariance par rotation donne lieu à la conservation du moment
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cinétique (chapitre 4). Il est donc judicieux de commencer l’étude d’un système par l’analyse de son
groupe de symétrie afin d’identifier les quantités conservées.

2.2.2 Effet d’une isométrie dans l’espace de Hilbert

Intéressons nous à l’effet dans l’espace de Hilbert d’une isométrie R de l’espace euclidien. Par
exemple, pour la parité (ou symétrie ponctuelle par rapport à l’origine), on aura simplement Rr⃗ =
−r⃗. Pour une translation de pas a⃗, on aura Rr⃗ = r⃗+ a⃗. Enfin, dans le cas d’une rotation, R pourra
être caractérisé par la matrice de rotation 3× 3 associée. Considérons alors l’opérateur R̂ agissant
dans l’espace de Hilbert permettant de caractériser l’effet de l’isométrie R sur l’état |ψ⟩ du système.
Ainsi, pour un système placé dans l’état |ψ⟩, après application de l’isométrie R, le système sera
dans l’état |ψ′⟩ = R̂ |ψ⟩. Comme le montre l’annexe B.3, l’opérateur R̂ représentant cette isométrie
dans l’espace de Hilbert est alors un opérateur unitaire, soit

R̂R̂† = R̂†R̂ = Î . (2.21)

Dans le cas particulier de L2(R3), on sait que le nouvel état |ψ′⟩ exprimé dans le nouveau référentiel

Figure 2.2 – Représentation d’un paquet d’ondes |ψ⟩ centré en x0 et d’un
paquet d’ondes |ψ′⟩ translaté de la quantité a sous l’action de l’opérateur trans-
lation T̂a. La fonction d’onde ψ′(x) = ψ(x− a) est ainsi centrée en x0 + a.

géométrique r⃗ ′ = Rr⃗ s’exprimera à l’aide de la même fonction d’onde que la fonction d’onde initiale
ψ(r⃗) = ⟨r⃗|ψ⟩. On peut donc écrire ψ′(r⃗ ′) = ψ(r⃗), ou encore

⟨Rr⃗| R̂ |ψ⟩ = ⟨r⃗|ψ⟩ . (2.22)

En remplaçant r⃗ par R−1r⃗ dans l’équation ci-dessus, on en déduit

⟨r⃗|R̂|ψ⟩ = ⟨
(
R−1r⃗

)
|ψ⟩ = ψ(R−1r⃗), (2.23)

ce qui est illustré Fig. 2.2 dans le cas de L2(R), avec un opérateur R̂ correspondant à une translation
T̂a de pas a. L’éq. 2.23 étant valable pour tout ket |ψ⟩, on en déduit l’action de l’opérateur R̂ sur
le bra ⟨r⃗|,

⟨r⃗| R̂ = ⟨
(
R−1r⃗

)
| . (2.24)

En prenant l’adjoint de cette équation, on obtient R̂−1 |r⃗⟩ = |R−1r⃗⟩ puisque nous avons admis que
l’opérateur R̂ était unitaire. Sachant que l’opérateur R̂−1 représente l’isométrie R−1, on obtient
après échange des rôles joués par R et R−1 l’expression

R̂ |r⃗⟩ = |Rr⃗⟩ . (2.25)
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Le ket |r⃗⟩ représentant une fonction de Dirac centrée au point r⃗, il n’est en effet pas surprenant que
R̂ |r⃗⟩ soit une fonction de Dirac centrée au point Rr⃗.

2.2.3 Relation de commutation entre R̂ et Ĥ

On peut montrer de manière générale que pour tout système physique invariant par une isométrie
R, alors l’hamiltonien Ĥ(t) commute avec l’opérateur R̂ représentant cette isométrie dans l’espace
de Hilbert. Pour nous en convaincre, plaçons notre système à l’instant initial t0 dans un état |ψ(t0)⟩
arbitraire, comme représenté Fig. 2.3 dans le cas d’un paquet d’ondes à une dimension. A un instant

Figure 2.3 – Evolution temporelle dans un système invariant par translation
de deux paquets d’ondes |ψ(t)⟩ et |ψ′(t)⟩ initialement translatés l’un par rapport
à l’autre d’une quantité a.

ultérieur t1, le système aura évolué vers l’état |ψ(t1)⟩ = Û(t1, t0)|ψ(t0)⟩. Supposons maintenant
que le système soit placé dans un autre état initial |ψ′(t0)⟩ = R̂|ψ(t0)⟩, obtenu sous l’action de
l’opérateur R̂. Comme l’illustre la Fig. 2.3 dans le cas d’un système invariant par translation, le
paquet d’ondes initialement translaté évoluera exactement de la même manière qu’en l’absence de
translation. L’état final |ψ′(t1)⟩ pourra donc être obtenu à l’aide d’une simple translation à partir
de l’état final |ψ(t1)⟩ que l’on aurait obtenu sans translation préalable. De manière générale, on
pourra donc écrire que

|ψ′(t1)⟩ = R̂|ψ(t1)⟩ = R̂Û(t1, t0) |ψ(t0)⟩ . (2.26)

Mais, comme l’illustre la Fig. 2.3 , il est tout aussi légitime (i) d’écrire l’état |ψ′(t1)⟩ en faisant agir
l’opérateur d’évolution sur l’état initial translaté |ψ′(t0)⟩, ce qui nous donne

|ψ′(t1)⟩ = Û(t1, t0) |ψ′(t0)⟩ = Û(t1, t0)R̂|ψ(t0)⟩. (2.27)

De l’égalité entre les éq. 2.26 et 2.27, valable pour tout état initial |ψ(t0)⟩, on peut déduire la relation

R̂Û(t1, t0) = Û(t1, t0)R̂ (2.28)

ou encore
[R̂, Û(t1, t0)] = 0. (2.29)

(i)Remarquons que la démarche proposée ici par souci de simplicité est un peu trop restrictive. On pourrait tout
à fait imaginer que les deux chemins aboutissent à des états mathématiques différant par un facteur de phase, qui
décriraient bien le même état physique. Une telle situation correspond par exemple au cas d’une particule chargée se
déplaçant dans un champ électrique uniforme.
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En dérivant cette dernière expression par rapport à t1, et en utilisant l’éq. 2.13, on en déduit la
relation annoncée, à savoir la commutation des opérateurs R̂ et Ĥ(t) :

[R̂, Ĥ(t)] = 0. (2.30)

Une conséquence immédiate de ce résultat est que la grandeur R se conserve au cours du temps.
On peut s’en convaincre à l’aide du théorème d’Ehrenfest généralisé (éq. 1.72), ou bien en calculant
directement la valeur moyenne ⟨R⟩(t) :

⟨ψ(t)|R̂|ψ(t)⟩ = ⟨ψ(t0)|Û †(t, t0)R̂Û(t, t0)|ψ(t0)⟩ (2.31)

= ⟨ψ(t0)|Û †(t, t0)Û(t, t0)R̂|ψ(t0)⟩ (2.32)

= ⟨ψ(t0)|R̂|ψ(t0)⟩. (2.33)

On s’approche donc du théorème de Noether, sans y être tout à fait car l’opérateur unitaire R̂
n’étant pas a priori auto-adjoint, il ne correspond pas directement à une quantité observable.

Lorsque l’hamiltonien est indépendant du temps, la recherche de ses états propres sera en outre
simplifié par le fait que l’éq. 2.30 nous permet d’affirmer que les opérateurs R̂ et Ĥ peuvent être
diagonalisés dans une même base (ii). On en verra un exemple avec le théorème de Bloch (2.5.1).

2.2.4 Générateur infinitésimal

Considérons ici le cas d’un groupe de symétrie continu. On peut alors caractériser les éléments de
ce groupe à l’aide d’une fonction continue, notéeRa, dépendant d’un paramètre a (constitué d’un ou
éventuellement plusieurs nombres réels). L’effet de l’isométrie dans l’espace de Hilbert sera noté R̂a.
Dans le cas d’un groupe de Lie, on pourra différencier cet opérateur par rapport à a, et considérer la
transformation associée à une variation infinitésimale da du paramètre a. Par définition, on appelle
générateur infinitésimal l’opérateur Ĝ défini par la relation

R̂da = Î − i

ℏ
Ĝda. (2.34)

Remarquons que l’adjoint de cet opérateur s’écrit

R̂†
da = Î +

i

ℏ
Ĝ†da (2.35)

Pour satisfaire l’unitarité de l’opérateur R̂da (eq. 2.21), il est donc nécessaire et suffisant que Ĝ = Ĝ†.
Le générateur infinitésimal Ĝ est ainsi un opérateur auto-adjoint auquel on pourra associer une
grandeur physique observable. A l’aide de l’éq. 2.34, on peut exprimer cette observable sous la
forme

Ĝ = iℏ
∂Ra
∂a

(a = 0) . (2.36)

(ii)Cette propriété, bien connue pour deux observables, est également vérifiée dans le cas où l’un des opérateurs est
unitaire. En effet, en introduisant les observables Â = (R̂ + R̂†)/2 et B̂ = (R̂ − R̂†)/(2i), on montre aisément que
Ĥ, Â et B̂ commutent entre elles et donc que Ĥ, Â et B̂ sont codiagonalisables. Les opérateurs Ĥ et R̂ = Â + iB̂
peuvent donc être diagonalisés dans une même base.
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Le système physique étant supposé invariant sous l’action du groupe continu considéré, on en déduit
[R̂da, Ĥ] = 0, ce qui – compte tenu de l’éq. 2.34 – se ramène à la condition

[Ĝ, Ĥ] = 0. (2.37)

La grandeur physique G associée à l’observable Ĝ est donc une constante du mouvement : c’est la
version quantique du théorème de Noether.

2.3 Parité

2.3.1 Systèmes invariants par parité

Commençons notre étude des groupes de symétrie par une invariance très simple, à savoir la
parité. On pourra par exemple s’intéresser à un problème à une dimension associé à un potentiel
décrit par une fonction V (x) paire, soit V (−x) = V (x), comme représenté Fig. 2.4(a). Un autre
exemple de système invariant par parité est la molécule représentée Fig. 2.4(b), qui est invariante
sous l’action d’une symétrie par rapport au plan x = 0, consistant à changer x en −x tout en gardant
les coordonnées y et z inchangées. Un troisième exemple d’opération de type parité est l’inversion,
ou symétrie par rapport à un point, consistant à changer r⃗ et −r⃗. A titre d’exemple, la molécule de
benzène représentée Fig. 2.4(c) admet une telle invariance (parmi d’autres). On dit d’une molécule
admettant un centre d’inversion qu’elle est centro-symétrique. Le groupe de symétrie associé à un
système invariant par parité est un groupe fini constitué de seulement deux éléments, l’opération
de parité elle-même et l’identité.

(a) (b) (c)

Figure 2.4 – (a) Exemple de puits de potentiel symétrique (ou pair). (b) Mo-
lécule de paranitroaniline C6H4NH2N02. (c) Molécule de benzène C6H6.

2.3.2 Opérateur parité

Dans le cas du mouvement d’une particule ponctuelle à une dimension, considérons l’opération
de parité changeant x en −x. L’opérateur associé dans L2(R), noté Π̂x et appelé opérateur parité,
sera défini par son action sur une fonction d’onde ψ(x) selon l’expression(

Π̂xψ
)
(x) = ψ(−x). (2.38)

L’opérateur Π̂x a donc pour effet de retourner la fonction d’onde. On peut encore écrire l’expression
ci-dessus sous la forme

⟨x| Π̂x |ψ⟩ = ⟨−x|ψ⟩ (2.39)
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ce qui permet d’en déduire ⟨x| Π̂x = ⟨−x|. L’opérateur parité étant unitaire, et l’opération x 7→ −x
étant sa propre inverse, on en déduit une autre définition de l’opérateur parité

Π̂x |x⟩ = |−x⟩ , (2.40)

où nous reconnaissons l’application de l’éq. 2.25 au cas de l’opérateur parité, expression que nous
aurions aussi pu prendre comme point de départ.

Dans L2(R3), on peut distinguer la symétrie miroir Π̂x correspondant à la symétrie par rapport
au plan x = 0, (

Π̂xψ
)
(x, y, z) = ψ(−x, y, z) (2.41)

et l’inversion définie par Π̂ = Π̂xΠ̂yΠ̂z, ou encore par la relation(
Π̂ψ
)
(r⃗) = ψ(−r⃗) (2.42)

Nous pouvons encore écrire l’action de ces opérateurs sur les fonctions de Dirac, ce qui nous donne

Π̂x |x, y, z⟩ = |−x, y, z⟩ (2.43)

et
Π̂ |r⃗⟩ = |−r⃗⟩ . (2.44)

2.3.3 Diagonalisation de l’opérateur parité

On peut facilement trouver dans L2(R) les valeurs propres de l’opérateur parité Π̂x en remar-
quant que (

Π̂2
xψ
)
(x) =

(
Π̂xψ

)
(−x) = ψ(x), (2.45)

soit Π̂2
x = Î. Les valeurs propres de l’opérateur Π̂x sont donc les racines carrés de l’unité, soit ±1.

Les états propres associés à la valeur propre +1, appelés états symétriques ou pairs, obéissent à la
relation

ψS(−x) = ψS(x), (2.46)

tandis que les états propres associés à la valeur propre −1, appelés états antisymétriques ou impairs,
obéissent à la relation

ψA(−x) = −ψA(x). (2.47)

On pourrait procéder de même dans L2(R3) pour trouver des fonctions propres symétriques et
antisymétriques.

2.3.4 Conséquence de l’invariance par parité

Pour un système invariant par parité, la relation de commutation [Π̂x, Ĥ] = 0 nous permet
d’affirmer que Π̂x et Ĥ peuvent être diagonalisés dans une même base. On peut donc chercher les
états propres du système sous la forme d’états pairs ou impairs, démarche qui s’avère très utile pour
rechercher les états propres associés à un puits de potentiel symétrique. De même, les états propres
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d’une molécule invariante par parité comme celle représentée Fig. 2.4 pourront être cherchés sous
la forme d’états symétriques ou antisymétriques.

2.4 Translations

2.4.1 Systèmes invariants par translation

Par système invariant par translation, on entend un système invariant par toute translation,
quelle que soit la direction où l’amplitude de la translation considérée. Un tel système est donc
nécessairement homogène puisque tous les points de l’espace jouent alors le même rôle.

2.4.2 Translation dans L2(R)

Considérons pour un problème à une dimension la translation x 7→ x + a. D’après l’éq. 2.25,
l’opérateur associé dans l’espace de Hilbert obéit à la relation

T̂a|x⟩ = |x+ a⟩ (2.48)

à savoir que T̂a transforme une fonction de Dirac initialement centrée au point x en une fonction
de Dirac centrée au point x + a. L’opérateur T̂a étant unitaire, son adjoint T̂ †

a n’est autre que la
translation inverse T̂−1

a = T̂−a. On en déduit

T̂ †
a |x⟩ = T̂−1

a |x⟩ = T̂−a |x⟩ = |x− a⟩ (2.49)

ce qui nous donne pour le bra correspondant

⟨x| T̂a = ⟨x− a| . (2.50)

On en déduit
⟨x| T̂a |ψ⟩ = ⟨x− a|ψ⟩ = ψ(x− a) (2.51)

ou encore (
T̂aψ

)
(x) = ψ(x− a), (2.52)

ce qui revient bien à décaler la fonction d’onde d’une quantité +a, comme représenté Fig. 2.2.
Remarquons en outre que le groupe des translations est de nature additive, ce qui signifie

T̂a+b = T̂aT̂b = T̂bT̂a. (2.53)

En effet, pour tout état |x⟩, on peut écrire

T̂a+b|x⟩ = |x+ (a+ b)⟩ = |(x+ a) + b⟩ = T̂b|x+ a⟩ = T̂bT̂a|x⟩. (2.54)
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On aurait pu montrer de même que T̂a+b = T̂aT̂b. En procédant comme en 2.2.4, on peut considérer
la translation infinitésimale Tda. On a alors ⟨x|T̂da|ψ⟩ = ψ(x− da) = ψ(x)− (∂ψ/∂x)da, soit

⟨x|T̂da|ψ⟩ =
(
1− i

ℏ
da

ℏ
i

∂

∂x

)
ψ(x) (2.55)

= ⟨x|
(
Î − i

ℏ
p̂xda

)
|ψ⟩. (2.56)

Cette dernière relation étant vérifiée pour tout état |ψ⟩, on peut en déduire

T̂da = Î − i

ℏ
p̂xda. (2.57)

L’impulsion p̂x est donc le générateur infinitésimal du groupe des translations. En utilisant l’addi-
tivité établie plus haut, on peut alors écrire

T̂a+da = T̂daT̂a (2.58)

=

(
Î − i

ℏ
p̂xda

)
T̂a (2.59)

= T̂a −
i

ℏ
p̂xT̂ada. (2.60)

On en déduit
T̂a+da − Ta

da
= − i

ℏ
p̂xT̂a (2.61)

ou encore
dT̂a
da

= − i
ℏ
p̂xT̂a (2.62)

Cette équation est parfaitement analogue à l’éq. 2.13 qui portait sur l’opérateur d’évolution. On peut
donc en conclure que la solution sera similaire, à savoir une exponentielle d’opérateur (exactement
comme si on avait affaire à une équation différentielle du premier ordre à coefficient constant portant
sur une fonction scalaire). On peut donc écrire

T̂a = exp

(
− ip̂xa

ℏ

)
, (2.63)

ce qui nous donne une expression explicite de l’opérateur translation à partir du générateur infini-
tésimal p̂x.

2.4.3 Translation dans L2(R3)

Il est facile de généraliser la démarche précédente au cas d’un espace géométrique à trois dimen-
sion. Dans ce cas, on peut en effet décomposer une translation selon le vecteur

a⃗ =

∣∣∣∣∣∣
ax
ay
az

(2.64)
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comme la composition de trois translations selon les axes x, y et z, soit

T̂a⃗ = exp

(
− ip̂zaz

ℏ

)
exp

(
− ip̂yay

ℏ

)
exp

(
− ip̂xax

ℏ

)
. (2.65)

En remplaçant le produit des exponentielles par l’exponentielle de la somme (eq. A.14), en vertu
du fait que les opérateurs p̂x, p̂y et p̂z commutent entre eux, on obtient

T̂a⃗ = exp

(
− i (p̂xax + p̂yay + p̂zaz)

ℏ

)
. (2.66)

On peut donc en déduire

T̂a⃗ = exp

(
− i

ˆ⃗p · a⃗
ℏ

)
(2.67)

Enfin, en développant au plus bas ordre l’éq. 2.66 dans le cas d’une translation infinitésimale, on
obtient

T̂da⃗ = Î − i

ℏ
p̂xdax −

i

ℏ
p̂yday −

i

ℏ
p̂zdaz. (2.68)

En comparant avec l’éq. 2.34 étendue au cas tridimensionnel, on peut en déduire que les observables
p̂x, p̂y et p̂z sont les générateurs infinitésimaux du groupe des translations.

2.4.4 Une nouvelle définition de l’observable impulsion

Partant de l’expression ˆ⃗p = (ℏ/i)∇⃗, nous avons donc établi que, dans L2(R3), les composantes
cartésiennes de l’opérateur impulsion constituaient les générateurs infinitésimaux du groupe des
translations. Mais nous pouvons renverser cette démarche, et définir directement l’opérateur im-
pulsion comme le générateur infinitésimal du groupe des translations. L’avantage de cette nouvelle
approche est qu’elle est plus générale et qu’elle peut donc s’appliquer à tout système physique.

Définition : Pour tout système physique, on appelle observable impulsion ˆ⃗p l’en-
semble des trois opérateurs (p̂x, p̂y, p̂z) définis comme les générateurs infinitésimaux du
groupe des translations, de sorte qu’une translation infinitésimale da⃗ = (dax, day, daz)

du système soit représentée dans l’espace de Hilbert par l’opérateur

T̂da⃗ = Î − i

ℏ
p̂xdax −

i

ℏ
p̂yday −

i

ℏ
p̂zdaz. (2.69)

La translation T̂a⃗ de pas fini a⃗ est alors donnée par l’éq. 2.67.

Comme le groupe des translations est un groupe commutatif, on en déduit que les observables
p̂x, p̂y et p̂z commutent entre elles. Dans le cas particulier où l’espace de Hilbert est L2(R3), on
peut chercher l’expression explicite de l’opérateur impulsion à partir de cette nouvelle définition en
utilisant l’expression d’une translation infinitésimale

⟨r⃗| T̂da⃗ |ψ⟩ = ψ(r⃗ − da⃗) = ψ(r⃗)− ∇⃗ψ · da⃗ = ψ(r⃗)− i

ℏ
ℏ
i
∇⃗ψ · da⃗ (2.70)

En identifiant les termes de cette équation avec ceux de l’éq. 2.69, on retrouve à l’aide de notre
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nouvelle définition l’expression bien connue de l’opérateur impulsion dans L2(R3), soit

ˆ⃗p =
ℏ
i
∇⃗ =

∣∣∣∣∣∣∣∣
ℏ
i
∂
∂x

ℏ
i
∂
∂y

ℏ
i
∂
∂z

. (2.71)

Mais la définition donnée par l’éq. 2.69 présente l’avantage d’être plus générale que cette dernière
équation, qui est limitée au cas de L2(R3). Par exemple, dans le cas d’un système constitué d’un
ensemble de N particules associé à l’espace produit tensoriel EH = E1 ⊗ E2 ⊗ · · · ⊗ EN , l’opérateur
translation s’écrit sous la forme

T̂da⃗ = T̂
(1)
da⃗ ⊗ T̂

(2)
da⃗ ⊗ · · · ⊗ T̂

(N)
da⃗ (2.72)

=

(
Î − i

ℏ
ˆ⃗p1 · da⃗

)(
Î − i

ℏ
ˆ⃗p2 · da⃗

)
· · ·
(
Î − i

ℏ
ˆ⃗pN · da⃗

)
(2.73)

= Î − i

ℏ

N∑
j=1

ˆ⃗pj · da⃗ (2.74)

où ˆ⃗pj est l’observable impulsion de la particule j (on entend par là soit l’opérateur agissant dans
Ej soit son extension évidente dans EH). En identifiant avec l’éq. 2.69, on obtient l’expression de
l’opérateur impulsion du système global :

ˆ⃗
P =

N∑
j=1

ˆ⃗pj . (2.75)

On retrouve ainsi que l’impulsion du système global est la somme des impulsions de ses constituants,
ici les N particules considérées.

2.4.5 Diagonalisation de l’opérateur translation dans L2(R3)

Sachant que les opérateurs p̂x, p̂y et p̂z commutent entre eux, cherchons une base propre com-
mune à ces trois opérateurs dans L2(R3). Appelons px, py et pz les valeurs propres correspondantes,
la présence éventuelle du chapeau nous permettant de faire la distinction entre les opérateurs p̂x, p̂y
et p̂z, et les scalaires px, py et pz correspondant aux valeurs propres considérées. Un vecteur propre
commun |ψ⟩ obéira aux relations

p̂x|ψ⟩ = px|ψ⟩, (2.76)

p̂y|ψ⟩ = py|ψ⟩, (2.77)

p̂z|ψ⟩ = pz|ψ⟩. (2.78)

Pour déterminer le vecteur propre commun |ψ⟩, commençons par rechercher les fonctions propres
de l’opérateur p̂x. L’éq. 2.76 s’écrit

ℏ
i

∂ψ

∂x
= pxψ(x, y, z). (2.79)
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Il s’agit d’une équation différentielle linéaire du premier ordre, dont la solution est unique si nous
connaissons la condition initiale ψ(0, y, z) en x = 0,

ψ(x, y, z) = ψ(0, y, z) exp

(
ipxx

ℏ

)
. (2.80)

La fonction ψ(0, y, z) étant fonction propre de l’opérateur p̂y pour la valeur propre py, on obtient
de même

ψ(0, y, z) = ψ(0, 0, z) exp

(
ipyy

ℏ

)
. (2.81)

Enfin, la fonction ψ(0, 0, z) étant fonction propre de l’opérateur p̂z pour la valeur propre pz, on
obtient

ψ(0, 0, z) = ψ(0, 0, 0) exp

(
ipzz

ℏ

)
. (2.82)

A une constante multiplicative près, la fonction propre est donc déterminée de manière unique par
la donnée des trois valeurs propres, soit

ψ(x, y, z) = ψ(0, 0, 0) exp

(
i(pxx+ pyy + pzz)

ℏ

)
(2.83)

ou encore
ψ(r⃗) ∝ exp

(
ip⃗ · r⃗
ℏ

)
. (2.84)

En d’autres termes, les opérateurs p̂x, p̂y, et p̂z constituent un ECOC. La base propre commune
à ces trois opérateurs n’est autre que la base continue {|px, py, pz⟩} déjà rencontrée au chapitre
précédent. Cette base propre est à l’évidence une base propre de l’opérateur translation, avec

T̂a⃗|px, py, pz⟩ = exp

(
− ip⃗ · a⃗

ℏ

)
|px, py, pz⟩. (2.85)

On peut remarquer que les valeurs propres sont des nombres complexes de module égal à 1, ce qui
n’est bien entendu pas surprenant pour un opérateur unitaire.

2.4.6 Conséquence de l’invariance par translation

Pour un système invariant par translation, nous savons que l’hamiltonien commute avec l’opé-
rateur translation T̂a⃗ pour toute valeur du vecteur a⃗. En considérant le cas de translations infinité-
simales selon les axes x, y et z, on peut en conclure que l’hamiltonien commute avec les générateurs
infinitésimaux p̂x, p̂y et p̂z, conformément à l’éq. 2.37. On peut donc écrire

[Ĥ, p̂x] = [Ĥ, p̂y] = [Ĥ, p̂z] = 0. (2.86)

On en déduit deux conséquences importantes. D’une part, il sera possible de diagonaliser les opé-
rateurs Ĥ, p̂x, p̂y et p̂z dans une même base, ce qui simplifiera la recherche des états propres de
l’hamiltonien. D’autre part, en raison du théorème d’Ehrenfest généralisé, l’impulsion d’un système
invariant par translation est une constante du mouvement, en conformité avec le théorème de Noe-
ther. Ce résultat s’appliquera par exemple à l’impulsion totale d’une assemblée de N particules
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interagissant entre elles, comme un atome.
Dans le cas de L2(R3), l’ensemble {p̂x, p̂y, p̂z} constitue déjà un ECOC, associé à la base propre

unique {|px, py, pz⟩}. Cette base est donc nécessairement la base propre commune aux opérateurs
Ĥ, p̂x, p̂y et p̂z. Ce résultat n’est pas surprenant car, dans le cas du mouvement d’une particule sans
spin de masse m, l’hamiltonien agissant dans L2(R3) s’écrit Ĥ = p̂2/(2m0) + V (ˆ⃗r), où m0 est la
masse de la particule. Mais si le système est invariant par toute translation, alors le potentiel V (r⃗)

est nécessairement indépendant de r⃗ et peut donc être pris égal à zéro grâce à un choix judicieux de
l’origine des énergies. L’hamiltonien se réduit donc au seul terme d’énergie cinétique Ĥ = p̂2/(2m0).
Comme l’hamiltonien ne s’exprime qu’en fonction de l’impulsion, il n’est pas surprenant que les
vecteurs propres de l’impulsion soient vecteurs propres de l’hamiltonien. On obtient

Ĥ|px, py, pz⟩ =
p2x + p2y + p2z

2m0
|px, py, pz⟩. (2.87)

On retrouve ici les niveaux d’énergie d’une particule libre.

2.5 Théorème de Bloch

Considérons maintenant un système dont le groupe de symétrie n’est plus un groupe continu mais
un groupe discret, en l’occurrence le groupe des translations de pas ma⃗+ n⃗b+ pc⃗, où (m,n, p) ∈ Z3

et où les vecteurs a⃗, b⃗ et c⃗ sont trois vecteurs linéairement indépendants (mais pas nécessairement
orthogonaux). C’est par exemple le cas du cristal représenté Fig. 2.5, associé à une maille élémentaire
constituée ici de deux atomes. L’étude de tels systèmes est très importante car elle nous permettra
d’accéder au monde de la physique du solide, avec à la clé la compréhension des bandes d’énergie
dans les solides et de la nature conductrice ou non de certains matériaux, ce dernier point étant
discuté plus particulièrement au chapitre 8.

(a) (b) (c)

(a) (b)

Figure 2.5 – Un cristal correspond à la reproduction périodique d’un motif
élémentaire (grisé sur la figure), translaté d’une quantité ma⃗ + n⃗b + pc⃗, où m,
n et p décrivent l’ensemble des nombres entiers.

2.5.1 Théorème de Bloch à une dimension

Commençons par étudier un modèle simple de solide cristallin à une dimension spatiale, corres-
pondant par exemple à une chaine linéaire d’atomes identiques avec une période spatiale a corres-
pondant à la distance entre deux atomes voisins. On s’intéresse au mouvement d’un électron dans
un tel système, et on écrit l’hamiltonien agissant dans L2(R) à l’aide de l’expression usuelle

Ĥ =
p̂2x
2m0

+ V (x̂), (2.88)
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où le potentiel V (x) obéit ici à la condition V (x − a) = V (x), valable pour tout x. La Fig. 2.6
représente un exemple de tel potentiel, chaque puits de potentiel étant centré sur l’un des atomes
de la chaine linéaire. Le groupe de symétrie est ici engendré par l’opérateur translation T̂a. D’après

5. 

 

Cas d’un réseau cristallin 

Théorème de Bloch 

Figure 2.6 – Potentiel périodique à une dimension de période a.

ce que nous avons vu plus haut, l’invariance du système sous l’action de l’opérateur T̂a nous permet
de conclure que Ĥ et T̂a commutent, ce qui nous autorise à chercher une base propre commune à
ces deux opérateurs. Cherchons donc la forme générale des vecteurs propres de l’opérateur T̂a, en
écrivant

T̂a|ψ⟩ = λ|ψ⟩. (2.89)

L’opérateur T̂a étant un opérateur unitaire, nous savons que ses valeurs propres sont des nombres
complexes de module égal à 1. Posons alors

λ = exp(−ikxa) (2.90)

où kx est un nombre réel a priori compris dans l’intervalle [−π/a, π/a[, ce qui permettra à λ de
décrire l’ensemble des nombres complexes de module égal à 1. Compte tenu de la forme générale
des valeurs propres de l’opérateur translation, donnée par exemple par l’éq. 2.85, il est tentant
d’interpréter kx comme le vecteur d’onde px/ℏ de la particule. Cette analogie, souvent utile, n’est pas
complète car les fonctions propres proportionnelles à exp(ikxx) que nous avons obtenues plus haut
étaient les vecteurs propres du générateur infinitésimal p̂x, qui ne commute pas avec l’hamiltonien
considéré ici. A l’inverse du vecteur d’onde, qui peut prendre n’importe quelle valeur réelle, le
paramètre kx n’est donc défini ici que dans l’intervalle [−π/a, π/a[. Ainsi, les règles habituelles de
conservation du vecteur d’onde devront s’entendre modulo 2π/a. Nous pouvons alors donner une
première formulation du théorème de Bloch.

Théorème de Bloch (version 1). Les états propres |ψ⟩ d’un système associé à un
potentiel périodique de période a peuvent être cherchés sous la forme de fonctions
propres de l’opérateur T̂a, soit

T̂a |ψ⟩ = e−ikxa |ψ⟩ (2.91)

où kx est un paramètre assimilé au vecteur d’onde et appartenant à l’intervalle
[−π/a, π/a[. On pourra donc écrire

ψ(x− a) = e−ikxaψ(x). (2.92)

Bien que kx ne soit pas exactement le vecteur d’onde et que ψ(x) ne soit pas une onde plane,
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il est néanmoins possible – sans perte de généralité – de chercher cette fonction sous la forme du
produit de l’onde plane exp(ikxx) par une enveloppe a priori arbitraire u(x), soit ψ(x) = eikxxu(x).
Calculons alors la fonction d’onde translatée

ψ(x− a) = eikx(x−a)u(x− a) = e−ikxaeikxxu(x− a). (2.93)

On peut en conclure que T̂a|ψ⟩ = e−ikxa|ψ⟩ si et seulement si u(x − a) = u(x) pour tout x, ce qui
revient à dire que la fonction u(x) est une fonction périodique de période a. Ceci nous conduit à la
seconde formulation du théorème de Bloch.

Théorème de Bloch (version 2). Les états propres |ψ⟩ d’un système associé à
un potentiel périodique de période a peuvent être cherchés sous la forme du produit
d’une onde plane par une fonction u(x) périodique de période a, soit

ψ(x) = eikxxu(x). (2.94)

où kx est un paramètre assimilé au vecteur d’onde et appartenant à l’intervalle
[−π/a, π/a[.

2.5.2 Recherche des fonctions propres

Cherchons les états propres |ψ⟩ de l’hamiltonien, obéissant donc à l’équation Ĥ |ψ⟩ = E |ψ⟩,
pour une fonction d’onde ψ(x) donnée par l’éq. 2.94 et pour une valeur donnée du paramètre kx.
Calculons tout d’abord l’action de l’opérateur impulsion sur la fonction ψ(x). On obtient

p̂xψ(x) =
ℏ
i

∂

∂x
eikxxu(x) =

ℏ
i

(
ikxe

ikxxu(x) + eikxx
∂u

∂x

)
= eikxx (ℏkx + p̂x)u(x). (2.95)

De même,
p̂2xψ(x) = p̂xe

ikxx (ℏkx + p̂x)u(x) = eikxx (ℏkx + p̂x)
2 u(x). (2.96)

En remplaçant dans l’équation Ĥψ(x) = Eψ(x), on obtient donc

eikxx
(p̂x + ℏkx)2

2m0
u(x) + V (x)eikxxu(x) = Eeikxxu(x). (2.97)

ou encore, après simplification,(
(p̂x + ℏkx)2

2m0
+ V (x)

)
u(x) = Eu(x). (2.98)

On peut écrire cette équation sous la forme

Ĥkx |u⟩ = E |u⟩ , (2.99)
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où l’hamiltonien Ĥkx est défini par

Ĥkx =
(p̂x + ℏkx)2

2m0
+ V (x̂). (2.100)

Cet hamiltonien agit dans l’espace de Hilbert Ea des fonctions périodiques de période a, muni du
produit scalaire hermitien

⟨u|v⟩ =
∫ a/2

−a/2
u∗(x)v(x)dx. (2.101)

Grâce au théorème de Bloch, et en nous appuyant sur la symétrie du problème, nous pouvons donc
travailler dans l’espace Ea, beaucoup plus petit que l’espace L2(R) initial. La résolution du problème
s’en trouvera ainsi grandement simplifiée.

2.5.3 Bandes d’énergie

La recherche des fonctions périodiques u(x) solutions de l’éq. 2.98 est similaire à la résolution de
l’équation de Schrödinger indépendante du temps, au décalage près de l’impulsion d’une quantité
ℏkx. La fonction u(x) étant périodique, le problème se ramène à la recherche des fonctions propres
de Ĥkx dans l’intervalle [−a/2, a/2[, avec les deux conditions aux limites u(−a/2) = u(a/2) et
u′(−a/2) = u′(a/2), où u′(x) représente ici la dérivée de la fonction u(x). En effet, nous savons
que la fonction d’onde et sa dérivée doivent être continues en tout point où le potentiel prend des
valeurs finies. Ces deux conditions jouent le même rôle que les deux conditions intervenant dans
la recherche des états liés d’un puits de potentiel, où on impose à la fonction d’onde de tendre
exponentiellement vers zéro pour x→∞ et pour x→ −∞. Dans un cas comme dans l’autre, l’effet
de ces deux conditions est qu’il n’existe pas de solution physiquement acceptable pour la plupart
des valeurs de E. Seules certaines valeurs bien particulières de l’énergie pourront convenir, ce qui
donne lieu à une quantification des niveaux d’énergie. On trouvera avec l’exercice C.8 une autre
démonstration de ce résultat obtenu ici de manière qualitative. Cette quantification des valeurs
propres étant établie, appelons En(kx) la valeur propre obtenue, où n ∈ N. En effet, cette grandeur
est une fonction continue du paramètre kx puisque l’hamiltonien Ĥkx est lui-même une fonction
continue de kx. De même, les états propres obtenus seront notés |un,kx⟩. On obtient finalement les
états propres |ψn,kx⟩ de l’hamiltonien Ĥ, soit

Ĥ |ψn,kx⟩ = En(kx) |ψn,kx⟩ , (2.102)

avec
⟨x|ψn,kx⟩ = eikxx ⟨x|un,kx⟩ (2.103)

et
Ĥkx |un,kx⟩ = En(kx) |un,kx⟩ . (2.104)

On peut donc déduire de ces résultats que lorsque kx décrit l’intervalle [−π/a, π/a[, l’énergie En(kx)
décrit un intervalle [min(En(kx)),max(En(kx))] que l’on appellera une bande d’énergie. Pour des
valeurs de E situées entre les bandes d’énergie obtenues pour les différentes valeurs de n, il ne sera
pas possible de trouver de solution à l’équation Ĥ |ψ⟩ = E |ψ⟩. On parle alors de bandes d’énergie
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interdites (ou encore de gap en anglais).

Figure 2.7 – Bandes d’énergie pour un potentiel périodique à une dimension,
obtenues à l’aide de la méthode numérique faisant l’objet de l’exercice C.8.

La Fig. 2.7 représente les bandes d’énergie calculées numériquement pour un exemple de potentiel
périodique. On observe effectivement les bandes d’énergie attendues. On peut remarquer que la
largeur de la bande interdite dépend fortement de la valeur de n. Pour n = 0, l’énergie E0(kx) est
ici quasiment-indépendante de kx. On peut interpréter ce résultat en notant que pour le niveau
fondamental de chaque puits de potentiel, la fonction d’onde tend très vite vers zéro lorsqu’on
s’éloigne du centre du puits, ce qui limite la probabilité d’effet tunnel et donc le couplage entre
puits voisins. Lorsque n augmente, l’extension spatiale plus grande de la fonction propre du puits
isolé lui permet d’explorer les puits voisins et l’effet tunnel peut alors se manifester, donnant lieu
à une dispersion de la fonction En(kx). Enfin, pour de grandes valeurs de n, le terme d’énergie
potentielle devient négligeable devant l’énergie cinétique, de sorte que l’énergie s’écrit simplement
E = p2x/(2m0), où px est l’impulsion. Dans cette limite, la fonction propre peut alors s’écrire

ψ(x) = eipxx/ℏ = eikxxei(px/ℏ−kx)x = eikxxei2πnx/a (2.105)

où n = ⌊(pxa/ℏ+ π)/(2π)⌋ et kx = px/ℏ− n2π/a ∈ [−π/a, π/a[. Comme la fonction exp(i2πnx/a)

est une fonction périodique de période a, l’éq. 2.105 est bien conforme au théorème de Bloch. La
fonction En(kx) observée à la Fig. 2.7 pour de grandes valeurs de n correspond alors à la parabole
p2x/(2m0) repliée à l’intérieur de l’intervalle [−π/a, π/a[, le gap entre bandes successives tendant
alors vers zéro.

Enfin, on peut remarquer que la variation de la fonction En(kx) au voisinage de kx = 0 est
parabolique (même si dans la simulation présentée ici la zone où la variation est quadratique devient
minuscule pour de grandes valeurs de n). Pour une bande n donnée, on posera alors

En(kx) =
ℏ2k2x
2m∗ (2.106)
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où m∗ est la masse effective de la particule pour cette bande. En interprétant kx comme le vecteur
d’onde et donc ℏkx comme l’impulsion, on pourra interpréter En(kx) comme une énergie cinétique.
Le réseau périodique aura alors simplement pour effet de remplacer la masse de l’électron m0 par
la masse effective m∗.

Remarquons enfin que la variation de l’énergie en fonction de kx permet d’exprimer la vitesse
moyenne de la particule lorsqu’elle est placée dans une bande donnée. Comme montré en B.4, la
vitesse moyenne s’écrit en effet

⟨vx⟩ =
1

ℏ
dEn
dkx

. (2.107)

Dans le cas d’une variation parabolique décrite par l’éq. 2.106, on obtient alors ⟨vx⟩ = ℏkx/m∗, ce
qui conforte l’interprétation de kx en termes de vecteur d’onde.

2.5.4 Réseau périodique à trois dimensions

Dans le cas d’un cristal à trois dimensions, on pourra raisonner de même avec un potentiel V (r⃗)

admettant la périodicité du réseau cristallin, c’est à dire

V (r⃗ + naa⃗+ nb⃗b+ ncc⃗) = V (r⃗) (2.108)

pour tout triplet (na, nb, nc) ∈ Z3. Le théorème de Bloch nous permettra d’écrire les fonctions
propres du problème sous la forme

Ĥ |ψ
n,⃗k
⟩ = En(k⃗) |ψn,⃗k⟩ (2.109)

avec
ψ
n,⃗k

(r⃗) = eik⃗·r⃗u
n,⃗k

(r⃗), (2.110)

où la fonction u
n,⃗k

(r⃗) présente comme V (r⃗) la périodicité du réseau cristallin. Le vecteur k⃗ est alors
défini dans une zone de l’espace de Fourier appelée première zone de Brillouin, qui est l’équivalent
tridimensionnel de l’intervalle [−π/a, π/a[ de notre modèle unidimensionnel. La Fig. 2.8 représente

Figure 2.8 – Représentation dans l’espace de Fourier de la première zone de
Brillouin, correspondant à la zone de définition du vecteur d’onde k⃗, pour un
réseau cubique à faces centrées.
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cette zone dans le cas de la structure cristalline adoptée par des matériaux semiconducteurs comme
le silicium et l’arséniure de gallium. Sans rentrer dans le détail, on peut comprendre que selon
la direction de propagation dans le réseau cristallin tri-dimensionnel, le paramètre a devra être
remplacé par des valeurs plus ou moins grandes, ce qui donne lieu à la forme d’octaèdre tronqué
représentée ici. ���������� ���	
����	
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Figure 2.9 – Bandes d’énergie calculées pour le Silicium [8]. Les symboles
figurant sur l’axe des abscisses représentent certains points particuliers de la
première zone de Brillouin.

La Fig. 2.9 représente les bandes d’énergie calculées pour un cristal de Silicium. On retrouve
un comportement qualitativement similaire à celui de notre calcul simplifié à une dimension, avec
notamment une bande d’énergie interdite représentée en gris.
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Chapitre 3

Méthodes d’approximation

Seuls certains problèmes, comme par exemple l’oscillateur harmonique (voir PHY3X061, section
5.3) ou le mouvement d’une particule chargée dans un potentiel coulombien (5.3), peuvent être
résolus de manière exacte. Dans nombre de cas, une telle résolution sera hors de portée et il sera
nécessaire d’avoir recours à des approximations, permettant de déterminer une solution approchée
du problème considéré. L’objet de ce chapitre est d’aborder les deux méthodes les plus couramment
employées à cet effet, à savoir la méthode des perturbations et la méthode variationnelle. D’autres
méthodes d’approximation, reposant sur une résolution directe de l’équation de Schrödinger en
fonction du temps, seront également abordées au Chapitre 9.

3.1 Méthode des perturbations

3.1.1 Principe

La méthode des perturbations porte sur la recherche approximative des valeurs propres et vec-
teurs propres d’un hamiltonien indépendant du temps, Ĥ, sachant que cet hamiltonien peut s’écrire
Ĥ = Ĥ0+Ŵ , où Ĥ0 représente l’hamiltonien principal tandis que Ŵ est une perturbation, supposée
petite devant Ĥ0

(i). On supposera que les vecteurs propres et valeurs propres de Ĥ0 sont connus,
et on notera

Ĥ0|n, r⟩ = En|n, r⟩, (3.1)

avec r ∈ {1, 2, · · · , gn}, où l’entier gn représente la dégénérescence du niveau d’énergie En. Afin
d’expliciter le fait que Ŵ est petit devant Ĥ0, on posera Ŵ = λĤ1, où Ĥ1 est du même ordre de
grandeur que Ĥ0, tandis que le nombre réel positif λ est supposé très petit devant 1. L’idée de base
de la méthode des perturbations consiste à considérer les vecteurs propres |ψ(λ)⟩ et valeurs propres
E(λ) de l’hamiltonien Ĥ(λ) = Ĥ0 + λĤ1, et à effectuer un développement limité en fonction de λ
lorsque λ tend vers zéro. Cette approche nous permet d’écrire

|ψ(λ)⟩ = |ψ(0)⟩+ λ|ψ(1)⟩+ λ2|ψ(2)⟩+ · · · (3.2)

(i)La question délicate du domaine de validité de la méthode des perturbations et de ce que l’on entend par
l’hypothèse “Ŵ petit devant Ĥ0” sera évoquée en 3.1.4.

49
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et
E(λ) = E(0) + λE(1) + λ2E(2) + · · · (3.3)

L’équation aux valeurs propres s’écrit alors(
Ĥ0 + λĤ1

)
|ψ(λ)⟩ = E(λ)|ψ(λ)⟩ (3.4)

ou encore(
Ĥ0 + λĤ1

)(
|ψ(0)⟩+ λ|ψ(1)⟩+ λ2|ψ(2)⟩+ · · ·

)
=
(
E(0) + λE(1) + λ2E(2) + · · ·

)(
|ψ(0)⟩+ λ|ψ(1)⟩+ λ2|ψ(2)⟩+ · · ·

)
. (3.5)

En identifiant les coefficients d’ordres successifs dans les polynômes en λ figurant dans les deux
membres de l’égalité ci-dessus, on obtient une séries d’équations dont les premiers termes s’écrivent

Ĥ0|ψ(0)⟩ = E(0)|ψ(0)⟩ (3.6)

Ĥ0|ψ(1)⟩+ Ĥ1|ψ(0)⟩ = E(0)|ψ(1)⟩+ E(1)|ψ(0)⟩ (3.7)

Ĥ0|ψ(2)⟩+ Ĥ1|ψ(1)⟩ = E(0)|ψ(2)⟩+ E(1)|ψ(1)⟩+ E(2)|ψ(0)⟩. (3.8)

La méthode des perturbations consiste à résoudre successivement cette hiérarchie d’équations afin
d’aller jusqu’à l’ordre d’approximation souhaité. Nous allons ci-dessous développer cette approche
seulement jusqu’au second ordre, ce qui est suffisant pour de nombreuses applications, mais la même
démarche pourrait être étendue au-delà si nécessaire. Bien entendu, l’ordre zéro de la méthode des
perturbations correspond au cas λ = 0, c’est à dire à l’absence de perturbation Ŵ = λĤ1. L’éq. 3.6
nous permet ainsi de retrouver que l’énergie E(0) est l’une des valeurs propres de Ĥ0. Pour la suite
du traitement de la méthode des perturbations, il sera crucial de prendre en compte la nature
dégénérée ou non du niveau E(0) considéré.

3.1.2 Cas d’un niveau non dégénéré

Considérons le cas où le niveau considéré est non dégénéré. L’éq. 3.6 nous conduit à poser
E(0) = En et |ψ(0)⟩ = |n⟩, où En est l’une des valeurs propres de Ĥ0

(ii). L’éq. 3.7 devient alors

Ĥ0|ψ(1)⟩+ Ĥ1|n⟩ = En|ψ(1)⟩+ E(1)|n⟩. (3.9)

En multipliant à gauche l’équation ci-dessus par le bra ⟨m|, on obtient

⟨m|Ĥ0|ψ(1)⟩+ ⟨m|Ĥ1|n⟩ = En⟨m|ψ(1)⟩+ E(1)⟨m|n⟩. (3.10)

Sachant que ⟨m|Ĥ0 = Em⟨m|, on en déduit

⟨m|Ĥ1|n⟩ = (En − Em)⟨m|ψ(1)⟩+ E(1)⟨m|n⟩. (3.11)

(ii)On omet dans ce cas l’indice r dans l’expression de l’état |n⟩ car le niveau En est supposé non dégénéré.
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En appliquant ce résultat au cas m = n, nous obtenons ⟨n|Ĥ1|n⟩ = E(1)⟨n|n⟩ = E(1), ce qui nous
donne le terme d’ordre 1 dans le développement de l’énergie perturbée

E(1) = ⟨n|Ĥ1|n⟩. (3.12)

Appliquons maintenant l’éq. 3.11 au cas m ̸= n, ce qui implique ⟨m|n⟩ = 0. Nous obtenons alors

⟨m|Ĥ1|n⟩ = (En − Em)⟨m|ψ(1)⟩. (3.13)

Comme la valeur propre En est supposée non dégénérée, et donc différente de Em, nous pouvons en
déduire

⟨m|ψ(1)⟩ = ⟨m|Ĥ1|n⟩
En − Em

. (3.14)

Cette équation nous permet de déterminer ⟨m|ψ(1)⟩ pour tout m différent de n, mais ne nous dit
rien sur ⟨n|ψ(1)⟩. Il est naturel de chercher à déterminer ce coefficient manquant du développement
de |ψ(1)⟩ en utilisant la condition de normalisation du ket |ψ(λ)⟩, que l’on développe au premier
ordre en λ

⟨ψ(λ)|ψ(λ)⟩ =
(
⟨n|+ λ ⟨ψ(1)|

)(
|n⟩+ λ |ψ(1)⟩

)
+O(λ2) (3.15)

= 1 + λ
(
⟨n|ψ(1)⟩+ ⟨ψ(1)|n⟩

)
+O(λ2). (3.16)

Pour que le ket |ψ(λ)⟩ soit normé, il est nécessaire que la partie réelle de ⟨n|ψ(1)⟩ soit nulle (iii).
Posons donc ⟨n|ψ(1)⟩ = iβ, où β est un nombre réel a priori indéterminé. En nous aidant de cette
valeur, ainsi que de l’éq. 3.14, on peut finalement écrire

|ψ(1)⟩ =
∑
m

|m⟩⟨m |ψ(1)⟩ = |n⟩⟨n|ψ(1)⟩+
∑
m̸=n

|m⟩⟨m |ψ(1)⟩ = iβ |n⟩+
∑
m ̸=n

⟨m|Ĥ1|n⟩
En − Em

|m⟩. (3.17)

Le réel β est ainsi un paramètre libre, qui peut prendre n’importe quelle valeur sans que l’éq. 3.7
ne cesse d’être vérifiée. Une telle indétermination, surprenante au premier abord, s’explique par le
lien entre β et la phase globale du vecteur d’état. En effet, au premier ordre en λ, on peut écrire

|ψ(λ)⟩ = |ψ(0)⟩+ λ |ψ(1)⟩+O(λ2) (3.18)

= (1 + iλβ) |n⟩+ λ
∑
m ̸=n

⟨m|Ĥ1|n⟩
En − Em

|m⟩+O(λ2) (3.19)

= eiλβ

|n⟩+ λ
∑
m̸=n

⟨m|Ĥ1|n⟩
En − Em

|m⟩

+O(λ2) (3.20)

où l’on a utilisé le développement eiλβ = 1+ iλβ+O(λ2). Les différentes valeurs de β correspondent
donc à différents choix de la phase globale du vecteur d’état. Or, nous savons que cette phase n’a
pas d’incidence sur les valeurs moyennes des grandeurs physiques ou sur les probabilités de mesure

(iii)On obtiendrait de même des conditions sur |ψ(2)⟩, |ψ(3)⟩, etc. en examinant les coefficients du polynôme de degrés
supérieurs.
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(voir 1.2). Il est donc parfaitement légitime de faire le choix β = 0. En imposant ainsi ⟨n|ψ(1)⟩ = 0,
l’éq. 3.17 prend la forme plus simple

|ψ(1)⟩ =
∑
m ̸=n

⟨m|Ĥ1|n⟩
En − Em

|m⟩. (3.21)

Ce résultat achève le calcul du terme d’ordre 1. Nous pouvons maintenant passer au terme d’ordre 2,
en projetant l’éq. 3.8 sur le bra ⟨n|.

⟨n|Ĥ0|ψ(2)⟩+ ⟨n|Ĥ1|ψ(1)⟩ = En⟨n|ψ(2)⟩+ E(1)⟨n|ψ(1)⟩+ E(2)⟨n|n⟩. (3.22)

Sachant que ⟨n|Ĥ0 = En⟨n| et que ⟨n|ψ(1)⟩ = 0, nous en déduisons

E(2) = ⟨n|Ĥ1|ψ(1)⟩ =
∑
m̸=n

|⟨m|Ĥ1|n⟩|2

En − Em
. (3.23)

Il est utile de reformuler les expressions ainsi obtenues en éliminant le paramètre intermédiaire λ
et en exprimant énergies et vecteurs propres perturbés directement en fonction des éléments de
matrice de la perturbation Ŵ . On peut alors résumer les résultats obtenus plus haut de la manière
suivante.

Méthode des perturbations dans le cas non dégénéré
On considère un hamiltonien Ĥ0 dont les états propres {|n⟩} sont connus (Ĥ0 |n⟩ =
En |n⟩) et on lui ajoute une perturbation Ŵ petite devant Ĥ0. Dans le cas d’un
niveau En supposé non dégénéré, on peut écrire l’énergie perturbée de l’hamiltonien
Ĥ = Ĥ0 + Ŵ sous la forme du développement

E = En + δE(1)
n + δE(2)

n + · · · (3.24)

où δE(k)
n correspond au terme d’ordre k en Ŵ (ce qui signifie qu’en multipliant Ŵ par

le facteur réel λ, on multiplie δE(k)
n par λk). On obtient alors les expressions suivantes

du déplacement de l’énergie au premier ordre

δE(1)
n = ⟨n|Ŵ |n⟩ (3.25)

et au second ordre

δE(2)
n =

∑
m ̸=n

∣∣∣⟨m|Ŵ |n⟩∣∣∣2
En − Em

. (3.26)

On développe de même l’état propre perturbé de Ĥ sous la forme

|ψ⟩ = |n⟩+ |δψ(1)
n ⟩+ |δψ(2)

n ⟩+ · · · (3.27)

avec, au premier ordre,

|δψ(1)
n ⟩ =

∑
m̸=n

⟨m|Ŵ |n⟩
En − Em

|m⟩. (3.28)
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On a en effet δE(k)
n = λkE(k) et |δψ(k)⟩ = λk |ψ(k)⟩. L’éq. 3.25 s’obtient alors en multipliant

l’éq. 3.12 par λ, sachant que Ŵ = λĤ1. L’éq. 3.26 s’obtient de même en multipliant l’éq. 3.23 par
λ2. L’éq. 3.28 s’obtient enfin en multipliant l’éq. 3.21 par λ.

On peut interpréter l’éq. 3.25 en remarquant que le déplacement du niveau au premier ordre est
simplement égal à la valeur moyenne de la perturbation Ŵ dans le niveau considéré, soit ⟨n| Ŵ |n⟩.
On peut reformuler ce résultat en notant qu’au premier ordre l’énergie perturbée est égale à

E ≈ En + δE(1)
n = ⟨n| Ĥ0 |n⟩+ ⟨n| Ŵ |n⟩ = ⟨n| Ĥ |n⟩ . (3.29)

L’énergie perturbée d’un niveau donné est donc à peu près égale à la valeur moyenne de l’hamiltonien
total dans l’état non perturbé, ce qui constitue un résultat relativement intuitif.

La méthode des perturbations est un outil très utile, non seulement pour effectuer plus simple-
ment des calculs de niveaux d’énergie qui seraient autrement très compliqués voire impossibles à
mettre en œuvre, mais également pour se forger une intuition des processus physiques à l’œuvre
lorsqu’on perturbe un système donné. Ainsi, l’éq. 3.28 peut s’interpréter en notant que, sous l’action
de la perturbation Ŵ , l’état |n⟩ va se mélanger avec les autres états |m⟩, l’amplitude du mélange
étant proportionnelle à l’élément de matrice entre les deux états, ⟨m| Ŵ |n⟩, et inversement propor-
tionnelle à l’écart en énergie entre les deux niveaux. Ce résultat général sera très utile pour identifier
les niveaux pertinents, à savoir ceux qui sont couplés avec l’état de départ (i.e. ⟨m| Ŵ |n⟩ ̸= 0) et
qui en sont le plus proche en termes d’énergie (|En−Em| petit). En outre, ce sont ces mêmes états
|m⟩ qui contribueront majoritairement au déplacement de l’énergie au second ordre (eq. 3.26).

Rappelons que les résultats établis ci-dessus sont valables dès lors que le niveau considéré En est
non dégénéré, y compris lorsque les niveaux Em sont dégénérés pour m ̸= n. Dans ce dernier cas,
on pourra reformuler les équations ci-dessus en faisant apparaître explicitement la dégénérescence
des niveaux m pour m ̸= n, ce qui nous conduit à remplacer l’éq. 3.26 par

δE(2)
n =

∑
m ̸=n

gm∑
r=1

∣∣∣⟨m, r|Ŵ |n⟩∣∣∣2
En − Em

, (3.30)

et l’éq. 3.28 par

|δψ(1)⟩ =
∑
m̸=n

gm∑
r=1

⟨m, r|Ŵ |n⟩
En − Em

|m, r⟩. (3.31)

Mais si le niveau considéré En est lui-même dégénéré, le raisonnement effectué plus haut n’est
plus valable et il faudra utiliser la méthode des perturbations dans le cas dégénéré, que nous allons
maintenant aborder.

3.1.3 Cas d’un niveau dégénéré

Considérons maintenant le cas où le niveau considéré E(0) = En est dégénéré. On posera donc

Ĥ0|n, r⟩ = En|n, r⟩ (3.32)
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où l’indice r ∈ {1, 2, · · · , gn}, gn étant la dimension du sous-espace propre associé. L’éq. 3.6 nous
permet alors seulement d’affirmer que le vecteur |ψ(0)⟩ est un élément de ce sous-espace propre, soit

|ψ(0)⟩ =
gn∑
r=1

cr|n, r⟩. (3.33)

En projetant maintenant l’éq. 3.7 sur le bra ⟨n, r|, pour r ∈ {1, 2, · · · , gn}, nous obtenons

⟨n, r|Ĥ0|ψ(1)⟩+ ⟨n, r|Ĥ1|ψ(0)⟩ = En⟨n, r|ψ(1)⟩+ E(1)⟨n, r|ψ(0)⟩. (3.34)

En remarquant que ⟨n, r|Ĥ0 = En⟨n, r| et en remplaçant |ψ(0)⟩ par son expression donnée par
l’éq. 3.33 (l’indice muet r étant remplacé par r′) on obtient

⟨n, r|Ĥ1

gn∑
r′=1

cr′ |n, r′⟩ = E(1)cr (3.35)

ou encore, après multiplication par le paramètre λ,

gn∑
r′=1

⟨n, r|λĤ1|n, r′⟩cr′ = λE(1)cr. (3.36)

ce que l’on peut encore écrire sous la forme

gn∑
r′=1

⟨n, r|Ŵ |n, r′⟩cr′ = δE(1)cr. (3.37)

Ce système de gn équations linéaires est en fait un problème de recherche de valeurs propres,
le membre de gauche étant le produit matriciel entre la restriction de Ŵ au sous-espace propre
considéré et le ket |ψ(0)⟩. Sous forme matricielle, on peut effectivement écrire

⟨n, 1|Ŵ |n, 1⟩ · · · ⟨n, 1|Ŵ |n, gn⟩
⟨n, 2|Ŵ |n, 1⟩ · · · ⟨n, 2|Ŵ |n, gn⟩

...
...

⟨n, gn|Ŵ |n, 1⟩ · · · ⟨n, gn|Ŵ |n, gn⟩



c1
c2
...
cgn

 = δE(1)


c1
c2
...
cgn

 . (3.38)

On en déduit la procédure à appliquer dans le cas d’un niveau dégénéré.

Méthode des perturbations dans le cas d’un niveau dégénéré
Pour un niveau En dégénéré, la méthode des perturbations consiste à rechercher les
vecteurs propres et valeurs propres de la restriction de la perturbation Ŵ au sous-
espace propre de Ĥ0 associé au niveau considéré. Les valeurs propres obtenues δE(1)

correspondent aux déplacements du niveau au premier ordre, tandis que les vecteurs
propres associés correspondent à l’ordre zéro de la méthode des perturbations. Le
nombre de niveaux d’énergie obtenus pourra varier entre 1 et gn selon le problème
considéré, ce qui donnera souvent lieu à une levée de dégénérescence partielle ou totale
du niveau initial.
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L’intérêt de la méthode des perturbations est que la matrice à diagonaliser est beaucoup plus
petite que s’il avait fallu diagonaliser directement l’hamiltonien Ĥ = Ĥ0 + Ŵ dans l’ensemble de
l’espace de Hilbert. Il suffit ici de diagonaliser la restriction de Ĥ au sous-espace propre de Ĥ0

considéré.

3.1.4 Domaine de validité

Il est assez délicat de préciser de manière à la fois générale et rigoureuse le domaine de validité de
la méthode des perturbations, dans la mesure où la série donnée par l’éq. 3.24 n’est pas toujours une
série convergente au sens mathématique du terme. On a parfois affaire à une série dite asymptotique,
qui pourra sembler converger vers une bonne approximation de la valeur exacte si on ne conserve
que les premiers termes, mais divergera si on additionne l’ensemble des termes de la série [1]. On
considère toutefois que la méthode des perturbations donne de très bons résultats dans la limite où
les éléments de matrice de Ŵ sont très petits devant les écarts en énergie. Dans le cas non dégénéré,
le critère de validité à retenir peut donc s’écrire

| ⟨m| Ŵ |n⟩ | ≪ |En − Em|. (3.39)

De manière qualitative, on peut en effet se convaincre que le rapport entre deux termes consécutifs
du développement perturbatif est de l’ordre de | ⟨m| Ŵ |n⟩ |/|En−Em|. C’est par exemple ce que l’on
observe en comparant les termes d’ordre 1 (eq. 3.25) et d’ordre 2 (eq. 3.26). La condition exprimée
par l’éq. 3.39 nous indique ainsi que les termes de la série seront bien de plus en plus petits, ce qui
nous permet d’obtenir une bonne approximation du résultat exact en ne conservant qu’un ou deux
termes du développement.

Dans le cas dégénéré, le critère de validité est similaire à celui formulé par l’éq. 3.39, à savoir que
les éléments de matrice de Ŵ doivent être très petits devant l’écart en énergie |En − Em| entre le
niveau En considéré et les autres niveaux d’énergie de l’hamiltonien non perturbé. Dans ce régime,
le déplacement induit par la perturbation restera petit devant |En − Em|.

3.1.5 Cas quasi-dégénéré

Dans certaines situations intermédiaires, aucun des deux cas dégénéré ou non n’est approprié
pour appliquer la méthode des perturbations. C’est par exemple le cas du système dont les niveaux
d’énergie non perturbés sont représentés Fig. 3.1. Les niveaux sont ici groupés par paquets tels que
l’écart entre les paquets est grand devant l’ordre de grandeur typique, appelé w, des éléments de
matrice de Ŵ , mais où l’écart entre niveaux d’un même paquet est du même ordre que w. Si on
s’intéresse au déplacement d’un niveau n donné appartenant au paquet appelé N , on ne peut donc
pas appliquer la méthode des perturbations dans le cas non dégénéré car il y a des niveaux très
proche de En, correspondant à m ∈ N , qui ne satisfont pas la condition donnée par l’éq. 3.39. On ne
peut pas non plus appliquer directement la méthode des perturbations dans le cas dégénéré car les
niveaux du paquet N ne sont pas exactement dégénérés. Toutefois, dans ce cas que nous appellerons
quasi-dégénéré, notre intuition nous suggère que les états |m⟩ tels que m ̸∈ N ne contribueront pas
significativement au déplacement des niveaux d’énergie du paquet N car ils satisfont la condition



56 CHAPITRE 3. MÉTHODES D’APPROXIMATION

Figure 3.1 – Représentation des niveaux d’énergie non perturbés d’un système
tels que certains niveaux Em (pour m ̸∈ N ) satisfassent la relation |En−Em| ≫
w, alors que d’autres niveaux (pour m ∈ N ) soient tels que |En − Em| est du
même ordre que w, où w est l’ordre de grandeur typique des éléments de matrice
de Ŵ .

donnée par l’éq. 3.39. La méthode des perturbations dans le cas quasi-dégénéré consistera donc à
ignorer ces niveaux m ̸∈ N et à simplement diagonaliser la restriction de Ĥ au sous-espace associé
à m ∈ N . En appelant n un élément donné de N , on peut justifier rigoureusement cette démarche
en introduisant les opérateurs

Ĥ ′
0 = Ĥ0 +

∑
m∈N

(En − Em) |m⟩ ⟨m| (3.40)

et
Ŵ ′ = Ŵ −

∑
m∈N

(En − Em) |m⟩ ⟨m| , (3.41)

où l’on a retranché à Ŵ la quantité ajoutée à Ĥ0, de sorte que la somme Ĥ = Ĥ0+Ŵ = Ĥ ′
0+Ŵ

′ est
inchangée. Pour tout m ∈ N , on a maintenant Ĥ ′

0 |m⟩ = En |m⟩, ce qui nous permet d’appliquer la
méthode des perturbations dans le cas dégénéré à la perturbation Ŵ ′, dont les éléments de matrices
sont bien de l’ordre de w, qui est très inférieur à |En − Em| pour m ̸∈ N . Il nous suffit donc de
diagonaliser directement Ĥ dans le sous-espace associé à m ∈ N .

3.2 Méthode variationnelle

3.2.1 Majoration de l’énergie du niveau fondamental

Pour tout état |ψ⟩ de l’espace de Hilbert, on peut affirmer que l’énergie moyenne dans cet état
est supérieure ou égale à l’énergie E0 du niveau fondamental

⟨ψ|Ĥ|ψ⟩ ≥ E0. (3.42)

Ce résultat peut être établi très facilement en écrivant

|ψ⟩ =
∑
n,r

cn,r|n, r⟩, (3.43)
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où {|n, r⟩} est une base propre de l’hamiltonien Ĥ. On peut alors écrire

⟨ψ|Ĥ|ψ⟩ =
∑
n,r

|cn,r|2En ≥
∑
n,r

|cn,r|2E0 = E0. (3.44)

On aurait aussi pu remarquer qu’une mesure d’énergie donnera une valeur propre En qui par défi-
nition est toujours supérieure ou égale à E0. La moyenne de ces résultats de mesure tous supérieurs
ou égaux à E0 devra naturellement être elle-même supérieure ou égale à E0, ce qui nous permet
de retrouver l’éq. 3.44. On peut donc très facilement trouver un majorant de l’énergie du niveau
fondamental, simplement en calculant ⟨ψ|Ĥ|ψ⟩ pour un état |ψ⟩ arbitraire.

En outre, l’égalité ⟨ψ|Ĥ|ψ⟩ = E0 est évidemment atteinte dès lors que |ψ⟩ appartient au sous-
espace propre (éventuellement dégénéré) correspondant à l’énergie E0. Inversement, si l’égalité est
atteinte, alors l’éq. 3.44 nous permet d’affirmer que les coefficients cn,r associés à n ̸= 0 sont
nécessairement nuls, et donc que |ψ⟩ =

∑
r c0,r|0, r⟩ est une combinaison linéaire d’états |0, r⟩

associés au niveau fondamental E0. L’état |ψ⟩ est donc lui-même un état propre de l’hamiltonien
pour l’énergie E0 du niveau fondamental. En conclusion, on aura pout tout état |ψ⟩ l’inégalité
⟨ψ| Ĥ |ψ⟩ ≥ E0, l’égalité étant atteinte si et seulement si |ψ⟩ est l’état fondamental du système.

3.2.2 La méthode variationelle

D’après ce qui précède, le problème d’optimisation consistant à minimiser la grandeur ⟨ψ|Ĥ|ψ⟩
pour tout ket |ψ⟩ de l’espace de Hilbert est équivalent à la recherche de l’énergie E0 du niveau
fondamental et de l’état propre associé. Ce résultat est à la base de ce que l’on appelle la méthode
variationnelle.

La méthode variationnelle consiste à se donner un ensemble {|φα⟩} de vecteurs
d’essai appartenant à un sous-ensemble de l’espace de Hilbert et à chercher le mini-
mum de la grandeur

E(α) =
⟨φα|Ĥ|φα⟩
⟨φα|φα⟩

. (3.45)

Le paramètre αmin correspondant à ce minimum nous permet d’évaluer E(αmin) et
|φmin⟩/||(|φmin⟩)||, qui constituent des approximations de l’énergie du niveau fonda-
mental et de l’état propre associé.

Le résultat produit par la méthode variationnelle sera bien entendu exact si l’espace des fonctions
d’essai est égal à l’espace de Hilbert tout entier, ce qui ne présente alors aucun intérêt puisque le
problème de minimisation est dans ce cas équivalent à une recherche directe du niveau fondamental –
et est donc aussi difficile à résoudre. La méthode variationnelle sera intéressante lorsque l’espace des
fonctions d’essais – qui n’est pas nécessairement un espace vectoriel – est suffisamment petit pour
que le travail de minimisation s’en trouve simplifié. La qualité du résultat dépendra naturellement
de la pertinence de l’espace des fonctions d’essais, qui sera souvent choisi en s’appuyant sur des
considérations physiques. On notera qu’il est impossible d’évaluer a priori l’erreur commise suite
à l’usage de la méthode variationnelle, mais que l’on reste certain grâce à l’éq. 3.44 que la valeur
obtenue est toujours une borne supérieure de l’énergie du niveau fondamental. L’objectif sera donc
de choisir au mieux l’espace des fonctions d’essai, de manière à obtenir le minimum le plus petit
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possible. On remarquera enfin que l’éq. 3.45 prend explicitement en compte la possibilité que le
vecteur d’essai ne soit pas normé.

3.2.3 Exemple

A titre d’illustration, on pourra traiter l’exercice C.10, qui applique la méthode variationnelle
à la recherche du niveau fondamental d’un oscillateur harmonique à une dimension. La Fig. 3.2
représente la valeur moyenne de l’énergie obtenue en fonction de l’écart quadratique moyen ∆x

pour des fonctions d’essai gaussiennes ou lorentziennes. Dans les deux cas, on observe que l’énergie
augmente de manière parabolique lorsque ∆x tend vers l’infini. En effet, dans ce cas limite, la
fonction d’onde est très étalée spatialement tandis qu’elle est concentrée autour de px = 0 dans
l’espace de Fourier. L’énergie cinétique ⟨p2x⟩/(2m) est donc négligeable et l’énergie moyenne est

0 1 2 3 4
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Figure 3.2 – Energie moyenne d’un oscillateur harmonique calculée pour une
fonction d’essai gaussienne (trait plein) ou lorentzienne (trait pointillé) en fonc-
tion de la largeur ∆x rapportée à la valeur exacte ∆x0 =

√
ℏ/(2mω). La courbe

en trait mixte correspond à la grandeur mω2∆x2/2 représentée dans le même
système d’unités.

alors dominée par l’énergie potentielle, en mω2⟨x2⟩/2. A l’inverse, lorsque ∆x tend vers zéro, la
fonction d’onde est concentrée au voisinage de l’origine et c’est l’énergie potentielle moyenne qui
devient négligeable. Mais, en vertu de la relation de Heisenberg, ⟨p2x⟩ tend alors vers l’infini ce
qui fait diverger le terme d’énergie cinétique. Entre ces deux cas extrêmes, un juste compromis
entre énergie cinétique et énergie potentielle permet de minimiser l’énergie moyenne. Comme déjà
mentionné plus haut, c’est la valeur la plus faible qui sera la plus proche du résultat exact, puisque
la méthode variationnelle donne une borne supérieure de l’énergie du niveau fondamental. C’est
donc le résultat fourni par des fonctions d’essai gaussiennes, qui fournit un minimum inférieur à
celui obtenu avec des lorentzienne, qui est le plus proche du résultat correct. En l’occurrence, le
minimum ainsi obtenu (ℏω/2) correspond précisément au résultat exact, puisque notre espace de
fonctions d’essai gaussiennes comprend la fonction d’onde exacte de l’état fondamental, qui se trouve
effectivement être une fonction gaussienne dans le cas de l’oscillateur harmonique.
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On pourra également consulter l’exercice C.11, qui porte sur le cas de l’atome d’hydrogène.

3.2.4 Méthode variationnelle linéaire

Le problème variationnel linéaire correspond au cas particulier où l’espace Eessai est un sous-
espace vectoriel de l’espace de Hilbert. Comme démontré en annexe B.5.1, la méthode variationnelle
consistant à déterminer les extremums de la fonctionnelle

E(|ψ⟩) = ⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩

(3.46)

revient à chercher les vecteurs propres de la restriction de l’hamiltonien Ĥ à l’intérieur de l’espace
Eessai. En d’autres termes, la grandeur E(|ψ⟩) est extremum (ou stationnaire) au point |ψ⟩ (pour
|ψ⟩ ∈ Eessai) si et seulement si |ψ⟩ est l’un des vecteurs propres de la restriction de l’hamiltonien. Ce
résultat nous fournit une méthode efficace pour rechercher les extremums de la fonctionnelle E(|ψ⟩),
puisqu’il suffit de diagonaliser une matrice dont la taille sera fonction de la dimension choisie pour
l’espace Eessai. Selon la taille de la matrice, le problème pourra donc être considérablement simplifié
par rapport à une diagonalisation de l’hamiltonien dans l’ensemble de l’espace de Hilbert. Un point
remarquable est qu’une diagonalisation complète de la restriction de l’hamiltonien nous donnera
non seulement le minimum absolu de la fonctionnelle mais aussi une série d’extremums relatifs
correspondant aux différentes valeurs propres ainsi obtenues. De même que le minimum absolu est
une borne supérieure de l’énergie exacte du fondamental, l’annexe B.5.2 montre que ces extremums
relatifs constituent des bornes supérieures des premières valeurs propres de l’hamiltonien Ĥ. Ce
dernier résultat constitue ainsi une généralisation aux états excités de la majoration de l’énergie du
niveau fondamental démontrée en 3.2.1, ce qui nous permet d’étendre la méthode variationnelle à
la recherche des états excités. Finalement, nous pouvons introduire la formulation suivante de la
méthode variationnelle dans le cas où l’espace des fonctions d’essai est un espace vectoriel.

La Méthode variationnelle linéaire consiste à rechercher les extremums de la
fonctionnelle E(|ψ⟩) = ⟨ψ| Ĥ |ψ⟩ / ⟨ψ|ψ⟩, où |ψ⟩ appartient à un espace de fonctions
d’essai Eessai qui est un sous-espace vectoriel de l’espace de Hilbert. Cette recherche
des extremums sera effectuée en diagonalisant la restriction de l’hamiltonien dans
l’espace Eessai. Les vecteurs propres et valeurs propres ainsi obtenus constituent des
approximations des premiers vecteurs propres et valeurs propres de l’hamiltonien Ĥ.
De plus, les valeurs propres obtenues constituent des bornes supérieures des valeurs
exactes.

Nous avons en fait déjà rencontré quelques exemples d’application de cette méthode. Ainsi, la
méthode des perturbations dans le cas dégénéré (3.1.3) – qui consiste à diagonaliser la restriction
de l’hamiltonien Ĥ à l’intérieur d’un sous-espace propre de l’hamiltonien non perturbé Ĥ0 – est
équivalente à un problème variationnel linéaire. Il en va de même pour la méthode des perturbations
dans le cas quasi-dégénéré (3.1.5), où l’on a choisi comme espace des fonctions d’essai l’ensemble
des états engendrés par un petit nombre de niveaux proches les uns des autres sans être tout à fait
dégénérés.

Un autre exemple très important d’application de la méthode variationnelle linéaire en physique
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moléculaire est le modèle de Hückel, traité en PC2. Dans ce cas, l’espace des fonctions d’essai est
l’espace vectoriel constitué des combinaisons linéaires d’un certain nombre d’orbitales atomiques
centrées sur les différents atomes de la molécule. La qualité du résultat dépendra de manière cru-
ciale d’un choix pertinent des orbitales atomiques, ce qui fait tout l’art des méthodes numériques
développées en chimie quantique.



Chapitre 4

Le moment cinétique

L’étude du moment cinétique, observable associée à la rotation d’un système physique, revêt une
importance particulière compte tenu du grand nombre de systèmes physiques invariants par rotation,
à commencer par les atomes. Comme évoqué au chapitre 2, l’exploitation de cette invariance nous
permettra de sensiblement simplifier la résolution du problème. Pour cela, il nous faudra au préalable
étudier les états propres de l’observable moment cinétique, ce qui fait l’objet du présent chapitre.

4.1 Rotations et moment cinétique

On introduit l’opérateur rotation R̂α⃗ correspondant à l’effet dans l’espace de Hilbert d’une
rotation définie par le vecteur α⃗, c’est à dire autour d’un axe colinéaire au vecteur α⃗ et d’un angle
égal à la norme de ce vecteur, ||α⃗||.

4.1.1 Définition du moment cinétique

De même que nous avons défini l’impulsion d’un système physique comme le générateur infini-
tésimal du groupe des translations (2.4.4), définissons ici en toute généralité le moment cinétique
comme le générateur infinitésimal du groupe des rotations.

Définition : Pour tout système physique, on appelle observable moment cinétique
ˆ⃗
J l’ensemble des trois opérateurs (Ĵx, Ĵy, Ĵz) définis comme les générateurs infinité-
simaux du groupe des rotations, de sorte qu’une rotation infinitésimale du système
associée au vecteur dα⃗ = (dαx, dαy, dαz) soit représentée dans l’espace de Hilbert par
l’opérateur

R̂dα⃗ = Î − i

ℏ
Ĵxdαx −

i

ℏ
Ĵydαy −

i

ℏ
Ĵzdαz = Î − i

ℏ
ˆ⃗
J · dα⃗. (4.1)

En particulier, une rotation infinitésimale autour de l’axe z s’écrira

R̂z,dα = Î − i

ℏ
Ĵzdα. (4.2)

En procédant comme pour l’opérateur translation à une dimension (2.4.2), on pourra écrire l’opéra-
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teur associé à une rotation d’angle fini autour de l’axe z sous la forme d’une exponentielle d’opérateur

R̂z,α = exp

(
− iαĴz

ℏ

)
. (4.3)

L’axe z ne jouant pas de rôle spécifique, on pourra écrire de même l’opérateur rotation associé à
un axe quelconque en remplaçant Ĵz par la projection du moment cinétique selon l’axe de rotation
considéré. On obtient ainsi

R̂α⃗ = exp

(
− i

ˆ⃗
J · α⃗
ℏ

)
, (4.4)

où ˆ⃗
J · α⃗ = αxĴx + αyĴy + αzĴz. Cette relation est parfaitement analogue à l’expression de l’opé-

rateur translation en fonction de la projection de l’impulsion selon la direction de la translation
considérée. Toutefois, on se gardera ici de factoriser l’exponentielle comme on avait pu le faire pour
les translations (eq. 2.65) car, à la différence du groupe des translations, le groupe des rotations est
un groupe non commutatif.

4.1.2 Relations de commutation entre les observables Ĵx, Ĵy et Ĵz

La nature non commutative du groupe des rotations que nous venons d’évoquer implique que
les composantes cartésiennes du moment cinétique ne commutent pas entre elles. Comme le montre
l’annexe B.6, il est possible d’établir les relations de commutation suivantes à l’aide des propriétés
des rotations.

Les composantes cartésiennes du moment cinétique obéissent aux relations de com-
mutation

[Ĵx, Ĵy] = iℏĴz [Ĵy, Ĵz] = iℏĴx [Ĵz, Ĵx] = iℏĴy (4.5)

que l’on peut exprimer sous la forme condensée

ˆ⃗
J × ˆ⃗

J = iℏ ˆ⃗
J. (4.6)

La forme condensée se déduit aisément de la définition du produit vectoriel, en tenant compte
du fait que les composantes cartésiennes ne commutent pas entre elles.

ˆ⃗
J × ˆ⃗

J =

∣∣∣∣∣∣
Ĵx
Ĵy
Ĵz

×

∣∣∣∣∣∣
Ĵx
Ĵy
Ĵz

=

∣∣∣∣∣∣
ĴyĴz − ĴzĴy
ĴzĴx − ĴxĴz
ĴxĴy − ĴyĴx

= iℏ ˆ⃗
J. (4.7)

4.1.3 L’observable Ĵ2

En utilisant l’éq. 1.56, on peut écrire [Ĵz, Ĵ
2
x ] = [Ĵz, Ĵx]Ĵx + Ĵx[Ĵz, Ĵx] = iℏ(ĴyĴx + ĴxĴy). On a

de même [Ĵz, Ĵ
2
y ] = [Ĵz, Ĵy]Ĵy + Ĵy[Ĵz, Ĵy] = −iℏ(ĴyĴx + ĴxĴy), soit exactement l’opposé du terme

précédent. Sachant que l’on a évidemment [Ĵz, Ĵ
2
z ] = 0, on en déduit la relation

[Ĵz, Ĵ
2] = 0 (4.8)
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où Ĵ2 = Ĵ2
x+ Ĵ

2
y + Ĵ

2
z est l’observable associée au carré de la norme du moment cinétique. On aurait

bien entendu pu démontrer la même relation avec Ĵx et Ĵy. On en déduit que Ĵ2 commute avec
n’importe quelle projection du moment cinétique.

4.1.4 Cas d’un système invariant par rotation

Considérons un système invariant par rotation, associé à l’hamiltonien Ĥ. En nous aidant du
résultat établi en 2.2.4, on peut en conclure que l’hamiltonien commute avec les générateurs infini-
tésimaux du groupe des rotations, à savoir les composantes cartésiennes du moment cinétique, Ĵx,
Ĵy et Ĵz. On notera simplement

[Ĥ,
ˆ⃗
J ] = 0⃗. (4.9)

Ainsi, pour tout vecteur α⃗, l’hamiltonien commutera avec ˆ⃗
J ·α⃗ et donc avec l’opérateur R̂α⃗ donné par

l’éq. 4.4. L’hamiltonien commutera également avec Ĵ2 = Ĵ2
x+Ĵ

2
y+Ĵ

2
z . Si on considère les observables

Ĥ, Ĵ2 et l’une des composantes cartésiennes du moment cinétique, habituellement Ĵz, on dispose
donc d’un ensemble de trois observables commutant entre elles et qui pourront être diagonalisées
dans une même base. La recherche des états propres de l’hamiltonien sera donc considérablement
simplifiée si l’on connaît la forme générale des états propres communs des deux observables Ĵ2 et
Ĵz. C’est ce problème que nous allons maintenant aborder.

4.2 Théorie générale du moment cinétique

Ce que l’on appelle la théorie générale du moment cinétique consiste à rechercher les états propres
communs de Ĵ2 et Ĵz, tâche dont on sait qu’elle est possible car Ĵ2 et Ĵz sont deux observables
qui commutent. On fera cette recherche de manière générale, sans faire d’autre hypothèse que la
relation ˆ⃗

J × ˆ⃗
J = iℏ ˆ⃗

J . Nos résultats pourront donc s’appliquer à une grande variété de systèmes
physiques.

La démonstration, effectuée dès 1913 par le mathématicien Elie Cartan, est similaire à la méthode
de Dirac que nous avons déjà rencontré pour résoudre le problème de l’oscillateur harmonique (voir
PHY3X061, section 5.3). Dans les deux cas, on introduit des opérateurs permettant de passer d’un
sous-espace propre à un autre, ce qui permet d’établir des contraintes très fortes sur les valeurs
propres admissibles.

4.2.1 Introduction des paramètres j et m

La valeur moyenne de Ĵ2 dans un état |ψ⟩ quelconque s’écrit

⟨ψ| Ĵ2 |ψ⟩ = ⟨ψ| Ĵ2
x |ψ⟩+ ⟨ψ| Ĵ2

y |ψ⟩+ ⟨ψ| Ĵ2
z |ψ⟩ = ||Ĵx |ψ⟩ ||2 + ||Ĵy |ψ⟩ ||2 + ||Ĵz |ψ⟩ ||2. (4.10)

On en déduit que la valeur moyenne de Ĵ2 est toujours positive ou nulle, et donc que toute valeur
propre λ de Ĵ2 est positive ou nulle. Comme la fonction j 7→ j(j + 1) est une bijection de R+ dans
R+, on a le droit d’écrire λ = j(j + 1)ℏ2, où j est un nombre réel sans dimension positif ou nul.
La justification de ce changement de variable, qui semblera peut-être un peu curieux à ce stade,
apparaîtra ultérieurement. La recherche des valeurs propres de Ĵ2 se ramène donc à la recherche
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des solutions de l’équation aux valeurs propres

Ĵ2 |ψ⟩ = j(j + 1)ℏ2 |ψ⟩ (4.11)

où j est un nombre réel positif ou nul. Comme on cherche les vecteurs propres communs de Ĵ2 et
Ĵz, on écrira également

Ĵz |ψ⟩ = mℏ |ψ⟩ (4.12)

où m est un nombre réel sans dimension. Les espaces propres communs à Ĵ2 et Ĵz pour les valeurs
propres respectives j(j + 1)ℏ2 et mℏ seront notés Ej,m.

4.2.2 Les opérateurs Ĵ+ et Ĵ−

On introduit l’opérateur Ĵ+ = Ĵx+iĴy et son adjoint Ĵ− = Ĵx−iĴy. Comme Ĵx et Ĵy, ces opérateurs
commutent évidemment avec Ĵ2, soit

[Ĵ2, Ĵ±] = 0. (4.13)

Par contre, les opérateurs Ĵ± ne commutent pas avec Ĵz. En effet,

[Ĵz, Ĵ±] = [Ĵz, Ĵx ± iĴy] = [Ĵz, Ĵx]± i[Ĵz, Ĵy] = iℏĴy ± ℏJx = ±ℏĴ±. (4.14)

Le produit Ĵ∓Ĵ± est auto-adjoint, car (Ĵ∓Ĵ±)
† = Ĵ†

±Ĵ
†
∓ = Ĵ∓Ĵ±. Il est utile de calculer ce produit

explicitement, ce qui nous donne Ĵ∓Ĵ± = (Ĵx∓ iĴy)(Ĵx± iĴy) = Ĵ2
x+ Ĵ

2
y ± i[Ĵx, Ĵy] = Ĵ2− Ĵ2

z ∓ℏĴz,
soit

Ĵ∓Ĵ± = Ĵ2 − Ĵz(Ĵz ± ℏÎ). (4.15)

Cette équation nous permet notamment d’exprimer l’observable Ĵ2 en fonction des opérateurs Ĵz,
Ĵ+ et Ĵ−.

Ĵ2 = Ĵ2
z + ℏĴz + Ĵ−Ĵ+ = Ĵ2

z − ℏĴz + Ĵ+Ĵ− = Ĵ2
z +

1

2

(
Ĵ−Ĵ+ + Ĵ+Ĵ−

)
. (4.16)

4.2.3 Action des opérateurs Ĵ+ et Ĵ−

Considérons l’action de Ĵ± sur un ket |ψ⟩ appartenant à l’espace Ej,m. Pour déterminer si le
vecteur Ĵ± |ψ⟩ appartient à l’un des espaces propres, considérons l’action de Ĵ2 sur ce dernier
vecteur. On obtient

Ĵ2Ĵ± |ψ⟩ = Ĵ±Ĵ
2 |ψ⟩ = j(j + 1)ℏ2J± |ψ⟩ (4.17)

Par ailleurs

ĴzĴ± |ψ⟩ =
(
Ĵ±Ĵz + [Ĵz, Ĵ±]

)
|ψ⟩ =

(
Ĵ±mℏ± ℏĴ±

)
|ψ⟩ = (m± 1)ℏĴ± |ψ⟩ . (4.18)

On peut donc en conclure que Ĵ± |ψ⟩ est lui-même un vecteur propre commun de Ĵ2 et Ĵz pour les
valeurs propres respectives j(j+1)ℏ2 et (m±1)ℏ, à moins bien entendu que Ĵ± |ψ⟩ ne soit le vecteur
nul. Pour étudier cette dernière possibilité, calculons le carré de la norme du vecteur Ĵ± |ψ⟩. Avec
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l’aide de l’éq. 4.15, on peut écrire ||Ĵ± |ψ⟩ ||2 = ⟨ψ| Ĵ∓Ĵ± |ψ⟩ = ⟨ψ|
(
Ĵ2 − Ĵz(Ĵz ± ℏÎ)

)
|ψ⟩, soit

||Ĵ± |ψ⟩ ||2 = (j(j + 1)−m(m± 1)) ℏ2. (4.19)

Le carré d’une norme étant une grandeur positive ou nulle, on en déduit que m(m± 1) ≤ j(j + 1).
Il faut donc que m soit compris d’une part entre les deux racines de l’équation du second degré
m(m+1) = j(j+1) et d’autre part entre les racines de l’équation m(m− 1) = j(j+1), ce qui nous
donne respectivement les intervalles [−j − 1, j] et [−j, j + 1]. La réalisation simultanée de ces deux
conditions se ramène finalement à l’unique relation

−j ≤ m ≤ j. (4.20)

En fait, il n’est pas surprenant que les valeurs possibles pour la projection du moment cinétique
selon l’axe z soit contraintes par la valeur de la norme de ce vecteur. Remarquons toutefois que la
condition obtenue ici n’est pas exactement identique à celle que l’on aurait pour un vecteur classique
car ce n’est qu’à la limite où j tend vers l’infini que l’on peut considérer que la norme du moment
cinétique,

√
j(j + 1)ℏ, est approximativement égale à jℏ.

L’éq. 4.19 nous permet en outre de déterminer dans quel cas Ĵ+ |ψ⟩ sera égal au vecteur nul. Cela
se produira lorsque m sera l’une des deux racines de l’équation du second degré m(m+1) = j(j+1),
soit m = −j−1 ou m = j. La première éventualité est exclue en raison de la condition −j ≤ m ≤ j
établie plus haut. On en déduit que Ĵ+ |ψ⟩ = 0 si et seulement si m = j. On montre de même
que Ĵ− |ψ⟩ = 0 si et seulement si m = −j. En résumé, nous avons montré que si |ψ⟩ ∈ Ej,m alors
Ĵ± |ψ⟩ ∈ Ej,m±1, sauf si m = ±j, auquel cas Ĵ± |ψ⟩ = 0.

4.2.4 Valeurs autorisées pour j et m

Nous allons maintenant montrer que les valeurs possibles pour j et m sont fortement contraintes
par les résultats que nous venons d’établir. Partons d’un ket |ψ⟩ vecteur propre commun de Ĵ2 et
Ĵz pour les valeurs propres j(j + 1)ℏ2 et mℏ, avec m ∈ [−j, j]. En appliquant l’opérateur Ĵ+ à cet
élément de l’espace Ej,m, nous pourrons alors construire un nouveau vecteur propre, appartenant
à l’espace Ej,m+1. En répétant cette opération un certain nombre de fois, nous risquons d’aboutir
à une situation absurde où le couple obtenu (j,m′) ne respecte plus la condition m′ ≤ j. Pour
éviter cette situation, il est obligatoire que l’un des vecteurs obtenus par application répétée de
l’opérateur Ĵ+ soit le vecteur nul, pour que ce ne soit plus un vecteur propre commun de Ĵ2 et Ĵz.
En d’autres termes, il doit nécessairement exister un nombre entier N tel que m + N = j. Ainsi
le vecteur ĴN+ |ψ⟩ appartient à l’espace Ej,j mais une nouvelle action de l’opérateur Ĵ+ donnera le
vecteur nul, mettant ainsi fin au processus itératif. De même, pour éviter que l’application répétée
de l’opérateur Ĵ− ne mène à une contradiction similaire, il doit exister un nombre entier N ′ tel que
m − N ′ = −j. En faisant la différence entre les deux équations j = m + N et −j = m − N ′, on
obtient 2j = N +N ′. On en déduit que 2j est un nombre entier, soit j ∈ {0, 12 , 1,

3
2 , 2, · · · }. On dira

que j est soit entier, soit demi-entier (i.e. un nombre impair divisé par 2). Par ailleurs, la relation
m+N = j nous permet d’affirmer que j −m est toujours un nombre entier. En tenant compte de
l’inégalité −j ≤ m ≤ j, on en déduit que m ∈ {−j,−j + 1, · · · , j}.
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4.2.5 Base standard des observables Ĵ2 et Ĵz

Nous venons d’établir des conditions nécessaires auxquelles doivent obéir les nombres j et m.
Toutefois, à ce stade nous ne savons rien quant à l’existence des différents espaces Ej,m, qui dépendra
du problème spécifique auquel on s’intéresse. On peut néanmoins montrer de manière générale que
dès lors qu’un espace Ej,m0 existe, alors tous les espaces Ej,m associés à la même valeur de j existent
également (pourm ∈ {−j,−j+1, · · · , j}). De plus, ces 2j+1 espaces ont la même dimension, comme
montré en annexe B.7. En commençant par construire une base {|n, j,−j⟩} de l’espace Ej,−j , on
pourra alors construire une base de chacun des espaces Ej,m par l’action répétée de l’opérateur
Ĵ+. En faisant varier les trois indices, on obtient ainsi la base {|n, j,m⟩} - dite base standard - de
l’ensemble de l’espace de Hilbert. Notons que cette démonstration n’indique rien sur la dimension
des espaces Ej,m qui pourra, selon la valeur de j et le problème considéré, être nulle (valeur de j
interdite), égale à 1, finie ou infinie. L’encadré ci-dessous et la Fig. 4.1 résument les propriétés ainsi
établies de manière générale pour une observable de type moment cinétique.

Co-diagonalisation des observables Ĵ2 et Ĵz (sachant que ˆ⃗
J × ˆ⃗

J = iℏ ˆ⃗
J)

• Les valeurs propres de l’observable Ĵ2 sont de la forme j(j + 1)ℏ2, où j est un
nombre entier ou demi-entier, soit j ∈ {0, 12 , 1,

3
2 , 2,

5
2 , · · · }.

• Les valeurs propres de l’observable Ĵz sont de la forme mℏ, où m ∈ {−j,−j +
1, · · · , j}, ce qui revient à dire que −j ≤ m ≤ j et que j −m est entier.

• La dimension de l’espace propre commun Ej,m est indépendante de m.

• On peut construire une base propre commune aux observables Ĵ2 et Ĵz, appelée
base standard et notée {|n, j,m⟩}, à l’aide des relations de récurrence

Ĵ± |n, j,m⟩ =
√
j(j + 1)−m(m± 1)ℏ |n, j,m± 1⟩ (4.21)

où Ĵ± = Ĵx ± iĴy.

4.3 Cas d’une particule de spin 1/2

Vérifions que la théorie du moment cinétique que nous venons d’établir de manière générale
s’applique bien au cas particulier du moment cinétique intrinsèque d’une particule de spin 1/2
(voir le chapitre 7 du cours PHY3X061). Rappelons que les composantes cartésiennes du moment
cinétique intrinsèque d’une particule de spin 1/2 s’écrivent dans la base {|+⟩ , |−⟩} selon les matrices

Ŝx =
ℏ
2

(
0 1
1 0

)
Ŝy =

ℏ
2

(
0 −i
i 0

)
Ŝz =

ℏ
2

(
1 0
0 −1

)
(4.22)

En élevant ces trois matrices au carré, on obtient

Ŝ2
x = Ŝ2

y = Ŝ2
z =

ℏ2

4
Î , (4.23)



4.3. CAS D’UNE PARTICULE DE SPIN 1/2 67

1/2

0
1/2 1 3/2 2

1

3/2

2

-1/2

-1

-3/2

-2

Figure 4.1 – Valeurs possibles des nombres j et m associés aux valeurs propres
j(j + 1)ℏ2 et mℏ des opérateurs Ĵ2 et Ĵz. Les opérateurs Ĵ+ et Ĵ− permettent
de monter ou descendre dans l’échelle des Ej,m, selon la relation donnée par
l’éq. 4.21.

ce qui n’est pas surprenant car une mesure de S2
x (ou S2

y ou S2
z ) donne toujours le résultat (±ℏ/2)2 =

ℏ2/4. On en déduit

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z =

3

4
ℏ2Î =

1

2

3

2
ℏ2Î . (4.24)

Ces résultats sont bien conformes à la théorie générale du moment cinétique, avec une unique valeur
propre de la forme j(j + 1)ℏ2 pour Ŝ2, où j = 1/2 est bien un nombre demi-entier, et des valeurs
propres de la forme mℏ pour Ŝz, où m = −1/2 ou +1/2. On pourra donc écrire

|+⟩ =
∣∣∣∣j = 1

2
,m =

1

2

〉
(4.25)

|−⟩ =
∣∣∣∣j = 1

2
,m = −1

2

〉
. (4.26)

Par ailleurs, on a

Ŝ+ = Ŝx + iŜy =
ℏ
2

(
0 1
1 0

)
+ i

ℏ
2

(
0 −i
i 0

)
= ℏ

(
0 1
0 0

)
(4.27)

ou encore Ŝ+ = ℏ |+⟩ ⟨−|. L’adjoint s’écrira Ŝ− = ℏ |−⟩ ⟨+|. On a donc les relations

Ŝ+ |+⟩ = 0 Ŝ+ |−⟩ = ℏ |+⟩ Ŝ− |+⟩ = ℏ |−⟩ Ŝ− |−⟩ = 0 (4.28)

ce qui est bien conforme à l’éq. 4.21, sachant que pour j = 1/2 et m = 1/2 on a la relation√
j(j + 1)−m(m− 1) =

√
3/4 + 1/4 = 1. Enfin, l’éq. 9.12 du cours PHY3X061 exprimant l’opé-

rateur rotation pour un système de spin 1/2 est parfaitement compatible avec la définition générale
du moment cinétique comme générateur infinitésimal du groupe des rotations (eq. 4.4).

Il est immédiat dans ce cadre d’interpréter l’évolution d’un système de spin 1/2 placé dans un
champ magnétique B⃗. L’hamiltonien s’écrit alors Ĥ = − ˆ⃗µ · B⃗ = −γ ˆ⃗S · B⃗, ce qui nous donne d’après
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l’éq. 2.20 l’opérateur d’évolution

Û(t, t0) = exp

(
−iĤ

ℏ
(t− t0)

)
= exp

(
−i

ˆ⃗
S · ω⃗
ℏ

(t− t0)

)
, (4.29)

où ω⃗ = −γB⃗. L’opérateur d’évolution est donc égal à l’opérateur rotation associé à un angle
ω × (t − t0), ce qui nous permet de retrouver directement le phénomène de précession de Larmor
autour du champ magnétique B⃗.

4.4 Moment cinétique orbital

4.4.1 Définition du moment cinétique orbital

Intéressons nous maintenant au mouvement d’une particule ponctuelle sans spin dans l’espace
euclidien à trois dimensions. L’espace de Hilbert associé est constitué dans ce cas de l’ensemble des
fonctions de carré sommable L2(R3). On appellera moment cinétique orbital ˆ⃗

L le moment cinétique
de ce système. D’après l’éq. 4.1, cela signifie qu’une rotation infinitésimale R̂dα⃗ dans L2(R3) s’écrira
R̂dα⃗ = Î − (i/ℏ) ˆ⃗L · dα⃗. Comme démontré dans l’exercice C.12, cette définition revient à poser

ˆ⃗
L = ˆ⃗r × ˆ⃗p (4.30)

où ˆ⃗r et ˆ⃗p sont les observables associées à la position et à l’impulsion de la particule. Conformément au
principe de correspondance, le moment cinétique orbital s’exprime bien de la même manière en mé-
canique quantique et en mécanique classique. Par ailleurs, comme vérifié dans l’exercice C.12, cette
expression nous redonne bien les relations de commutation attendues pour un moment cinétique, à
savoir

ˆ⃗
L× ˆ⃗

L = iℏ ˆ⃗L. (4.31)

Nous pourrons donc appliquer au moment cinétique orbital les résultats établis plus haut de manière
générale pour toute observable de type moment cinétique.

4.4.2 Expression des opérateurs différentiels en coordonnées sphériques

L’expression en coordonnées cartésiennes des opérateurs différentiels associés aux différentes
composantes du moment cinétique se déduit immédiatement de l’éq. 4.30.

L̂x = ŷp̂z − ẑp̂y =
ℏ
i

(
y
∂

∂z
− z ∂

∂y

)
(4.32)

L̂y = ẑp̂x − x̂p̂z =
ℏ
i

(
z
∂

∂x
− x ∂

∂z

)
(4.33)

L̂z = x̂p̂y − ŷp̂x =
ℏ
i

(
x
∂

∂y
− y ∂

∂x

)
(4.34)

Toutefois, dans la mesure où nous serons amenés à nous intéresser à des systèmes invariants par
rotation, il sera souvent préférable d’utiliser un système de coordonnées sphériques (r, θ, φ) reliées
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aux coordonnées cartésiennes par les relations

x = r sin θ cosφ

y = r sin θ sinφ (4.35)

z = r cos θ

où θ est la colatitude et φ est la longitude, comme représenté Fig. 4.2. Pour chercher l’action de
l’opérateur moment cinétique sur la fonction d’onde ψ(r, θ, φ) exprimée en coordonnées sphériques,
il suffit d’exprimer les rotations infinitésimales autour des axes x, y et z puis d’utiliser le fait que le
moment cinétique est le générateur infinitésimal du groupe des rotations. Commençons par le cas le

1/2

0
1/2 1 3/2 2

1

3/2

2

-1/2

-1

-3/2

-2

Figure 4.2 – Représentation des angles sphériques θ (colatitude) et φ (longi-
tude).

plus simple d’une rotation d’angle α autour de l’axe z, qui s’exprime très facilement en coordonnées
sphériques puisque lors d’une telle rotation les grandeurs r et θ sont inchangées tandis que φ est
simplement translatée de la quantité α. En appliquant l’éq. 2.23 au cas d’une telle rotation, on
obtient la relation R̂z,αψ(r, θ, φ) = ψ(r, θ, φ− α). Dans le cas d’une rotation infinitésimale d’angle
dα, on obtient

R̂z,dαψ(r, θ, φ) = ψ(r, θ, φ− dα) = ψ(r, θ, φ)− ∂ψ

∂φ
dα. (4.36)

Par ailleurs, d’après l’éq. 4.1, on a R̂z,dα = Î − (i/ℏ)L̂zdα et donc

R̂z,dαψ(r, θ, φ) = ψ(r, θ, φ)− i

ℏ
L̂zψ(r, θ, φ)dα (4.37)

En comparant les deux équations ci-dessus, on identifie

L̂zψ(r, θ, φ) =
ℏ
i

∂ψ

∂φ
. (4.38)

On obtient ainsi l’expression de l’opérateur différentiel en coordonnées sphériques, L̂z = (ℏ/i)∂/∂φ.
On peut remarquer la parfaite analogie entre cette expression et celle de l’opérateur impulsion,
p̂z = (ℏ/i)∂/∂z. Ceci n’est pas surprenant car p̂z est associé à une translation le long de l’axe z
tandis que L̂z est associé à une rotation autour de l’axe z, ce qui revient à une translation dans
l’espace des φ. On pourra trouver en annexe B.8 le calcul similaire des opérateurs reportés ci-dessous.
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Opérateurs différentiels associés à ˆ⃗
L exprimés en coordonnées sphériques

L̂x = iℏ
(
sinφ

∂

∂θ
+

cosφ

tan θ

∂

∂φ

)
(4.39)

L̂y = iℏ
(
− cosφ

∂

∂θ
+

sinφ

tan θ

∂

∂φ

)
(4.40)

L̂z =
ℏ
i

∂

∂φ
(4.41)

L̂± = ℏe±iφ
(
± ∂

∂θ
+ i

cos θ

sin θ

∂

∂φ

)
(4.42)

L̂2 = −ℏ2
(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
(4.43)

Comme on pouvait s’y attendre, ces opérateurs ne font apparaître que des dérivées par rapport
aux coordonnées angulaires θ et φ, la variable radiale r n’étant pas affectée par les rotations qui
nous ont permis de construire le moment cinétique orbital. On vérifie en outre que les opérateurs L̂x,
L̂y, L̂z, L̂+ et L̂− sont des opérateurs différentiels du premier ordre, tandis que L̂2 est un opérateur
différentiel du second ordre.

4.4.3 Recherche des fonctions propres communes de L̂2 et L̂z

D’après la théorie générale du moment cinétique, nous savons que les observables L̂2 et L̂z
peuvent être diagonalisées simultanément et nous connaissons la forme générale des valeurs propres.
Dans le cas du moment cinétique orbital, ces valeurs propres seront notés respectivement ℓ(ℓ+1)ℏ2

et mℏ, où ℓ et m sont a priori entiers ou demi-entiers. En coordonnées sphériques, les fonctions
propres recherchées ψ(r, θ, φ) obéissent donc aux deux équations

−
(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
ψ(r, θ, φ) = ℓ(ℓ+ 1)ψ(r, θ, φ) (4.44)

−i ∂
∂φ

ψ(r, θ, φ) = mψ(r, θ, φ) (4.45)

Comme la variable radiale r n’intervient pas dans ces expressions, la résolution simultanée des deux
équations nous donnera une fonction ne dépendant que de θ et φ, que l’on notera Y (θ, φ) et qui sera
appelée la partie angulaire de la fonction d’onde. La forme générale des fonctions propres communes
sera donc

ψ(r, θ, φ) = R(r)Y (θ, φ), (4.46)

où la partie radiale R(r) est a priori arbitraire. Par convention, les parties radiale et angulaire de
la fonction d’onde seront normalisées selon les relations∫ +∞

0
|R(r)|2r2dr = 1 (4.47)

et ∫ π

0

∫ 2π

0
|Y (θ, φ)|2 sin θdθdφ = 1, (4.48)
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ce qui assure bien la normalisation de la fonction d’onde, donnée en coordonnées sphériques par la
relation y

|ψ(r, θ, φ)|2r2 sin θdrdθdφ = 1. (4.49)

En reformulant l’éq. 4.45 avec ces nouvelles notations, on obtient l’équation

∂Y

∂φ
= imY (θ, φ), (4.50)

dont la solution est immédiate :
Y (θ, φ) = F (θ)eimφ. (4.51)

La continuité de la fonction Y (θ, φ) en φ = 0 impose que exp(im2π) = 1, ce qui exclut d’emblée
les valeurs demi-entières de m pour lesquelles exp(im2π) = −1. Dans le cas du moment cinétique
orbital, le nombre m est donc un nombre entier. Il en va de même pour ℓ puisque nous savons que
ℓ−m est entier.

Pour déterminer la forme de la fonction F (θ), on pourrait envisager de résoudre l’éq. 4.44 avec
ℓ ∈ N. Mais il faudrait alors résoudre une équation différentielle du second ordre. Il est plus simple
d’utiliser la méthode de construction de la base standard (eq. 4.21) à l’aide de l’opérateur différentiel
du premier ordre L̂+, ce qui nous incite à commencer par traiter le cas m = −ℓ. Comme c’est la plus
petite valeur autorisée pour m, nous savons d’après la théorie générale du moment cinétique que
la fonction Y (θ, φ) correspondante obéit alors à la relation L̂−Y (θ, φ) = 0. En utilisant l’éq. 4.42
donnant l’expression de l’opérateur L̂− et en remplaçant Y (θ, φ) par la forme obtenue plus haut,
on obtient alors l’équation (

− ∂

∂θ
+ i

cos θ

sin θ

∂

∂φ

)
F (θ)e−iℓφ = 0 (4.52)

soit
dF

dθ
= ℓ cot θF (θ). (4.53)

Il s’agit d’une équation différentielle du premier ordre, dont la solution est donc unique. On pourra
se convaincre en traitant l’exercice C.13 que cette fonction, notée Fℓ,−ℓ(θ), peut s’écrire

Fℓ,−ℓ(θ) =
1

2ℓℓ!

√
(2ℓ+ 1)!

4π
sinℓ θ. (4.54)

La fonction propre Y (θ, φ) sera donc unique et aura pour valeur Yℓ,−ℓ(θ, φ) = Fℓ,−ℓ(θ)e
−iℓφ. Compte

tenu de la méthode générale de construction de la base standard, les fonctions propres pour les
autres valeurs de m seront également uniques et pourront être construites par application répétée
de l’opérateur L̂+ à l’aide de l’éq. 4.21. On obtient ainsi un ensemble de fonctions propres uniques
appelées harmoniques sphériques et notées Yℓ,m(θ, φ). On posera

Yℓ,m(θ, φ) = Fℓ,m(θ)e
imφ. (4.55)

D’après l’éq. 4.21, les harmoniques sphériques vérifient l’équation

L̂±Yℓ,m(θ, φ) =
√
ℓ(ℓ+ 1)−m(m± 1)ℏYℓ,m±1(θ, φ). (4.56)
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En utilisant l’éq. 4.42 et en remplaçant ∂/∂φ par le simple facteur im, on obtient

L̂+Fℓ,m(θ)e
imφ = ℏeiφ

(
∂

∂θ
+ i

cos θ

sin θ
im

)
Fℓ,m(θ)e

imφ (4.57)

ce qui nous donne la relation de récurrence

Fℓ,m+1(θ) =
1√

ℓ(ℓ+ 1)−m(m+ 1)

(
d

dθ
− m

tan θ

)
Fℓ,m(θ). (4.58)

Cette relation nous permet d’affirmer que Fℓ,m(θ) est une fonction réelle. Le lien étroit entre les
fonctions Fℓ,m(θ) et les polynômes associés de Legendre [2] permet d’établir un certain nombre de
propriétés que nous admettrons ici mais qu’il sera utile de connaître. En particulier, on peut montrer
que la fonction Fℓ,m(θ) s’annule exactement ℓ − |m| fois dans l’intervalle ouvert ]0, π[. On montre
en outre que

Fℓ,−m(θ) = (−1)mFℓ,m(θ). (4.59)

Il n’est guère surprenant que les fonctions Fℓ,m(θ) et Fℓ,−m(θ) soit similaires car changer m et −m
se ramène simplement à changer le sens de l’axe z. Enfin, on retiendra que la valeur absolue des
fonctions Fℓ,m(θ) est symétrique par rapport à l’équateur (θ = π/2), soit

|Fℓ,m(π − θ)| = |Fℓ,m(θ)|, (4.60)

résultat qui sera démontré d’une autre manière à l’exercice C.14.

Pour terminer, remarquons que le fait que les fonctions propres communes de L̂2 et L̂z soient
uniques peut encore s’exprimer en disant que les espaces propres communs de ces deux opérateurs
sont de dimension 1. En d’autres termes, dans l’espace de Hilbert des fonctions de carré sommable
associant à un couple (θ, φ) la grandeur Y (θ, φ), les observables L̂2 et L̂z constituent un ECOC.

4.4.4 Propriétés des harmoniques sphériques

L’encadré ci-dessous résume les principales propriétés des harmoniques sphériques, pour la plu-
part déjà démontrées ou énoncées plus haut. L’éq. 4.61 résulte directement des éq. 4.55 et 4.59. La
démonstration de l’éq. 4.62 fait l’objet de l’exercice C.14.
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• L̂2Yℓ,m(θ, φ) = ℓ(ℓ+ 1)ℏ2Yℓ,m(θ, φ), où ℓ ∈ N

• L̂zYℓ,m(θ, φ) = mℏYℓ,m(θ, φ), où m est un nombre entier prenant l’une des 2ℓ+1

valeurs comprises entre −ℓ et +ℓ

• Yℓ,m(θ, φ) = Fℓ,m(θ)e
imφ, où Fℓ,m(θ) est une fonction réelle qui s’annule ℓ−|m|

fois dans l’intervalle ]0, π[

• Conjugaison
Y ∗
ℓ,m(θ, φ) = (−1)mYℓ,−m(θ, φ) (4.61)

• Parité
Yℓ,m(π − θ, φ+ π) = (−1)ℓYℓ,m(θ, φ) (4.62)

• L’ensemble des harmoniques sphériques constitue une base orthonormée de l’es-
pace des fonctions de carré sommable qui associent à un couple (θ, φ) de co-
ordonnées angulaires la grandeur complexe Y (θ, φ). Pour toute fonction, on
pourra écrire

Y (θ, φ) =
∑
ℓ,m

cℓ,mYℓ,m(θ, φ) (4.63)

où les coefficients cℓ,m sont déterminés par les produits scalaires hermitiens

cℓ,m =
x

Y ∗
ℓ,m(θ, φ)Y (θ, φ) sin θdθdφ (4.64)

Le fait que les harmoniques sphériques, fonctions propres communes des observables L̂2 et L̂z,
constituent une base orthonormée de l’espace des fonctions Y (θ, φ) de carré sommable est une
conséquence directe du théorème spectral. A l’instar des fonctions de Hermite dans L2(R) ou des
séries de Fourier dans un espace de fonctions périodiques, les harmoniques sphériques permettront
ainsi de décomposer toute fonction Y (θ, φ) de deux variables angulaires à l’aide de la somme discrète
donnée par l’éq. 4.63. L’impact de ce résultat dépasse largement le cadre de la physique quantique,
avec des applications notamment en géophysique (i) et en astrophysique (ii).

L’exercice C.13 décrit la méthode de calcul des harmoniques sphériques à l’aide des opérateurs
L̂+ et L̂− et de l’éq. 4.56. On y trouvera en particulier le calcul explicite des premières harmoniques
sphériques, qui nous seront souvent utiles. Ainsi pour ℓ = 0, on a

Y0,0(θ, φ) =
1√
4π

(4.65)

et pour ℓ = 1,

Y1,0(θ, φ) =

√
3

4π
cos θ et Y1,±1(θ, φ) = ∓

√
3

8π
e±iφ sin θ. (4.66)

Pour donner une représentation graphique des harmoniques sphériques, on choisit de les re-
présenter sur une sphère dont chaque point, de coordonnées sphériques (θ, φ), est colorié à l’aide
de la valeur complexe de Yℓ,m(θ, φ) selon le code couleur représenté Fig. 4.3. On obtient ainsi

(i)http://www.geologie.ens.fr/~vigny/cours/chp-gphy-2.html#SECTION2e
(ii)http://en.wikipedia.org/wiki/Cosmic_microwave_background#Primary_anisotropy

http://www.geologie.ens.fr/~vigny/cours/chp-gphy-2.html#SECTION2e
http://en.wikipedia.org/wiki/Cosmic_microwave_background#Primary_anisotropy
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Figure 4.3 – Code couleur utilisé dans les figures suivantes pour représen-
ter une fonction complexe Y (θ, φ). La palette de couleurs permet de repérer la
phase de 0 à 2π, tandis que la saturation permet de repérer le module (le blanc
correspondant à zéro). Le rayon du cercle est choisi égal à la valeur maximale
prise par |Y (θ, φ)| sur l’ensemble de la sphère.

les harmoniques sphériques représentées Fig. 4.4 pour ℓ = 0 et ℓ = 1. La fonction Y0,0(θ, φ) est
une constante, indépendante de θ et φ, conformément à l’éq. 4.65. On remarque que les fonctions
Y1,1(θ, φ) et Y1,−1(θ, φ) varient bien en exp(±iφ), avec une phase évoluant continument de 0 à 2π

lorsque la longitude varie elle-même de 0 à 2π. La variation en sin θ (d’après l’éq. 4.66) nous donne

x y

z

= 0, m = 0

Figure 4.4 – Représentation des premières harmoniques sphériques, pour ℓ = 0
et ℓ = 1.

un maximum au niveau de l’équateur. Ainsi, la fonction F1,±1(θ) ne s’annule pas dans l’intervalle
ouvert ]0, π[, puisqu’elle ne s’annule qu’aux pôles, en conformité avec la relation ℓ − |m| = 0 qui
nous indique qu’il n’y a pas de zéro attendu dans cet intervalle. A l’inverse, la fonction Y1,0(θ, φ)

ne dépend pas de φ (puisque m = 0) et s’annule ℓ − |m| = 1 − 0 = 1 fois dans l’intervalle ]0, π[, à
savoir au niveau de l’équateur où la fonction cos θ s’annule effectivement.
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Figure 4.5 – Représentation de l’harmonique sphérique Y10,6(θ, φ).

La Fig. 4.5 représente une harmonique sphérique d’ordre plus élevé, mais que nous pouvons
néanmoins aisément reconnaître grâce aux propriétés énoncées plus haut. En effet, la variation en
fonction de φ montre 3 cycles complet dans l’hémisphère visible pour l’observateur, soit 6 × 2π

pour l’ensemble de la circonférence. On reconnaît ici une variation en eimφ, avec |m| = 6. De plus,

x y

z

= 20, m = 20

Figure 4.6 – Représentation de l’harmonique sphérique Y20,20(θ, φ).
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compte tenu du fait que les couleurs se succèdent dans le même ordre que dans le code couleur
représenté Fig. 4.3, on en déduit que m = +6. Par ailleurs, on observe que la fonction Fℓ,m(θ)

s’annule 4 fois, deux fois dans l’hémisphère nord et deux fois dans l’hémisphère sud (si on excepte
les deux pôles). On en déduit que ℓ − |m| = 4 et donc que ℓ = 10. Il s’agit donc de l’harmonique
sphérique Y10,6(θ, φ).

La Fig. 4.6 représente le cas où m = ℓ, pour une valeur assez élevée de ℓ, en l’occurrence
ℓ = 20. Comme m = ℓ, la fonction |Fℓ,m(θ)| ne s’annule pas. On sait d’après l’éq. 4.54 qu’elle est
proportionnelle à sinℓ θ, ce qui explique que la fonction soit concentrée au voisinage de l’équateur
puisque la fonction tend très vite vers zéro dès lors que θ s’écarte de π/2. Par ailleurs, l’évolution
en fonction de φ couvre bien une variation de phase de 20× 2π.

On pourra se familiariser avec les différents modes de représentation des harmoniques sphériques
à l’aide du site https://www.quantum-physics.polytechnique.fr/sphericalHarmonics.php.

4.5 Rotation d’une molécule diatomique

Comme déjà évoqué plus haut, la théorie du moment cinétique permet de simplifier la résolution
de nombre de problèmes invariants par rotation. Nous en verrons un exemple dès le prochain chapitre
avec l’atome d’hydrogène. Mais nous allons dès maintenant étudier une application directe des
harmoniques sphériques avec le mouvement rotationnel d’une molécule diatomique. Ce problème
à deux corps (voir annexe B.9) est bien invariant par rotation puisque l’interaction entre les deux
atomes est inchangée suite à une rotation quelconque de l’ensemble du système.

1. Dimension 1 

2. Dimension 2

3. Dimension 3

4. Dimension infinie

On modélise l’état de rotation d’une molécule

diatomique à l’aide de l’orientation d’un

« rotateur rigide », repérée par les angles q et j.

Quelle est la dimension de l’espace de Hilbert

correspondant ?

Espace de Hilbert associé à un « rotateur rigide »

Figure 4.7 – Représentation schématique d’une molécule diatomique, dont
l’orientation est repérée à l’aide des angles sphériques θ et φ.

4.5.1 Modèle du rotateur rigide

Considérons une molécule diatomique, comme par exemple le monoxyde de carbone (CO). Une
telle molécule est constituée de deux atomes, comme représenté Fig. 4.7. Pour traiter de manière
simplifiée le mouvement de rotation de la molécule, on va utiliser le modèle dit du rotateur rigide,
dans le cadre duquel un certain nombre de degrés de liberté ne seront pas pris en compte :

• On ne s’intéresse pas au mouvement du centre de masse, qui comme montré en annexe B.9,
peut être découplé du reste du mouvement. On supposera donc que le centre de masse est fixe
et situé à l’origine.

• On ne s’intéresse pas non plus au mouvement des électrons, déjà pris en compte dans la mesure
où il est à l’origine de la liaison chimique entre les deux atomes.

https://www.quantum-physics.polytechnique.fr/sphericalHarmonics.php
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• Enfin, on ne prendra pas en compte le mouvement de vibration, correspondant à la variation
de la longueur de la liaison chimique. Un tel mouvement pourrait être traité dans le cadre
d’un modèle harmonique. Les énergies associées à ce mouvement sont très supérieures à celles
que nous allons rencontrer ici, ce qui explique qu’on puisse ne pas le prendre en compte en
première approximation.

4.5.2 Traitement classique

Appelons r⃗1 et r⃗2 les positions des deux atomes, de masses m1 et m2. On introduit également
le vecteur r⃗ = r⃗2 − r⃗1 séparant les deux atomes, dont la longueur r = ||r⃗|| est constante dans le
cadre du modèle du rotateur rigide. Le centre de masse étant placé à l’origine, on aura la relation
m1r⃗1 +m2r⃗2 = 0, ce qui nous permet d’écrire

r⃗1 = −
µ

m1
r⃗ et r⃗2 =

µ

m2
r⃗, (4.67)

où µ est la masse réduite du système à deux corps, donnée par la relation usuelle

1

µ
=

1

m1
+

1

m2
. (4.68)

En dérivant l’éq. 4.67 par rapport au temps, on pourra écrire de même les vitesses

v⃗1 = −
µ

m1
v⃗ et v⃗2 =

µ

m2
v⃗ (4.69)

où v⃗ = dr⃗/dt. Le système étant invariant par rotation, nous savons que le moment cinétique L⃗ est
une constante du mouvement. Il est donc intéressant de calculer son expression

L⃗ = r⃗1 ×m1v⃗1 + r⃗2 ×m2v⃗2 =
µ2

m1
r⃗ × v + µ2

m2
r⃗ × v = r⃗ × µv⃗. (4.70)

On retrouve ici le moment cinétique d’une particule fictive dont la masse serait égale à la masse
réduite µ. On remarque que le moment cinétique est perpendiculaire à l’axe de la molécule. La
distance r étant constante, la vitesse v⃗ est toujours perpendiculaire au vecteur r⃗, ce qui permet de
calculer simplement le produit vectoriel et d’écrire la norme du moment cinétique sous la forme

L = µrv. (4.71)

Evaluons maintenant l’énergie H du système. La molécule étant entièrement libre de s’orienter selon
n’importe quelle direction de l’espace, il n’y a pas de terme d’énergie potentielle et l’énergie totale
se réduit à la seule énergie cinétique des deux atomes, soit

H =
1

2
m1v

2
1 +

1

2
m2v

2
2 =

1

2

(
µ2

m1
+
µ2

m2

)
v2 =

1

2
µv2. (4.72)

On retrouve ici encore l’énergie cinétique d’une particule fictive de masse µ. En exprimant la vitesse
en fonction du moment cinétique à l’aide de l’éq. 4.71, nous pouvons encore écrire l’énergie sous la
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forme H = L2/(2µr2), soit

H =
L2

2I
(4.73)

où l’on a introduit le moment d’inertie I par rapport à un axe passant par le centre de masse et
perpendiculaire à la liaison entre les deux atomes, qui s’écrit

I = m1r
2
1 +m2r

2
2 = µr2. (4.74)

On retrouve ainsi l’expression usuelle de l’énergie cinétique d’un corps solide en rotation. En résumé,
le traitement classique nous a permis d’établir la forme de l’énergie du système. Le moment cinétique
L⃗ étant conservé, le plan de rotation de la molécule – perpendiculaire à L⃗ – restera fixe, de même
que la fréquence de rotation de la molécule qui pourra prendre toute valeur réelle.

4.5.3 Traitement quantique

Dans le cadre de la mécanique quantique, l’état de notre rotateur rigide est défini par une
fonction d’onde Y (θ, φ) telle que |Y (θ, φ)|2 sin θdθdφ représente la probabilité que la molécule soit
orientée selon les angles sphériques θ et φ, à l’intérieur d’un angle solide infinitésimal sin θdθdφ. La
fonction d’onde Y (θ, φ) est alors normalisée selon la relation

x
|Y (θ, φ)|2 sin θdθdφ = 1. (4.75)

Comme montré plus haut, l’espace de Hilbert EH (constitué de l’ensemble des fonctions Y (θ, φ) de
carré sommable) est engendré par les harmoniques sphériques. On pourra donc également caracté-
riser l’état de notre système par la donnée des coefficients complexes cℓ,m, définis par les éq. 4.63 et
4.64.

Sans même avoir à invoquer la forme exacte de l’hamiltonien Ĥ, l’invariance par rotation du
système nous permet d’affirmer qu’il est possible de construire une base propre commune aux trois
observables Ĥ, L̂2 et L̂z, car ces trois opérateurs commutent deux à deux. Or les deux observables
L̂2 et L̂z suffisent à constituer un ECOC de EH , puisque nous avons montré que leur base propre
commune était unique dans EH . On peut donc en conclure que les fonctions Yℓ,m(θ, φ) sont néces-
sairement fonctions propres de l’hamiltonien.

On peut vérifier ce résultat en explicitant l’hamiltonien. Ce dernier peut être obtenu à par-
tir de l’éq. 4.73, simplement en remplaçant les grandeurs physiques classiques par les observables
correspondantes. On obtient ainsi

Ĥ =
L̂2

2I
. (4.76)

Les harmoniques sphériques sont effectivement fonctions propres de l’hamiltonien, avec

ĤYℓ,m(θ, φ) = EℓYℓ,m(θ, φ), (4.77)

où les valeurs propres

Eℓ = ℓ(ℓ+ 1)
ℏ2

2I
(4.78)

sont dégénérées 2ℓ+1 fois puisque l’énergie est indépendante de la valeur dem. Les niveaux d’énergie
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rotationnels constituent donc une échelle comme celle représentée Fig. 4.8.

Figure 4.8 – Echelle des niveaux d’énergie associés au mouvement de rotation
d’une molécule diatomique. Chaque niveau Eℓ est dégénéré 2ℓ+ 1 fois.

Il peut paraître étonnant que les fonctions propres Yℓ,m(θ, φ) ainsi obtenues privilégient l’axe
z, ce qui semble à première vue briser l’invariance par rotation du système. Ceci résulte de la
procédure consistant à diagonaliser simultanément Ĥ, L̂2 et L̂z. Le choix de L̂z est clairement
arbitraire et aurait pu être remplacé par n’importe quelle autre projection du moment cinétique,
qui nous aurait donné une autre base propre privilégiant n’importe quelle autre direction. Mais il ne
faut pas perdre de vue que notre procédure de co-diagonalisation permet simplement de déterminer
une base propre de l’hamiltonien, qui n’est pas définie de manière unique dès lors que les valeurs
propres sont dégénérées. Le choix arbitraire de privilégier l’axe z est donc sans conséquence car
les prévisions physique que nous pourrons faire avec notre base seront évidemment indépendantes
de l’axe choisi. La seule fonction propre unique du problème est celle correspondant au niveau
fondamental, qui est non dégénéré. La fonction d’onde correspondante, Y0,0(θ, φ) = 1/

√
4π, est bien

totalement isotrope et donc indépendante du choix que nous avons fait de privilégier l’axe z. La
même remarque s’appliquera naturellement aux fonctions propres de l’atome d’hydrogène que nous
allons déterminer au chapitre suivant.

Malgré l’absence de puits de potentiel, on aboutit finalement à une quantification des niveaux
d’énergie, conséquence directe de la quantification du moment cinétique. Ce comportement est
radicalement différent du comportement classique rappelé plus haut, pour lequel l’énergie de rotation
pouvait prendre n’importe quelle valeur. En mécanique quantique, l’échelle de niveaux prend une
forme caractéristique qui constitue une véritable empreinte digitale de la molécule, accessible à
l’expérience dans le cadre de la spectroscopie rotationnelle.

En effet, la rotation de la molécule est associée à la rotation d’un dipôle, au moins dans le cas où
les deux atomes sont différents. Il en résulte un couplage efficace avec une onde électromagnétique
de fréquence appropriée. On montre qu’une onde radio de fréquence angulaire ω (i.e. de fréquence
ω/(2π)) pourra induire une transition entre deux niveaux d’énergie associés à deux valeurs succes-
sives de ℓ, soit par exemple les niveaux Eℓ et Eℓ+1, à condition bien entendu que l’énergie ℏω des
photons soit égale à l’écart en énergie entre les deux niveaux, soit

ω =
Eℓ+1 − Eℓ

ℏ
= ((ℓ+ 1)(ℓ+ 2)− ℓ(ℓ+ 1))

ℏ
2I

=
ℏ
I
(ℓ+ 1). (4.79)

Le rayonnement électromagnétique sera donc absorbé à chaque fois que la fréquence ω/(2π) est un
multiple de h/(4π2I). Pour l’isotope le plus abondant du monoxyde de carbone, à savoir 12C16O,



80 CHAPITRE 4. LE MOMENT CINÉTIQUE

115

GHz

Figure 4.9 – Spectre rotationnel du monoxyde de carbone. La courbe repré-
sente en fonction du nombre d’onde le spectre de transmission d’une onde sub-
centimétrique. Extrait de [9].

on peut calculer h/(4π2I) ≈ 115GHz, connaissant les masses des atomes et la longueur de la liaison
chimique. Cette valeur est en parfait accord avec le résultat expérimental représenté Fig. 4.9, qui
révèle une série de raies d’absorption régulièrement espacées de cette quantité. On observe également
une série de raies beaucoup moins intenses, associées aux isotopes plus lourds 13C16O et 12C18O,
dont les moments d’inertie sont sensiblement différents de celui de l’isotope le plus abondant. La
spectroscopie est donc un puissant outil d’analyse, qui permet d’analyser une composition chimique
aussi bien en laboratoire qu’à grande distance, par exemple à l’aide de radiotélescopes.



Chapitre 5

L’atome d’hydrogène

La structure des atomes restait au début du XXème siècle une véritable énigme pour la phy-
sique classique. Parmi les faits expérimentaux inexpliqués, on peut citer notamment la stabilité des
atomes (i) et le spectre discret des vapeurs atomiques. Ainsi, une vapeur d’hydrogène excitée par
une décharge électrique émet un rayonnement constitué de raies spectrales discrètes, de longueurs
d’onde λ obéissant à la relation

1

λ
= Ry

(
1

n21
− 1

n22

)
, (5.1)

où n1 et n2 sont deux nombres entiers et Ry ≈ 109737 cm−1 est la constante de Rydberg. Un tel
résultat est évidemment inexplicable dans le cadre d’une théorie purement classique.

Dans ce chapitre, nous allons d’abord rappeler le modèle de Bohr, avant de développer la véritable
théorie quantique de l’atome d’hydrogène, en commençant par traiter le cas général du potentiel
central qui sera ensuite appliqué au potentiel coulombien. Nous pourrons ainsi dénombrer les états
liés de l’atome d’hydrogène et donner une représentation graphique des fonctions d’onde associées.
Nous nous intéresserons enfin à l’évolution temporelle d’états non stationnaires.

5.1 Le modèle de Bohr

Le modèle de Bohr ne constitue en aucun cas une théorie satisfaisante de l’atome d’hydrogène
dans la mesure où il n’abandonne pas la notion de trajectoire et qu’il ne rend pas compte de la
véritable structure interne des niveaux d’énergie. Toutefois, il parvient fortuitement à donner les
valeurs exactes des niveaux d’énergie et son rôle historique justifie qu’on en donne ici un bref rappel.
Partant de la variation selon l’inverse du carré de la distance commune aux forces coulombiennes
et gravitationnelles, ce modèle s’appuie sur une vision planétaire de l’atome. On part donc de l’hy-
pothèse d’une trajectoire circulaire de l’électron autour du proton, supposé fixe et placé à l’origine.
Dans le cadre de la mécanique newtonienne, la proportionnalité entre l’accélération centripète et la
force coulombienne nous donne alors

me
v2

r
=
e2

r2
(5.2)

(i)Une application conjointe de l’électromagnétisme et de la mécanique newtonienne conduit en effet à l’effondrement
de l’électron sur le noyau en raison de l’énergie perdue suite au rayonnement électromagnétique de l’électron.

81
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où me est la masse de l’électron, r est le rayon de l’orbite et v est la vitesse de l’électron. On a en
outre posé e2 = q2/(4πϵ0). On déduit de l’éq. 5.2 la relation r = e2/(mev

2), qui exprime le rayon de
l’orbite en fonction de la vitesse de l’électron. On rajoute alors un ingrédient quantique en postulant
que le moment cinétique Lz doit être quantifié (le quantum étant ℏ), ce qui nous donne la relation

Lz = rmev = nℏ, (5.3)

où n est un entier naturel. On justifie souvent cette relation en remarquant qu’elle correspond à un
nombre entier de longueurs d’onde le long de la circonférence de l’orbite, assurant ainsi la continuité
de l’onde de de Broglie associée à l’électron. En remplaçant r par la valeur obtenue plus haut, on
en déduit que la vitesse est quantifiée et doit prendre l’une des valeurs

vn =
1

n

e2

ℏ
= α

c

n
(5.4)

où c est la vitesse de la lumière. On a introduit ici la constante

α =
e2

ℏc
≈ 1

137
, (5.5)

appelée – pour des raisons historiques – constante de structure fine. Remarquons au passage que la
vitesse est ainsi toujours inférieure ou égale à la valeur v1 = αc qui est elle-même plus de deux ordres
de grandeur inférieure à la vitesse de la lumière. Ce résultat justifie l’approximation non relativiste
que nous avons faite plus haut en nous plaçant dans le cadre de la mécanique newtonienne. En
exprimant enfin le rayon à partir de la vitesse, on en déduit que le rayon est quantifié et prend l’une
des valeurs

rn =
nℏ
mevn

= n2a1 (5.6)

où
a1 =

ℏ2

mee2
≈ 0.053 nm (5.7)

est le rayon de Bohr, correspondant à la plus petite orbite possible. Enfin, l’énergie mécanique
associée à l’orbite n s’écrit

En =
1

2
mev

2
n −

e2

rn
= −EI

n2
(5.8)

où
EI =

mee
4

2ℏ2
=

ℏ2

2mea21
≈ 13.6 eV (5.9)

est par définition l’énergie d’ionisation de l’atome d’hydrogène. C’est en effet l’énergie qu’il faut
fournir pour libérer un électron situé sur l’orbite n = 1 et dont l’énergie est égale à E1 = −EI . On
obtient donc une série infinie de niveaux d’énergie en −EI/n2, comme représenté Fig. 5.1. Le spectre
expérimental s’interprète aisément en attribuant chaque raie observée à la désexcitation du niveau
En2 vers le niveaux En1, associée à l’émision d’un photon de fréquence ν obéissant à la relation

hν = En2 − En1 = EI

(
1

n21
− 1

n22

)
. (5.10)

Le modèle de Bohr est ainsi en accord non seulement qualitatif mais aussi quantitatif avec les
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Barrière

centrifuge

0

-13,6 eV

Figure 5.1 – Niveaux d’énergie de l’atome d’hydrogène. Les flèches verticales
correspondent à des transitions de désexcitation vers le niveau n = 2, corres-
pondant à la série dite de Balmer qui est observable dans le visible.

résultats expérimentaux. Toutefois, ce succès apparent ne doit pas occulter le fait qu’un tel mo-
dèle est totalement inadapté à l’échelle d’un atome, que seule la mécanique quantique peut traiter
convenablement. Comme nous allons le voir plus loin, nous allons effectivement retrouver les mêmes
niveaux d’énergie dans le cadre d’une véritable théorie quantique.

5.2 Mouvement dans un potentiel central

Considérons dans le cadre de la mécanique quantique le problème de l’interaction entre deux
particules de masses m1 et m2. On supposera que le potentiel d’interaction ne dépend que de la
distance r = ||r⃗2 − r⃗1|| entre les deux particules, ce qui revient à dire que le système est invariant
à la fois par translation et par rotation. On choisira en outre l’origine des énergies de sorte que le
potentiel V (r) tende vers zéro lorsque r tend vers l’infini. L’hamiltonien du système s’écrit alors

Ĥtot =
p̂21
2m1

+
p̂22
2m2

+ V (||ˆ⃗r2 − ˆ⃗r1||). (5.11)

Comme le montre l’annexe B.9, un tel problème se ramène de manière générale à deux problèmes
indépendants, correspondant d’une part au mouvement libre du centre de masse, de masse M =

m1 +m2, et d’autre part au mouvement d’une particule fictive plongée dans le potentiel V (r) et
dont la masse est la masse réduite µ définie par la relation

1

µ
=

1

m1
+

1

m2
. (5.12)

On peut alors écrire l’hamiltonien du système sous la forme

Ĥtot =
P̂ 2

2M
+
p̂2

2µ
+ V (r̂). (5.13)

où ˆ⃗
P = ˆ⃗p1 + ˆ⃗p2 est l’impulsion totale du système tandis que ˆ⃗p = (m1

ˆ⃗p2 −m2
ˆ⃗p1)/M est l’impulsion

de la particule fictive. Le mouvement du centre de masse étant ici trivial, il suffira de s’intéresser
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au mouvement de la particule fictive dans L2(R3), associé à l’hamiltonien

Ĥ =
p̂2

2µ
+ V (r̂). (5.14)

Finalement, le problème à deux corps se ramène de manière générale à un problème portant sur une
seule particule, placée dans le même potentiel V (r). Le potentiel ne dépendant que de la distance à
l’origine, on parle alors de mouvement dans un potentiel central. Dans le cas de l’atome d’hydrogène,
il suffit de remplacer la masse de l’électron me par la masse réduite µ. Compte tenu des ordres de
grandeur (mp/me ≈ 1836), on pourra parfois utiliser en première approximation directement la
masse de l’électron – ce qui revient à supposer que le proton est fixe à l’origine.

Cherchons donc les fonctions propres ψ(r, θ, φ) de l’hamiltonien Ĥ défini par l’éq. 5.14. L’équa-
tion de Schrödinger indépendante du temps Ĥ |ψ⟩ = E |ψ⟩ s’écrit alors(

− ℏ2

2µ
∆+ V (r)

)
ψ(r, θ, φ) = Eψ(r, θ, φ). (5.15)

Le laplacien ∆ s’écrit en coordonnées sphériques selon la relation

∆ψ =
1

r

∂2

∂r2
rψ +

1

r2

(
1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

sin2 θ

∂2ψ

∂φ2

)
. (5.16)

On reconnaît dans la partie angulaire du laplacien l’opérateur différentiel L̂2 défini par l’éq. 4.43,
ce qui nous permet de reformuler le laplacien selon l’expression plus compacte

∆ =
1

r

∂2

∂r2
r − L̂2

ℏ2r2
. (5.17)

En remplaçant dans l’éq. 5.15, on obtient(
− ℏ2

2µ

1

r

∂2

∂r2
r +

L̂2

2µr2
+ V (r)

)
ψ(r, θ, φ) = Eψ(r, θ, φ). (5.18)

Le second terme, égal au carré du moment cinétique divisé par le double du moment d’inertie
µr2, peut s’interpréter physiquement comme une énergie cinétique de rotation, tandis que les deux
autres termes sont liés au mouvement radial de notre particule. Sous cette forme, on peut vérifier
explicitement que l’hamiltonien commute avec le moment cinétique, comme nous nous y attendions
en raison de l’invariance par rotation. Nous allons donc chercher une base propre commune aux
trois observables Ĥ, L̂2 et L̂z. D’après 4.4.3, nous pouvons alors écrire notre fonction propre sous
la forme

ψ(r, θ, φ) = R(r)Yℓ,m(θ, φ), (5.19)

où la partie radialeR(r) reste à déterminer. On sait que dans ce cas L̂2ψ(r, θ, φ) = ℓ(ℓ+1)ℏ2ψ(r, θ, φ).
En remplaçant dans l’éq. 5.18, on obtient alors(

− ℏ2

2µ

1

r

∂2

∂r2
r +

ℓ(ℓ+ 1)ℏ2

2µr2
+ V (r)

)
R(r)Yℓ,m(θ, φ) = ER(r)Yℓ,m(θ, φ). (5.20)
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Après multiplication par r et simplification du terme Yℓ,m(θ, φ), on obtient l’équation(
− ℏ2

2µ

d2

dr2
+
ℓ(ℓ+ 1)ℏ2

2µr2
+ V (r)

)
rR(r) = ErR(r), (5.21)

qui porte uniquement sur la variable radiale r. Introduisons alors la fonction d’onde réduite u(r) =
rR(r), ce qui nous permet d’obtenir une équation de Schrödinger indépendante du temps à une
dimension (

− ℏ2

2µ

d2

dr2
+ Veff,ℓ(r)

)
u(r) = Eu(r), (5.22)

correspondant au mouvement d’une particule de masse µ dans le potentiel

Veff,ℓ(r) = V (r) +
ℓ(ℓ+ 1)ℏ2

2µr2
. (5.23)

Ce potentiel effectif, représenté Fig. 5.2, est la somme du potentiel central V (r) et de l’énergie
cinétique de rotation, que l’on appelle barrière centrifuge car la variation en 1/r2 se traduit par
un potentiel répulsif, qui correspond à la force d’inertie centrifuge. Ainsi, l’invariance par rotation

Barrière

centrifuge

Figure 5.2 – Exemple de potentiel effectif Veff,ℓ(r) pour ℓ = 0 et ℓ = 1.
La courbe en pointillé représente la barrière centrifuge ℓ(ℓ + 1)ℏ2/(2µr2). Les
niveaux d’énergie sont repérés par le nombre quantique radial n′, en commençant
par n′ = 0 pour l’état de plus basse énergie.

nous permet de transformer un problème tridimensionnel, a priori difficile à résoudre, en une série
de problèmes unidimensionnels (pour les différentes valeurs de ℓ), qui seront beaucoup plus faciles à
résoudre. Ces problèmes unidimensionnels sont autant d’équations de Schrödinger indépendantes du
temps portant sur la fonction d’onde réduite u(r). On peut donner une interprétation physique très
simple de cette dernière fonction, en remarquant que |u(r)|2dr est la probabilité que la particule se
trouve entre deux sphères concentriques de rayons r et r+dr. Conformément à l’éq. 4.47, la densité
de probabilité |u(r)|2 est bien normalisée comme il convient, soit∫ +∞

0
|u(r)|2dr = 1. (5.24)

Si le potentiel V (r) est négatif au voisinage de l’origine, on est donc en présence d’un puits semi-
infini, comme ceux déjà étudiés en PHY3X061 (voir section 4.3). Rappelons que les niveaux d’énergie
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de ce problème unidimensionnel sont non dégénérés. On sait que le spectre est continu pour une éner-
gie E positive, ce qui correspond aux états de diffusion – ainsi nommés car ils décrivent la réflexion
d’une onde incidente sur le puits semi-infini. Si le puits de potentiel est suffisamment profond, on
s’attend en outre à une série discrète d’états liés, d’énergies E négatives, comme représenté Fig. 5.2.
Rappelons que la quantification des états liés résulte d’une double contrainte : la fonction d’onde
u(r) doit s’annuler en r = 0 (car la région r < 0 est interdite) et doit tendre exponentiellement
vers zéro lorsque r tend vers l’infini. Ces deux conditions ne pourront être satisfaites simultanément
que pour certaines valeurs bien précises de l’énergie, qui constituent le spectre des états liés. Si l’on
numérote ces états discrets à l’aide de l’entier n′, appelé nombre quantique radial , on sait en outre
d’après le théorème de Sturm-Liouville que la fonction d’onde repérée par le nombre n′ s’annulera
exactement n′ fois dans l’intervalle ouvert ]0,+∞[ (si les états sont numérotés par énergie croissante
en commençant par n′ = 0 pour l’état fondamental). Appelons cette fonction d’onde un′,ℓ(r) et la
valeur propre correspondante En′,ℓ (car l’éq. 5.22 dépend de ℓ mais pas de m). On peut alors écrire
les fonctions propres de l’hamiltonien Ĥ sous la forme

ψn′,ℓ,m(r, θ, φ) =
un′,ℓ(r)

r
Yℓ,m(θ, φ), (5.25)

où l’on retrouve la dégénérescence 2ℓ+1 annoncée plus haut puisque les 2ℓ+1 valeurs possibles de
m correspondent toutes à la même valeur propre En′,ℓ.

5.3 Cas du potentiel coulombien

Appliquons maintenant la démarche exposée plus haut au cas particulier de l’atome d’hydrogène,
correspondant au potentiel coulombien V (r) = −e2/r. Il nous faut donc résoudre l’équation aux
valeurs propres Ĥℓ |u⟩ = E |u⟩, où l’hamiltonien Ĥℓ est défini par l’opérateur différentiel

Ĥℓ = −
ℏ2

2µ

d2

dr2
− e2

r
+
ℓ(ℓ+ 1)ℏ2

2µr2
. (5.26)

avec µ = (m−1
e +m−1

p )−1, qui pourra parfois être simplement pris égal à me compte tenu des trois
ordres de grandeur séparant la masse du proton de celle de l’électron. On trouvera en annexe B.10
la résolution de ce problème, effectuée à l’aide d’une méthode algébrique similaire à la méthode de
Dirac déjà utilisée pour l’oscillateur harmonique. Le calcul fait apparaître un résultat remarquable, à
savoir que les états associés à une même valeur de n′+ℓ ont exactement la même énergie. Ce résultat
nous conduit à introduire un nouveau nombre quantique n appelé nombre quantique principal et
défini par la relation n = n′+ℓ+1. Comme n′ et ℓ sont des entiers positifs ou nuls, le nombre n sera
un entier strictement positif. Comme l’énergie ne dépend que de n, on la notera simplement En. Le
calcul de l’annexe B.10 redonne le même résultat que le modèle de Bohr, à savoir En = −EI/n2,
en conformité avec l’expérience. Mais la théorie quantique exacte nous donne en outre la véritable
structure de ces niveaux d’énergie, qui regroupent en fait des valeurs très diverses du moment
cinétique puisque, pour une valeur donnée de n, le nombre ℓ = n − 1 − n′ peut prendre toutes les
valeurs entières comprises entre 0 et n− 1 (correspondant à des valeurs de n′ variant de n− 1 à 0).
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La dégénérescence du niveau En sera donc égale à

gn =
n−1∑
ℓ=0

(2ℓ+ 1) = n2. (5.27)

Remarquons enfin que la projection du moment cinétique sur l’axe z prendra la valeur mℏ, où
|m| ≤ ℓ ≤ n − 1. Le moment cinétique ne pourra donc jamais atteindre la valeur nℏ utilisée pour
établir le résultat du modèle de Bohr, ce qui démontre que ce dernier modèle est incorrect. On peut
finalement résumer les propriétés importantes des états liés de l’atome d’hydrogène de la manière
suivante.

Etats liés de l’atome d’hydrogène

• Les niveaux d’énergie sont repérés par un entier positif n et ont pour valeur

En = −EI
n2

(5.28)

où
EI =

e2

2a1
=
µe4

2ℏ2
=

ℏ2

2µa21
≈ ℏ2

2mea21
≈ 13.6 eV (5.29)

est l’énergie d’ionisation de l’hydrogène et où

a1 =
ℏ2

µe2
≈ ℏ2

mee2
≈ 0.053 nm (5.30)

est le rayon de Bohr.

• Le niveau En est dégénéré n2 fois.

• Les états propres |n, ℓ,m⟩ sont associés aux fonctions d’ondes

ψn,ℓ,m(r, θ, φ) = Rn,ℓ(r)Yℓ,m(θ, φ) (5.31)

où Yℓ,m(θ, φ) est une harmonique sphérique et où

Rn,ℓ(r) =
un,ℓ(r)

r
= [Polynôme de degré n’]× rℓ exp

(
− r

na1

)
, (5.32)

l’entier n′ = n− ℓ− 1 étant appelé le nombre quantique radial.

• Les zéros du polynôme de degré n′ introduit ci-dessus étant tous strictement
positifs, la fonction Rn,ℓ(r) s’annule exactement n′ fois dans l’intervalle ]0,+∞[,
conformément au théorème de Sturm-Liouville.

• La fonction d’onde de l’état fondamental s’écrit

ψ1,0,0(r⃗) =
e−r/a1√
πa31

. (5.33)

On remarque en outre que le fait que la fonction d’onde du niveau fondamental soit proportion-
nelle à e−r/a1 justifie a posteriori les résultats que nous avons obtenus à l’exercice C.11.
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5.4 Représentation des orbitales atomiques

Pour représenter les fonctions propres, ou orbitales atomiques, de l’hydrogène, on a recours à une
méthode similaire à celle des courbes de niveau permettant de représenter un relief topographique
– mais avec ici une dimension supplémentaire. Au lieu d’une courbe de niveau – qui représente
un ensemble de points d’égale altitude – on va ici tracer une surface (ou un ensemble de surfaces)
représentant un ensemble de points de l’espace associés à une même valeur η du module de la
fonction d’onde |ψ(x, y, z)|. On choisira par ailleurs le nombre η de sorte que la probabilité de
trouver la particule à l’intérieur du volume délimité par la (ou les) surface(s) ainsi définie(s) soit
égale à une valeur P prédéfinie, par exemple P = 0.5, ce qui correspond à la condition

y

|ψ(x,y,z)|≥η

|ψ(x, y, z)|2dxdydz = P. (5.34)

Même si on ne peut se faire une idée complète de la fonction d’onde qu’en faisant varier P sur
une grande plage de valeurs (ce qui correspond à représenter un profil topographique par une
série de courbes de niveau), on se contente souvent d’une seule valeur de P pour représenter les
différentes orbitales atomiques. Il faudra toutefois prendre soin de choisir cette valeur de P de sorte
que l’ensemble des zéros de la fonction d’onde soient correctement mis en évidence. Par ailleurs,
la fonction d’onde étant une grandeur complexe, la surface représentée sera coloriée en fonction de
la phase de la fonction d’onde selon le code couleur de la Fig. 4.3. Mentionnons enfin que pour
des raisons historiques, les orbitales associées à des valeurs de ℓ égales à 0, 1, 2, 3, seront appelées
respectivement orbitales s, p, d et f.

Figure 5.3 – Vue écorchée des premières orbitales atomiques de l’atome d’hy-
drogène pour ℓ = 0 (et donc m = 0), ce qui correspond aux orbitales 1s (ou
|1, 0, 0⟩), 2s (ou |2, 0, 0⟩) et 3s (ou |3, 0, 0⟩).

La Fig. 5.3 représente les premières orbitales s de l’atome d’hydrogène, correspondant donc à
ℓ = 0. La partie angulaire de la fonction d’onde est alors égale à Y0,0(θ, φ) = 1/

√
4π, ce qui signifie

que la fonction d’onde ne dépend que de r. Les surfaces représentant les orbitales s sont donc des
sphères, dont le rayon correspond aux point de l’espace où le module de la fonction d’onde est
égal à η. Dans le cas de l’orbitale 1s (état |1, 0, 0⟩), on sait que la fonction d’onde, en e−r/a1 , est
strictement décroissante. Il n’y a donc qu’une seule sphère à représenter. La fonction étant réelle
et positive, cette sphère sera coloriée en turquoise (selon le code couleur de la Fig. 4.3). Pour des
valeurs de n plus grandes, l’échelle de la fonction d’onde sera plus grande en raison de la décroissance
exponentielle plus lente en exp(−r/(na1)), ce qui explique les orbitales plus grandes représentées
Fig. 5.3. De plus, l’exponentielle est multipliée par un polynôme de degré n′ = n− ℓ−1 = n−1, qui
présente n− 1 zéros. Ainsi la zone au voisinage de l’origine reste positive et est toujours délimitée
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par une sphère turquoise, mais le maximum de probabilité observé après le premier zéro correspond
au contraire à une fonction d’onde négative, et donc à une phase égale à π. La zone correspondante
est donc délimitée par deux sphères concentriques coloriées en rouge.

Figure 5.4 – Représentation écorchée des orbitales atomiques correspondant
aux états 2p de l’hydrogène, pour m = −1, 0, et 1.

La Fig. 5.4 représente les orbitales 2p, correspondant donc à n = 2, ℓ = 1 et m ∈ {−1, 0, 1}. La
variation angulaire de ces orbitales se déduit directement des propriétés des harmoniques sphériques
établies au chapitre précédent. On reconnaît en effet la variation en exp(imφ) en fonction de la
longitude φ, ainsi qu’un nombre de zéros égal à ℓ−|m| = 1−|m| quand θ varie du pôle nord au pôle
sud. Ainsi, seul l’état |2, 1, 0⟩ présente un zéro, localisé sur l’équateur. Enfin, le nombre quantique
radial n′ = n− ℓ− 1 = 2− 1− 1 étant nul, on vérifie que la fonction d’onde ne présente pas de saut
de phase lorsqu’on se déplace le long d’un rayon.

(a) (b)

Figure 5.5 – Représentation de l’orbitale |6, 4, 2⟩ (a) et de l’état de Rydberg
|50, 49, 49⟩ (b), à des échelles différentes.

On peut ainsi identifier toute fonction propre de l’atome d’hydrogène. Dans l’exemple représenté
Fig. 5.5(a), l’observation de la variation de la couleur avec la longitude nous permet de déduire la
valeur m = 2. En faisant varier ensuite θ de 0 à π (i.e. le long d’un méridien), on observe deux
zéros, ce qui nous donne ℓ−|m| = 2 soit ℓ = 4. Enfin, la variation selon un rayon (par exemple dans
le plan équatorial) fait apparaître un seul saut de phase de π, et donc un seul zéro. On en déduit
n′ = 1 et donc n = n′ + ℓ+ 1 = 6. Dans l’exemple représenté Fig. 5.5(b), on compte 49 périodes le
long de l’équateur, ce qui correspond à m = 49. L’absence de zéro le long d’un méridien implique
que ℓ = |m| = 49. Enfin, l’absence de zéro en fonction de r implique que n = ℓ + 1 = 50. Il s’agit
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donc de l’état |50, 49, 49⟩. Un tel état est appelé état de Rydberg circulaire, défini par la relation
m = ℓ = n− 1, avec n≫ 1.

Pour conclure cette partie, mentionnons que la forme spatiale des orbitales atomiques que nous
venons de discuter joue un rôle essentiel en chimie pour comprendre la manière dont les différents
atomes d’un édifice moléculaire s’assemblent entre eux.

5.5 Evolution temporelle

Comme dans tout système gouverné par un hamiltonien indépendant du temps, la connaissance
des états propres permet de déterminer l’évolution temporelle de l’état du système sous la forme
d’une superposition d’états stationnaires, ce qui nous donne ici

|ψ(t)⟩ =
∑
n,ℓ,m

cn,ℓ,me
−iωnt |n, ℓ,m⟩ , (5.35)

où ωn = En/ℏ = −EI/(n2ℏ). En termes de fonctions d’onde, on peut donc écrire

ψ(r, θ, φ, t) =
∑
n,ℓ,m

cn,ℓ,mRn,ℓ(r)Fℓ,m(θ) exp (i(mφ− ωnt)) . (5.36)

A titre d’illustration, utilisons cette expression dans le cas d’une superposition de deux états,
(|n, ℓ,m⟩+ |n′, ℓ′,m′⟩)/

√
2. On obtient alors

ψ(r, θ, φ, t) =
ei(mφ−ωnt)

√
2

(
Rn,ℓ(r)Fℓ,m(θ) +Rn′,ℓ′(r)Fℓ′,m′(θ) exp

(
i((m′ −m)φ− ωn′nt)

))
, (5.37)

où ωn′n = ωn′ − ωn. On en déduit que la densité de probabilité ne dépend du temps qu’au travers
de la quantité (m′ −m)φ− ωn′nt. Dans le cas où m ̸= m′, on peut même écrire

|ψ(r, θ, φ, t)|2 = |ψ(r, θ, φ− ωn′nt/(m
′ −m), 0)|2. (5.38)

Le paquet d’onde tourne donc à la fréquence ωn′n/(m
′ −m) autour de l’axe z, sans se déformer.



Chapitre 6

Particule chargée dans un champ
magnétique

Ce chapitre porte sur l’application de la mécanique quantique au cas d’une particule chargée
se déplaçant dans un champ magnétique, situation que l’on rencontre dans nombre d’expériences
visant par exemple à piéger des particules ou à mesurer les propriétés de matériaux conducteurs
ou semiconducteurs. En mécanique classique, nous savons qu’une particule chargée de charge q se
mouvant à la vitesse v⃗ dans un champ magnétique B⃗ est soumise à la force de Lorentz

F⃗ = qv⃗ × B⃗, (6.1)

où nous avons omis le terme proportionnel au champ électrique E⃗, supposé pour l’instant égal à
zéro dans tout l’espace. A l’inverse des forces que nous avons discutées jusqu’ici, la force résultant
de l’action du champ magnétique présente deux caractéristiques spécifiques. D’une part, au lieu de
dépendre seulement de la position, elle est aussi fonction de la vitesse de la particule. D’autre part,
la force F⃗ est toujours perpendiculaire à la vitesse, de sorte que le produit scalaire F⃗ · v⃗ est égal
à zéro. En l’absence de champ électrique, la force de Lorentz ne produit donc aucun travail. Ces
deux arguments montrent qu’on ne saurait écrire cette force comme le simple gradient d’une énergie
potentielle. La forme de l’hamiltonien que nous avons employée jusqu’ici,

Ĥ =
p̂2

2m
+ V (ˆ⃗r), (6.2)

est ainsi inappropriée pour traiter le mouvement d’une particule chargée dans un champ magnétique.
Il nous faut donc introduire une nouvelle forme de l’hamiltonien. On peut y parvenir en partant de
la formulation lagrangienne de la mécanique classique, qui permet d’établir une forme de l’hamilto-
nien prenant correctement en compte l’effet du champ magnétique. Il est ensuite aisé d’appliquer le
principe de correspondance pour construire l’opérateur hamiltonien agissant dans l’espace de Hil-
bert. Nous renvoyons toutefois au cours PHY431 pour cette approche lagrangienne, qui relève des
principes variationnels (voir aussi le chapitre 15 de [1]). Dans ce chapitre, nous nous contenterons de
postuler la forme de l’hamiltonien – telle qu’elle est déduite de la mécanique lagrangienne – puis de
vérifier que les conséquences physiques sont raisonnables et conformes à l’expérience. Comme nous le
verrons, cet hamiltonien présente la caractéristique remarquable de ne pas faire intervenir le champ
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magnétique mais une grandeur appelée potentiel vecteur, que nous allons maintenant introduire.

6.1 Le potentiel vecteur

6.1.1 Potentiels

Rappelons la forme prise par les équations de Maxwell dans le vide, dans des régions de l’espace
ne comportant ni charges ni courants électriques

∇⃗ · E⃗(r⃗, t) = 0 (6.3)

∇⃗ · B⃗(r⃗, t) = 0 (6.4)

∇⃗ × E⃗(r⃗, t) = −∂B⃗(r⃗, t)

∂t
(6.5)

∇⃗ × B⃗(r⃗, t) =
1

c2
∂E⃗(r⃗, t)

∂t
(6.6)

Rappelons également les expressions de la divergence

∇⃗ · E⃗ =
∂Ex
∂x

+
∂Ey
∂y

+
∂Ey
∂y

(6.7)

et du rotationnel

∇⃗ × E⃗ =

∣∣∣∣∣∣∣
∂
∂x
∂
∂y
∂
∂z

×

∣∣∣∣∣∣∣
Ex

Ey

Ez

=

∣∣∣∣∣∣∣∣
∂Ez
∂y −

∂Ey

∂z
∂Ex
∂z −

∂Ez
∂x

∂Ey

∂x −
∂Ex
∂y

. (6.8)

On déduit immédiatement des deux expressions ci-dessus que la divergence d’un rotationnel est nulle,
de même que le rotationnel d’un gradient. De plus, comme le montre l’annexe B.11, tout champ dont
le rotationnel est nul (encore appelé irrotationnel) peut se mettre sous la forme d’un gradient, et tout
champ de divergence nulle peut se mettre sous la forme d’un rotationnel. Ainsi, en électrostatique
l’éq. 6.5 devient ∇⃗ × E⃗(r⃗) = 0, ce qui permet d’écrire E⃗(r⃗) = −∇⃗U(r⃗). On dit que le champ
électrique E⃗(r⃗) dérive du potentiel électrique U(r⃗). De la même manière, la divergence du champ
magnétique est toujours nulle (éq. 6.4), ce qui nous autorise à l’écrire comme le rotationnel d’un
autre champ de vecteurs, soit B⃗(r⃗, t) = ∇⃗× A⃗(r⃗, t). On dira que le champ magnétique B⃗(r⃗, t) dérive
du champ de vecteur A⃗(r⃗, t), appelé potentiel vecteur du champ magnétique, ou plus simplement
potentiel vecteur. Si on remplace maintenant B⃗(r⃗, t) par cette nouvelle expression dans l’éq. 6.5, on
peut écrire

∇⃗ ×

(
E⃗(r⃗, t) +

∂A⃗(r⃗, t)

∂t

)
= 0 (6.9)

ce qui signifie que le champ de vecteurs E⃗(r⃗, t) + ∂A⃗/∂t est irrotationnel. Il dérive donc d’une
grandeur scalaire U(r⃗, t) que l’on appelle par définition le potentiel électrique. On obtient donc

E⃗(r⃗, t) +
∂A⃗(r⃗, t)

∂t
= −∇⃗U(r⃗, t). (6.10)

On peut résumer ces résultats de la manière suivante :



6.1. LE POTENTIEL VECTEUR 93

Dans une région de l’espace ne comportant ni charges ni courants électriques, les
champs électrique et magnétique peuvent s’exprimer en fonction du potentiel élec-
trique U(r⃗, t) et du potentiel vecteur A⃗(r⃗, t) à l’aide des relations

E⃗(r⃗, t) = −∇⃗U(r⃗, t)− ∂A⃗

∂t
(6.11)

B⃗(r⃗, t) = ∇⃗ × A⃗(r⃗, t) (6.12)

Les équations 6.4 et 6.5 sont alors automatiquement vérifiées.

6.1.2 Choix de jauge

Sachant que le potentiel électrique, défini en électrostatique à une constante additive près, n’est
pas unique, on doit se poser la question de l’unicité des potentiels introduits plus haut. Considérons
donc un autre potentiel vecteur A⃗′(r⃗, t) associé au même champ magnétique B⃗(r⃗, t) = ∇⃗× A⃗(r⃗, t) =
∇⃗ × A⃗′(r⃗, t). Les rotationnels des deux potentiels vecteurs étant identiques, on peut écrire

∇⃗ ×
(
A⃗′(r⃗, t)− A⃗(r⃗, t)

)
= 0 (6.13)

ce qui nous permet d’affirmer que la grandeur irrotationnelle A⃗′(r⃗, t)− A⃗(r⃗, t) dérive d’une grandeur
scalaire, que nous appelons χ(r⃗, t), soit

A⃗′(r⃗, t) = A⃗(r⃗, t) + ∇⃗χ(r⃗, t). (6.14)

Inversement, il est immédiat que pour toute fonction χ(r⃗, t), le choix de potentiel vecteur A⃗′(r⃗, t)

donne bien le même champ magnétique puisque ∇⃗ × ∇⃗χ(r⃗, t) = 0. En remplaçant A⃗(r⃗, t) par
A⃗′(r⃗, t)− ∇⃗χ dans l’éq. 6.11, on obtient alors

E⃗(r⃗, t) = −∇⃗U(r⃗, t)− ∂A⃗
′

∂t
+
∂

∂t
∇⃗χ(r⃗, t) = −∇⃗

(
U(r⃗, t)− ∂χ

∂t

)
− ∂A⃗

′

∂t
= −∇⃗U ′(r⃗, t)− ∂A⃗

′

∂t
(6.15)

où U ′(r⃗, t) = U(r⃗, t)−∂χ/∂t. L’opération consistant à remplacer les potentiels A⃗(r⃗, t) et U(r⃗, t) par

A⃗′(r⃗, t) = A⃗(r⃗, t) + ∇⃗χ(r⃗, t) (6.16)

U ′(r⃗, t) = U(r⃗, t)− ∂χ

∂t
(6.17)

s’appelle un changement de jauge. Comme nous venons de le voir, ce nouveau choix de potentiels
donne lieu aux mêmes champs électrique et magnétique.

6.1.3 Jauge de Landau et jauge symétrique

Considérons le cas d’un champ magnétique constant, uniforme, et orienté selon l’axe z, soit

B⃗(r⃗, t) =

∣∣∣∣∣∣
0
0
B

(6.18)
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et cherchons un potentiel vecteur simple dont ce champ magnétique pourrait dériver. L’équation
∇⃗ × A⃗(r⃗) = B⃗(r⃗) s’écrit ici

∇⃗ × A⃗(r⃗) =

∣∣∣∣∣∣∣∣
∂Az
∂y −

∂Ay

∂z
∂Ax
∂z −

∂Az
∂x

∂Ay

∂x −
∂Ax
∂y

=

∣∣∣∣∣∣∣
0

0

B

(6.19)

ce qui nous donne le système d’équations
∂Az
∂y −

∂Ay

∂z = 0
∂Ax
∂z −

∂Az
∂x = 0

∂Ay

∂x −
∂Ax
∂y = B

(6.20)

Il ne s’agit pas ici de chercher l’ensemble infini de solutions qu’admet ce système d’équations, mais
seulement de trouver quelques solutions les plus simples possibles. Comme Az n’intervient que dans
les deux premières équations, dont le second membre est nul, il est évidemment plus simple de
choisir Az = 0. La première équation nous indique alors que Ay ne dépend pas de z. La dérivée de
Ay par rapport à y n’intervenant nulle part, il est plus simple de supposer que Ay ne dépend pas
non plus de y, ce qui signifie que Ay ne dépend que de x. De même, on peut supposer que Ax ne
dépend que de y. Les deux premières équations sont ainsi vérifiées. Essayons maintenant de vérifier
la dernière équation en imposant arbitrairement Ax = 0. La condition ∂Ay/∂x = B nous permet
alors d’écrire Ay = Bx. On obtient ainsi une première possibilité, appelée jauge de Landau, avec

A⃗(r⃗) =

∣∣∣∣∣∣
0
Bx
0

. (6.21)

Si l’on préfère que Ax et Ay jouent des rôles similaires, on peut supposer que les deux dérivées
∂Ax/∂y et ∂Ay/∂x sont opposées. On obtient alors 2∂Ay/∂x = B, soit Ay = Bx/2 et Ax = −By/2,
ce qui nous donne la jauge symétrique

A⃗(r⃗) =

∣∣∣∣∣∣
−By/2
Bx/2
0

. (6.22)

On peut vérifier immédiatement que le rotationnel de ces deux choix de potentiel vecteur nous
redonne bien le champ magnétique considéré. On peut également vérifier que l’on passe de la jauge
symétrique à la jauge de Landau par le changement de jauge associé à la fonction χ(r⃗) = Bxy/2.
Il existe naturellement une infinité de jauges possibles pour décrire ce champ magnétique, mais les
deux jauges explicitées ci-dessus sont les plus fréquemment utilisées.

Concernant la jauge symétrique, remarquons qu’elle peut se mettre sous la forme

A⃗(r⃗) =

∣∣∣∣∣∣
−By/2
Bx/2
0

=
1

2

∣∣∣∣∣∣
0
0
B
×

∣∣∣∣∣∣
x
y
z

=
1

2
B⃗ × r⃗. (6.23)

L’axe z ne jouant pas de rôle particulier, on pourra utiliser l’expression B⃗ × r⃗/2 quelle que soit la
direction prise par le champ magnétique. De manière générale, la jauge symétrique revient donc à
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écrire le potentiel vecteur associé à un champ magnétique uniforme sous la forme

A⃗(r⃗) =
1

2
B⃗ × r⃗. (6.24)

6.2 Hamiltonien en présence d’un champ magnétique

Comme annoncé plus haut, nous allons nous contenter d’admettre le résultat de la mécanique
lagrangienne, qui fait intervenir le potentiel vecteur dans l’hamiltonien d’une particule chargée
placée dans un champ magnétique. L’hamiltonien classique s’écrit ainsi

H =
(p⃗− qA⃗(r⃗, t))2

2m
+ V (r⃗, t). (6.25)

La transposition à la mécanique quantique est immédiate.

L’hamiltonien d’une particule chargée de charge q et de masse m placée dans un
champ magnétique dérivant du potentiel vecteur A⃗(r⃗, t) s’écrit

Ĥ =
(ˆ⃗p− qA⃗(ˆ⃗r, t))2

2m
+ V (ˆ⃗r, t). (6.26)

Dans le cas particulier où l’énergie potentielle résulte uniquement de l’application
d’un potentiel électrique U(r⃗, t), on pourra écrire V (r⃗, t) = qU(r⃗, t) et

Ĥ =
(ˆ⃗p− qA⃗(ˆ⃗r, t))2

2m
+ qU(ˆ⃗r, t). (6.27)

Dans la suite de ce chapitre, nous allons vérifier que cette proposition donne lieu à des prédictions
théoriques vraisemblables et conformes à l’expérience.

6.2.1 Impulsion et quantité de mouvement

Une première conséquence de la forme prise par l’hamiltonien est que nous ne pourrons plus
considérer impulsion et quantité de mouvement comme une seule et même grandeur physique. Il
nous faut donc revenir en détail sur les définitions de ces deux quantités. D’après ce que nous avons
vu au chapitre 2, l’impulsion ˆ⃗p est définie de manière générale comme le générateur infinitésimal des
translations. Dans le cas d’une particule sans spin décrite par la fonction d’onde ψ(r⃗), rappelons
que cette définition peut s’écrire

ψ(r⃗ − da⃗) = ψ(r⃗)− i

ℏ
ˆ⃗pψ(r⃗) · da⃗. (6.28)

Comme on a par ailleurs ψ(r⃗ − da⃗) = ψ(r⃗) − ∇⃗ψ · da⃗, on retrouve l’expression bien connue de
l’observable impulsion sous forme de l’opérateur différentiel

ˆ⃗p =
ℏ
i
∇⃗. (6.29)
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Les relations de commutation habituelles, [x̂, p̂x] = [ŷ, p̂y] = [ẑ, p̂z] = iℏ, s’en déduisent immédia-
tement. Intéressons nous maintenant à la quantité de mouvement mv⃗, que nous avions jusqu’ici
implicitement supposée être égale à l’impulsion p⃗. L’observable vitesse ˆ⃗v peut être définie de sorte
que la valeur moyenne de la vitesse soit égale à la dérivée par rapport au temps de la position
moyenne de la particule. Pour tout état |ψ(t)⟩, on doit donc avoir

⟨ψ(t)| ˆ⃗v |ψ(t)⟩ = d ⟨ψ(t)| ˆ⃗r |ψ(t)⟩
dt

(6.30)

ce qui nous donne, par exemple pour la première composante cartésienne, la relation

⟨ψ(t)| v̂x |ψ(t)⟩ =
d ⟨ψ(t)| x̂ |ψ(t)⟩

dt
. (6.31)

En exprimant le membre de droite de l’égalité ci-dessus à l’aide du théorème d’Ehrenfest généralisé
(éq. 1.72), on peut en déduire

⟨ψ(t)| v̂x |ψ(t)⟩ =
1

iℏ
⟨ψ(t)| [x̂, Ĥ] |ψ(t)⟩ . (6.32)

Cette relation étant vérifiée pour tout état |ψ(t)⟩, et pour chacune des trois composantes cartésiennes
de la vitesse, on en déduit les relations

v̂x =
1

iℏ
[x̂, Ĥ] v̂y =

1

iℏ
[ŷ, Ĥ] v̂z =

1

iℏ
[ẑ, Ĥ] (6.33)

qui peuvent être considérées comme la définition de l’observable vitesse. Bien entendu, si nous
utilisons l’éq. 6.2 pour écrire l’hamiltonien, alors on a [x̂, Ĥ] = iℏp̂x/m (voir exercice C.4), de sorte
que l’on retrouve v̂x = p̂x/m et donc p̂x = mv̂x. Mais la situation sera différente pour l’hamiltonien
donné par l’éq. 6.26. On a alors

[x̂, Ĥ] =
1

2m
[x̂, (p̂x − qAx(ˆ⃗r))2] (6.34)

=
1

2m

(
[x̂, p̂x − qAx(ˆ⃗r)](p̂x − qAx(ˆ⃗r)) + (p̂x − qAx(ˆ⃗r))[x̂, p̂x − qAx(ˆ⃗r)]

)
(6.35)

=
iℏ
m
(p̂x − qAx(ˆ⃗r)), (6.36)

où l’on a utilisé le fait que x̂ commute avec toute fonction de ˆ⃗r. L’éq. 6.33 nous permet d’en déduire
v̂x = (p̂x − qAx(ˆ⃗r))/m, soit, en étendant ce résultat aux autres composantes cartésiennes,

ˆ⃗v =
ˆ⃗p− qA⃗(ˆ⃗r)

m
. (6.37)

L’hamiltonien donné par l’éq. 6.26 peut alors s’écrire

Ĥ =
1

2
mv̂2 + V (ˆ⃗r), (6.38)

où l’on reconnait tout simplement la somme de l’énergie cinétique et de l’énergie potentielle. Fina-
lement, ce qui change en présence d’un champ magnétique n’est pas tant la forme de l’hamiltonien
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(s’il est exprimé à l’aide de la vitesse) que le fait qu’il nous faut maintenant distinguer impulsion et
quantité de mouvement, ces deux quantités étant désormais reliées par la relation

ˆ⃗p = mˆ⃗v + qA⃗(ˆ⃗r, t). (6.39)

Ces deux grandeurs ne différant que par une fonction de la position, on peut en déduire que les
relations de commutation de la position avec la quantité de mouvement seront les mêmes que les
relations de commutation de la position avec l’impulsion. On en déduit

[x̂,mv̂x] = [ŷ,mv̂y] = [ẑ,mv̂z] = iℏÎ . (6.40)

Remarquons enfin que chaque composante cartésienne de la vitesse dépend à la fois de l’impulsion
et de la position, par l’intermédiaire de la dépendance spatiale du potentiel vecteur. On peut donc
s’attendre à ce que les composantes cartésiennes de la vitesse (ou de la quantité de mouvement) ne
commutent pas toujours entre elles.

6.2.2 Force de Lorentz

Considérons le cas d’une particule placée dans un champ magnétique homogène orienté selon
l’axe z, comme donné par l’éq. 6.18, et choisissons la jauge de Landau pour écrire le potentiel
vecteur, ce qui correspond à l’éq. 6.21. A l’aide de l’éq. 6.37, on peut en déduire l’expression des
composantes cartésiennes de la vitesse,

v̂x =
p̂x
m

(6.41)

v̂y =
p̂y − qBx̂

m
(6.42)

v̂z =
p̂z
m

(6.43)

Les composantes cartésiennes de ˆ⃗p commutent évidemment entre elles, donc [vx, vz] = [vy, vz] = 0.
Par contre,

[v̂x, v̂y] =
1

m2
([p̂x, p̂y]− qB[p̂x, x̂]) =

iℏqB
m2

Î . (6.44)

Comme annoncé plus haut, on constate que certaines composantes cartésiennes de la vitesse (ici
v̂x et v̂y) ne commutent pas entre elles. A partir de ces relations de commutation, nous allons
pouvoir utiliser le théorème d’Ehrenfest généralisé pour déterminer l’évolution temporelle de la
valeur moyenne de la vitesse. Ecrivons pour cela l’hamiltonien Ĥ = K̂ + V̂ comme la somme de
l’énergie cinétique K̂ et de l’énergie potentielle V̂ , avec K̂ = (1/2)mv̂2 et V̂ = qU(ˆ⃗r). On a

[v̂x, K̂] =
1

2
m[v̂x, v̂

2
x + v̂2y + v̂2z ] =

1

2
m ([v̂x, v̂y]v̂y + v̂y[v̂x, v̂y]) =

iℏqB
m

v̂y (6.45)

et
[v̂y, K̂] =

1

2
m[v̂y, v̂

2
x + v̂2y + v̂2z ] =

1

2
m ([v̂y, v̂x]v̂x + v̂x[v̂y, v̂x]) = −

iℏqB
m

v̂x. (6.46)
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Enfin, [v̂z, K̂] = 0 car v̂z commute avec toutes les composantes cartésiennes de la vitesse. Par
ailleurs,

[v̂x, V̂ ] =
1

m

[(
p̂x − qAx(ˆ⃗r)

)
, V̂
]
=

1

m
[p̂x, V̂ ] = −iqℏ

m

∂U

∂x
(ˆ⃗r) (6.47)

où l’on a utilisé la relation [p̂x, V (ˆ⃗r)] = −iℏ∂V/∂x démontrée lors de l’exercice C.2. On obtiendrait
de même

[v̂y, V̂ ] = −iqℏ
m

∂U

∂y
(ˆ⃗r) et [v̂z, V̂ ] = −iqℏ

m

∂U

∂z
(ˆ⃗r). (6.48)

Le théorème d’Ehrenfest généralisé, d⟨A⟩/dt = −(i/ℏ)⟨ψ(t)|[Â, Ĥ]|ψ(t)⟩, nous permet alors d’écrire

d⟨vx⟩
dt

=
qB

m
⟨vy⟩ −

q

m

〈
∂U

∂x

〉
(6.49)

d⟨vy⟩
dt

= −qB
m
⟨vx⟩ −

q

m

〈
∂U

∂y

〉
(6.50)

d⟨vz⟩
dt

= − q

m

〈
∂U

∂z

〉
(6.51)

On obtient donc
m
d⟨v⃗⟩
dt

= q⟨v⃗⟩ × B⃗ − q
〈
∇⃗U(r⃗)

〉
. (6.52)

Dans le cas où le champ électrique E⃗(r⃗) = −∇⃗U(r⃗) est lui aussi uniforme, on retrouve exactement
l’expression de la force de Lorentz pour la valeur moyenne de la vitesse,

m
d⟨v⃗⟩
dt

= q
(
E⃗ + ⟨v⃗⟩ × B⃗

)
. (6.53)

On peut donc en conclure que l’éq. 6.27 constitue un choix raisonnable pour l’hamiltonien d’une
particule chargée dans un champ magnétique.

6.2.3 Moment magnétique orbital

Considérons à nouveau le problème d’une particule chargée placée dans un champ magnétique
uniforme B⃗ et développons le carré de la quantité de mouvement,

(ˆ⃗p− qA⃗(ˆ⃗r ))2 = p̂2 − qA⃗(ˆ⃗r ) · ˆ⃗p− q ˆ⃗p · A⃗(ˆ⃗r ) + q2A⃗(ˆ⃗r )2. (6.54)

Nous choisissons ici la jauge symétrique, A⃗(r⃗) = B⃗×r⃗/2 (éq. 6.24), ce qui nous permettra d’expliciter
facilement le terme en ˆ⃗

A · ˆ⃗p. On obtient

A⃗(ˆ⃗r ) · ˆ⃗p = 1

2

(
B⃗ × ˆ⃗r

)
· ˆ⃗p = 1

2

(
ˆ⃗r × ˆ⃗p

)
· B⃗ (6.55)

où nous avons utilisé l’invariance du produit mixte (u⃗ × v⃗) · w⃗ par permutation circulaire. Nous
voyons ainsi apparaître le moment cinétique orbital ˆ⃗

L = ˆ⃗r × ˆ⃗p, de sorte que l’on peut écrire

A⃗(ˆ⃗r ) · ˆ⃗p = 1

2
ˆ⃗
L · B⃗. (6.56)
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Un calcul similaire aboutit au même résultat pour le terme ˆ⃗p · ˆ⃗A, ce qui n’est pas surprenant car
d’après l’exercice C.2, ˆ⃗p · ˆ⃗A− ˆ⃗

A · ˆ⃗p = −iℏ∇⃗A⃗ = 0 (pour la jauge que nous avons choisie). L’éq. 6.26
devient donc

Ĥ = Ĥ0 + Ŵ1 + Ŵ2, (6.57)

où Ĥ0 est l’hamiltonien en l’absence de champ magnétique, et

Ŵ1 = −
qA⃗(ˆ⃗r) · ˆ⃗p

m
= − q

2m
ˆ⃗
L · B⃗ = − ˆ⃗µ · B⃗ (6.58)

Ŵ2 =
q2

2m
A⃗(ˆ⃗r )2. (6.59)

Le terme Ŵ1 est appelé terme paramagnétique [2] et correspond à l’énergie du moment magnétique
orbital µ⃗ = (q/2m)L⃗ placé dans le champ B⃗. Cette expression est en parfait accord avec le modèle
classique de magnétisme atomique traité en PHY3X061 (chapitre 7).

Le terme Ŵ2 est appelé terme diamagnétique. Il s’interprète comme l’énergie dans le champ B⃗

d’un moment magnétique lui-même induit par le champ magnétique, ce qui explique la variation
quadratique de Ŵ2 avec le champ magnétique. On peut vérifier à l’aide d’un simple calcul d’ordre
de grandeur que le diamagnétisme atomique est très inférieur à la contribution paramagnétique
tant que le champ magnétique reste modéré (i.e. inférieur au Tesla) [2], de sorte que ce terme sera
souvent négligé.

6.3 Invariance de jauge

Même si l’hamiltonien exprimé par l’éq. 6.27 parvient à rendre parfaitement compte de la force
de Lorentz et du magnétisme orbital, il n’en garde pas moins une part de mystère car il s’exprime non
pas en fonction des champs mais des potentiels. Or ceux-ci, définis à un changement de jauge près
(eq. 6.16 et 6.17), ne sont pas uniques. Pour clarifier cette situation a priori étonnante, considérons
un changement de jauge associé à la fonction χ(r⃗), supposée dans un premier temps indépendante
du temps. Appelons alors Ĥ et Ĥ ′ les hamiltoniens associés respectivement à A⃗(r⃗, t) et A⃗′(r⃗, t),
correspondant au potentiel vecteur avant et après le changement de jauge. Rappelons que, d’après
l’éq. 6.17, le potentiel électrique n’est pas affecté pour une fonction χ(r⃗) indépendante du temps. Bien
entendu, si l’on considère une solution |ψ(t)⟩ de l’équation de Schrödinger associée à l’hamiltonien
Ĥ, il n’y a aucune raison pour que |ψ(t)⟩ soit aussi solution de l’équation de Schrödinger associée au
nouvel hamiltonien Ĥ ′. Il faut donc en conclure que, lors d’un changement de jauge, il est également
nécessaire de changer le ket décrivant l’état du système. Introduisons pour cela la transformation
unitaire T̂ définie par T̂ |ψ⟩ = |ψ′⟩, avec

ψ′(r⃗, t) = exp

(
i
qχ(r⃗)

ℏ

)
ψ(r⃗, t). (6.60)

Cette expression a été choisie pour qu’un terme supplémentaire, proportionnel à ∇⃗χ, apparaisse
lorsqu’on calcule le gradient de la fonction d’onde, de façon à compenser le terme qui vient s’ajouter
à l’impulsion dans l’hamiltonien lors du changement de jauge. Pour le vérifier, évaluons l’action de
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l’opérateur impulsion sur la nouvelle fonction d’onde ψ′(r⃗, t) :

ˆ⃗pψ′(r⃗, t) =
ℏ
i
∇⃗ exp

(
i
qχ(r⃗)

ℏ

)
ψ(r⃗, t) = exp

(
i
qχ(r⃗)

ℏ

)(
ˆ⃗p+ q∇⃗χ

)
ψ(r⃗, t). (6.61)

On en déduit(
ˆ⃗p− qA⃗′(ˆ⃗r, t)

)
ψ′(r⃗, t) = exp

(
i
qχ(r⃗)

ℏ

)(
ˆ⃗p+ q∇⃗χ− qA⃗(ˆ⃗r, t)− q∇⃗χ

)
ψ(r⃗, t)

= exp

(
i
qχ(r⃗)

ℏ

)(
ˆ⃗p− qA⃗(ˆ⃗r, t)

)
ψ(r⃗, t). (6.62)

En appliquant à nouveau l’opérateur ˆ⃗p− qA⃗′(ˆ⃗r, t), on obtient

(
ˆ⃗p− qA⃗′(ˆ⃗r, t)

)2
ψ′(r⃗, t) = exp

(
i
qχ(r⃗)

ℏ

)(
ˆ⃗p− qA⃗(ˆ⃗r, t)

)2
ψ(r⃗, t). (6.63)

Comme le potentiel électrique U(r⃗, t) est inchangé, on peut en déduire

Ĥ ′ exp

(
i
qχ(r⃗)

ℏ

)
ψ(r⃗, t) = exp

(
i
qχ(r⃗)

ℏ

)
Ĥψ(r⃗, t) (6.64)

ou encore Ĥ ′T̂ = T̂ Ĥ. Remarquons au passage que pour un hamiltonien Ĥ indépendant du temps
dont la base propre est {|φn⟩}, alors les états T̂ |φn⟩ seront vecteurs propres de Ĥ ′ pour les mêmes
énergies propres. L’équation de Schrödinger pour |ψ′(t)⟩ s’écrit

iℏ
d|ψ′⟩
dt

= iℏ
dT̂ |ψ⟩
dt

= T̂ iℏ
d|ψ⟩
dt

= T̂ Ĥ|ψ(t)⟩ = Ĥ ′T̂ |ψ(t)⟩ = Ĥ ′|ψ′(t)⟩. (6.65)

On en conclut que |ψ′(t)⟩ est bien solution d’une équation de Schrödinger associée à l’hamiltonien
Ĥ ′. Le changement de jauge ne pose donc pas de problème, à condition de considérer qu’il affecte
non seulement l’hamiltonien mais aussi le ket décrivant l’état du système, par le biais de la trans-
formation unitaire T̂ introduite plus haut. Il nous suffit maintenant de vérifier que les grandeurs
physiques associées à cette nouvelle fonction d’onde ne diffèrent pas de celles associées à la fonction
d’onde initiale. On a évidemment |ψ′(r⃗, t)|2 = |ψ(r⃗, t)|2 : la densité de probabilité de présence est
indépendante du choix de jauge. Par ailleurs, en multipliant à gauche l’éq. 6.62 par ψ′∗(r, t), on
obtient

ψ′∗(r⃗, t)
(
ˆ⃗p− qA⃗′(ˆ⃗r, t)

)
ψ′(r⃗, t) = ψ∗(r⃗, t)

(
ˆ⃗p− qA⃗(ˆ⃗r, t)

)
ψ(r⃗, t) (6.66)

soit, après intégration sur les coordonnées spatiales,

⟨ψ′|ˆ⃗v ′|ψ′⟩ = ⟨ψ|ˆ⃗v|ψ⟩. (6.67)

La quantité de mouvement mˆ⃗v est bien une grandeur physique mesurable, indépendante du choix
de jauge. Il n’en va pas de même pour l’impulsion. En effet,

⟨ψ′| ˆ⃗p|ψ′⟩ = ⟨ψ| ˆ⃗p|ψ⟩ − q
〈
∇⃗χ(r⃗)

〉
(6.68)
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La valeur moyenne de l’impulsion dépend ainsi du choix de jauge. L’impulsion, n’étant pas invariante
de jauge, ne peut donc pas être considérée comme une grandeur physique mesurable.

L’exercice C.17 permet d’étendre ces résultats au cas d’un changement de jauge dépendant du
temps, lors duquel potentiel vecteur et potentiel électrique sont tous deux affectés.

6.4 L’effet Aharonov-Bohm

Il est bien connu en électromagnétisme que le potentiel vecteur peut être non nul même dans
des régions de l’espace où le champ magnétique est rigoureusement nul. On peut s’en convaincre à
l’aide du théorème de Stokes, qui relie l’intégrale d’un champ de vecteurs le long d’un chemin fermé
C au flux du rotationnel à travers la surface Σ délimitée par ce même chemin fermé, soit∮

C
A⃗(r⃗) · dr⃗ =

x

Σ

(
∇⃗ × A⃗(r⃗)

)
· dS⃗ =

x

Σ

B⃗(r⃗) · dS⃗. (6.69)

Plaçons par exemple un solénoïde à l’intérieur du chemin C comme représenté Fig. 6.1. Le flux du
champ magnétique à travers la surface Σ est évidemment non nul, ce qui implique que le potentiel
vecteur A⃗(r⃗) le long du chemin C soit lui aussi non nul. Pour autant, ce chemin est entièrement
situé à l’extérieur du solénoïde, dans une région où le champ magnétique est égal à zéro.

Figure 6.1 – Selon le théorème de Stokes, la circulation du potentiel vecteur
le long du circuit C est égale au flux du champ magnétique à travers la surface
Σ.

Le fait que le potentiel vecteur A⃗(r⃗) apparaisse directement dans l’hamiltonien signifie-t-il qu’une
particule chargée peut être affectée par la présence d’un champ magnétique, sans jamais pénétrer
dans les régions de l’espace où celui-ci est non nul ? Aussi étrange que cela puisse paraître, la réponse
à cette question est positive. Après des travaux précurseurs passés relativement inaperçus [10], c’est
Aharonov et Bohm qui ont attiré l’attention de la communauté scientifique sur l’importance de
cette question, dans un article publié en 1959 et intitulé Significance of electromagnetic potentials
in the quantum theory [11].

6.4.1 Principe de l’expérience

La Fig. 6.2 représente le montage expérimental permettant de révéler cet effet Aharonov-Bohm,
qui fut effectivement clairement confirmé par l’expérience [12, 13]. Le dispositif s’appuie sur un in-
terféromètre dans lequel un faisceau d’électrons d’énergie E peut suivre deux chemins possibles pour
atteindre un écran, sur lequel sont observées des franges d’Young. Comme dans tout interféromètre
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à deux ondes, les franges brillantes correspondent aux points de l’écran pour lesquels la différence
de distance parcourue entre les deux chemins est un multiple de la longueur d’onde de de Broglie,
λ = h/

√
2mE, ce qui donne lieu à des interférences constructives. A l’inverse, les franges sombres

correspondent aux points de l’écran pour lesquels les deux chemins diffèrent d’un multiple impair
de λ/2, de sorte que les deux faisceaux sont en opposition de phase et interfèrent destructivement.

Figure 6.2 – Montage expérimental permettant d’observer l’effet Aharonov-
Bohm. En présence du champ magnétique, les franges d’Young observées sur
l’écran sont déphasées d’une quantité δφ proportionnelle au flux du champ ma-
gnétique à travers la surface Σ.

On introduit alors un solénoïde au milieu de l’interféromètre, afin d’appliquer un champ ma-
gnétique qui reste confiné dans une zone de l’espace où la probabilité de présence des électrons
est rigoureusement nulle. Malgré cette dernière caractéristique, on observe un décalage des franges
proportionnel au champ magnétique appliqué à l’intérieur du solénoïde. Cet effet extraordinaire est
de toute évidence incompréhensible dans le cadre de la mécanique classique, puisque les électrons
ne sont soumis à aucun moment à la force de Lorentz évoquée plus haut. D’un point de vue quan-
tique, l’effet Aharonov-Bohm confirme que la grandeur devant intervenir dans l’hamiltonien n’est
certainement pas le champ magnétique, mais bien une grandeur comme le potentiel vecteur qui peut
prendre des valeurs non nulles même dans des régions de l’espace où le champ magnétique est nul.

6.4.2 Interprétation

Revenons dans un premier temps sur l’expérience d’Young, en l’absence de champ magnétique.
L’hamiltonien du système est alors noté

Ĥ0 =
p̂2

2m
+ V (ˆ⃗r). (6.70)

Considérons un état propre |ψ1⟩ d’énergie E, choisi tel que la fonction d’onde associée, ψ1(r⃗), prenne
des valeurs non nulles uniquement dans la région appelée (1) sur la Fig. 6.3, le long du chemin abd.
On pourrait obtenir une telle situation en injectant le faisceau d’électrons le long de la direction
ab. Ce faisceau est ensuite dévié par l’interféromètre dans la direction du segment bd, soit à l’aide
d’un dispositif électrostatique non représenté (et intégré au terme d’énergie potentielle V (r⃗)), soit à
l’aide d’une fente placée au point b diffractant les électrons notamment vers le point d. Considérons
maintenant un second état propre |ψ2⟩ de même énergie, mais associé à une fonction d’onde ψ2(r⃗)
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prenant des valeurs non nulles uniquement dans la région (2). Cette seconde solution correspond au
faisceau se propageant le long du chemin acd. La superposition linéaire ψ(r⃗) ∝ ψ1(r⃗) + ψ2(r⃗) est
également fonction propre de Ĥ0, et correspond à la solution qui nous intéresse, lorsque les deux
bras de l’interféromètre sont utilisés simultanément. La densité de probabilité associée s’écrit

|ψ(r⃗)|2 ∝ |ψ1(r⃗) + ψ2(r⃗)|2 (6.71)

= |ψ1(r⃗)|2 + |ψ2(r⃗)|2 + 2|ψ∗
1(r⃗)ψ2(r⃗)| cos(θ2(r⃗)− θ1(r⃗)) (6.72)

où θα(r⃗) est la phase de la fonction d’onde ψα(r⃗). Le dernier terme de l’éq. 6.72 est responsable du
phénomène d’interférence entre les deux ondes, qui produit une variation sinusoïdale de la densité
de probabilité sur l’écran le long de la coordonnée transverse x. En s’appuyant sur l’analogie avec
l’optique, on peut montrer que la variation de ce terme d’interférence en fonction de x est à peu près
proportionnelle à cos∆kxx, où ∆kx = (p2x − p1x)/ℏ correspond à la différence de vecteur d’onde
transverse entre les ondes venant des régions (1) et (2).

Faisceau 

d’électrons 

(1) 

(2) 

Figure 6.3 – Vue de dessus du montage expérimental, avec une représentation
des deux chemins abd et acd menant de la source à l’écran.

Appliquons maintenant le champ magnétique B⃗ à l’intérieur du solénoïde, et appelons A⃗(r⃗) le
potentiel vecteur correspondant, défini dans tout l’espace. L’hamiltonien s’écrit maintenant

Ĥ =
(ˆ⃗p− qA⃗(ˆ⃗r ))2

2m
+ V (ˆ⃗r). (6.73)

Considérons à nouveau la situation où la fonction d’onde est entièrement confinée dans l’une des
deux zones (1) ou (2). Dans la totalité de chacune de ces zones (α), le champ magnétique est nul,
ce qui signifie que le potentiel vecteur y est irrotationnel. Pour tout point r⃗ de la zone (α), on
peut donc écrire le potentiel vecteur comme le gradient d’une fonction dépendant de r⃗, et poser
A⃗(r⃗) = ∇⃗χα(r⃗). Un choix possible pour la fonction χα(r⃗) est par exemple

χα(r⃗) =

∫ r⃗

r⃗a,α
A⃗(r⃗ ′) · dr⃗ ′, (6.74)

avec la condition que l’intégrale – prenant son origine en a – est calculée le long d’un chemin
entièrement compris dans la zone (α). En vertu du théorème de Stokes, cette intégrale a bien un
sens puisqu’elle ne dépend pas du chemin suivi tant que ce dernier reste entièrement contenu dans
la zone (α). On pourra s’en convaincre en écrivant la différence entre deux telles intégrales comme
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la circulation du potentiel vecteur le long d’un chemin fermé entièrement confiné dans la zone (α).
A l’inverse, pour un point r⃗ situé au voisinage du point d, dans une zone commune aux régions (1)
et (2), les fonctions χ1(r⃗) et χ2(r⃗) sont clairement différentes. On a en effet

χ2(r⃗)− χ1(r⃗) =

∫ r⃗

r⃗a,2
A⃗(r⃗ ′) · dr⃗ ′ −

∫ r⃗

r⃗a,1
A⃗(r⃗ ′) · dr⃗ ′ =

∮
C
A⃗(r⃗ ′) · dr⃗ ′ (6.75)

où C est un circuit fermé similaire au chemin acdba. A l’aide du théorème de Stokes, on peut en
déduire

χ2(r⃗)− χ1(r⃗) =
x

Σ

B⃗(r⃗) · dS⃗ = Φ. (6.76)

La différence entre ces deux fonctions est donc égale au flux du champ magnétique à travers la
surface Σ délimitée par le circuit C, ce qui se ramène tout simplement au flux total du champ
magnétique, noté Φ, puisque le champ magnétique est nul à l’extérieur du solénoïde.

Il est possible de décrire très simplement l’effet du champ magnétique sur la fonction propre à
l’aide d’une transformation de jauge limitée à l’intérieur de la zone (α) [14]. En effet, en nous limitant
à une telle zone, nous pouvons considérer que les hamiltoniens Ĥ0 et Ĥ décrivent le même problème,
associé à un champ magnétique nul mais avec deux jauges différentes, la première correspondant
à un potentiel vecteur nul et la seconde au potentiel vecteur A⃗(r⃗) = ∇⃗χα(r⃗). D’après l’éq. 6.60,
connaissant la fonction propre ψα(r⃗) de l’hamiltonien Ĥ0, on peut directement écrire la fonction
propre ψ′

α(r⃗) de l’hamiltonien Ĥ à l’aide de la transformation unitaire associée à la fonction χα(r⃗),
ce qui nous donne

ψ′
α(r⃗) = exp

(
iq

ℏ
χα(r⃗)

)
ψα(r⃗). (6.77)

Le terme donnant lieu aux interférences en présence du champ magnétique pourra alors s’écrire

ψ′∗
1 (r⃗)ψ

′
2(r⃗) = exp

(
− iq

ℏ
χ1(r⃗)

)
ψ∗
1(r⃗) exp

(
iq

ℏ
χ2(r⃗)

)
ψ2(r⃗) (6.78)

= exp

(
iq

ℏ
(χ2(r⃗)− χ1(r⃗))

)
ψ∗
1(r⃗)ψ2(r⃗) (6.79)

= exp

(
i
qΦ

ℏ

)
ψ∗
1(r⃗)ψ2(r⃗), (6.80)

où nous avons utilisé l’éq. 6.76. En plus de la phase dépendant de x intervenant dans l’expérience
d’Young habituelle, il existe donc un déphasage supplémentaire prenant la valeur

δφ =
qΦ

ℏ
, (6.81)

où Φ est le flux total du champ magnétique. Les franges d’Young donneront ainsi un signal en
cos(∆kxx+ δφ), avec un déphasage δφ directement proportionnel au flux du champ magnétique.

En conclusion, on observe un décalage des franges d’Young bien que les électrons ne soient à
aucun moment directement soumis au champ magnétique. Remarquons que la raison pour laquelle
les transformations de jauge associées aux régions (1) et (2) sont distinctes est directement liée à la
topologie du problème, caractérisée par la zone occupée par le solénoïde au milieu de l’interféromètre.
L’effet Aharonov-Bohm rentre ainsi dans le cadre plus général des phases dites géométriques [15, 16].



Chapitre 7

De l’addition de deux spins 1/2 aux
horloges atomiques

Avant d’entreprendre la lecture de ce chapitre, il est recommandé d’avoir une bonne connaissance
des propriétés d’une particule de spin 1/2 (voir PHY3X061, chapitre 7).

De même que l’impulsion d’un système composite est la somme des impulsions des différents
constituants du système, le moment cinétique est lui aussi égal à la somme des moments cinétiques
des différentes parties du système. La démonstration est similaire à celle qui a été donnée en 2.4.4
pour l’impulsion. Considérons ainsi un système composite constitué deN sous-systèmes, le système n
étant décrit à l’aide d’un espace de Hilbert E(n). Dans l’espace produit tensoriel E(1)⊗E(2)⊗· · ·⊗E(N),
l’opérateur associé à une rotation définie par le vecteur α⃗ s’obtient en effet en écrivant la composition
des rotations portant sur chaque sous-système n, ce qui nous donne

R̂α⃗ = e−i
ˆ⃗
J1·α⃗/ℏe−i

ˆ⃗
J2·α⃗/ℏ · · · e−i

ˆ⃗
JN ·α⃗/ℏ = e−i

ˆ⃗
J ·α⃗/ℏ (7.1)

où l’on a utilisé le fait que pour n ̸= m les opérateurs ˆ⃗
Jn et ˆ⃗

Jm commutent entre eux (car ils agissent
dans des espaces différents). On a également introduit le moment cinétique total

ˆ⃗
J =

N∑
n=1

ˆ⃗
Jn. (7.2)

Bien entendu, comme ˆ⃗
J est le générateur infinitésimal des rotations du système complet, on sait

qu’il obéit aux relations de commutation habituelles, soit ˆ⃗
J× ˆ⃗

J = iℏ ˆ⃗
J . On peut également le vérifier

explicitement :

ˆ⃗
J × ˆ⃗

J =
∑
n,m

ˆ⃗
Jn ×

ˆ⃗
Jm (7.3)

=
∑
n

ˆ⃗
Jn ×

ˆ⃗
Jn +

∑
n<m

(
ˆ⃗
Jn ×

ˆ⃗
Jm +

ˆ⃗
Jm ×

ˆ⃗
Jn). (7.4)

Sachant que [
ˆ⃗
Jn,

ˆ⃗
Jm] = 0 pour n ̸= m, on peut écrire comme dans un produit vectoriel classique
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ˆ⃗
Jm ×

ˆ⃗
Jn = − ˆ⃗

Jn ×
ˆ⃗
Jm, ce qui permet d’éliminer la somme sur n < m dans l’expression ci-dessus.

Sachant en outre que ˆ⃗
Jn ×

ˆ⃗
Jn = iℏ ˆ⃗

Jn, on retrouve bien la relation ˆ⃗
J × ˆ⃗

J = iℏ ˆ⃗
J .

Dans le cas où le système est invariant par rotation, on sait que l’on pourra diagonaliser dans
une même base les observables Ĥ, Ĵ2 et Ĵz. Ce sont donc bien les états propres du moment cinétique
total qui vont nous intéresser dans une telle situation. La démarche consistant à savoir déterminer
les valeurs propres admissibles du moment cinétique total lorsqu’on connaît celles de ses constituants
individuels est appelée addition des moments cinétiques. Dans ce chapitre, nous allons développer
cette démarche dans le cas de deux particules de spin 1/2, avant d’appliquer les résultats obtenus
au niveau fondamental de l’atome d’hydrogène.

7.1 Addition de deux spins 1/2

Soit deux particules (a) et (b) dont nous ne considérons que les degrés de liberté de spin. L’espace
de Hilbert EH = E(a)spin ⊗ E

(b)
spin est donc un espace de dimension 2 × 2 = 4. On appelle ˆ⃗

Sa et ˆ⃗
Sb les

observables associées au spin de chacune des deux particules. On décrit le système dans la base
tensorielle {|++⟩ , |+−⟩ , |−+⟩ , |−−⟩}, construite à l’aide des vecteurs propres des observables Ŝaz
et Ŝbz. Le moment cinétique total s’écrit alors

ˆ⃗
S =

ˆ⃗
Sa +

ˆ⃗
Sb. (7.5)

Comme montré plus haut, il s’agit d’une observable de type moment cinétique, obéissant à la relation
ˆ⃗
S × ˆ⃗

S = iℏ ˆ⃗S. Nous savons donc d’après les résultats du chapitre 4 que les valeurs propres de Ŝ2

et Ŝz s’écrivent respectivement s(s + 1)ℏ2 et mℏ, où s et m sont des nombres a priori entiers ou
demi-entiers. Cherchons maintenant à déterminer plus précisément les valeurs effectivement prises
par s et m.

Les valeurs propres les plus faciles à déterminer sont évidemment celles de l’observable Ŝz =

Ŝaz + Ŝbz, car la base tensorielle est déjà une base propre de cette observable. On a en effet

Ŝz |++⟩ = Ŝaz |+⟩ ⊗ |+⟩+ |+⟩ ⊗ Ŝbz |+⟩ =
ℏ
2
|+⟩ ⊗ |+⟩+ |+⟩ ⊗ ℏ

2
|+⟩ = ℏ |++⟩ (7.6)

Ŝz |+−⟩ = Ŝaz |+⟩ ⊗ |−⟩+ |+⟩ ⊗ Ŝbz |−⟩ =
ℏ
2
|+⟩ ⊗ |−⟩+ |+⟩ ⊗ −ℏ

2
|−⟩ = 0 (7.7)

Ŝz |−+⟩ = Ŝaz |−⟩ ⊗ |+⟩+ |−⟩ ⊗ Ŝbz |+⟩ =
−ℏ
2
|−⟩ ⊗ |+⟩+ |−⟩ ⊗ ℏ

2
|+⟩ = 0 (7.8)

Ŝz |−−⟩ = Ŝaz |−⟩ ⊗ |−⟩+ |−⟩ ⊗ Ŝbz |−⟩ =
−ℏ
2
|−⟩ ⊗ |−⟩+ |−⟩ ⊗ −ℏ

2
|−⟩ = −ℏ |−−⟩ (7.9)

On en déduit que les valeurs propres de Ŝz sont bien de la forme mℏ, où m peut prendre les valeurs
−1, 0 ou 1. La valeur propre associée à m = 1 est non dégénérée, le vecteur propre correspondant
étant l’état |++⟩. De même, la valeur propre associée à m = −1 est non dégénérée, le vecteur
propre correspondant étant l’état |−−⟩. Quant à l’espace propre associée à la valeur propre 0, il est
de dimension 2 et est engendré par les états |+−⟩ et |−+⟩. Enfin, comme nous savons que s −m
est entier, nous pouvons en déduire que s sera un nombre entier.

Considérons un état propre commun de Ŝ2 et Ŝz associé aux valeurs propres s(s+ 1)ℏ2 et mℏ.
Cela signifie que l’espace propre Es,m associé à ce couple (s,m) est de dimension au moins égale à 1.
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Comme nous avons vu au chapitre 4 que les espaces propres associés aux 2s + 1 valeurs possibles
de m sont de même dimension, cela signifie que l’espace propre de Ŝ2 associé à la valeur propre
s(s+ 1)ℏ2 est de dimension au moins égale à 2s+ 1. Cette valeur est nécessairement inférieure ou
égale à la dimension totale de l’espace, soit 2s + 1 ≤ 4. On en déduit que s ≤ 3/2, soit s = 0 ou
s = 1 puisque s est entier. La seule possibilité pour l’état |++⟩ est donc d’appartenir à l’espace
E1,1 (soit s = m = 1). La valeur propre de Ŝz associée à m = 1 étant non dégénérée, on peut en
déduire que E1,1 est un espace de dimension 1. Il en va de même pour E1,0 et E1,−1, puisque nous
savons que la dimension de l’espace Es,m ne dépend que de s. Il nous manque un quatrième vecteur
propre commun pour engendrer notre espace de dimension 4. Ce dernier correspond nécessairement
à s = 0, qui est la seule autre valeur possible pour s. Nous en déduisons que l’espace E0,0 est lui aussi
de dimension 1. Les 4 espaces propres communs étant de dimension 1, nous pouvons en conclure
que Ŝ2 et Ŝz forment un ECOC. Il ne nous reste plus qu’à construire explicitement les 4 vecteurs
propres communs aux deux observables Ŝ2 et Ŝz, qui seront notés |s,m⟩, avec s = 1 (m = −1, 0, 1)
et s = 0 (et m = 0). Pour cela, considérons l’observable

Ŝ2 =
(
ˆ⃗
Sa +

ˆ⃗
Sb

)2
= Ŝ2

a + Ŝ2
b + 2

ˆ⃗
Sa ·

ˆ⃗
Sb. (7.10)

ainsi que les observables Ŝ+ et Ŝ−, définies par

Ŝ± = Ŝx ± iŜy = Ŝa± + Ŝb±. (7.11)

En reformulant l’éq. 4.15 à l’aide des notations de ce chapitre, nous pouvons écrire

Ŝ−Ŝ+ = Ŝ2 − Ŝ2
z − ℏŜz (7.12)

soit
Ŝ2 = Ŝ−Ŝ+ + Ŝ2

z + ℏŜz. (7.13)

Or
Ŝ+ |++⟩ = Ŝa+ |+⟩ ⊗ |+⟩+ |+⟩ ⊗ Ŝb+ |+⟩ = 0. (7.14)

Sachant en outre que |++⟩ est un vecteur propre de Ŝz pour la valeur propre ℏ, l’éq. 7.13 nous
permet d’écrire

Ŝ2 |++⟩ = 2ℏ2 |++⟩ , (7.15)

ce qui confirme que l’état |++⟩ est bien un vecteur propre commun aux deux observables Ŝ2 et
Ŝz pour les valeurs propres s(s + 1)ℏ2 et mℏ, avec s = m = 1. L’espace propre commun étant de
dimension 1, il est légitime de noter ce vecteur |s = 1,m = 1⟩, ou plus simplement |1, 1⟩, puisqu’il
est entièrement déterminé (à une phase près) par la donnée des deux valeurs propres. Nous avons
ainsi la relation

|1, 1⟩ = |++⟩ . (7.16)

On peut ensuite construire les vecteurs propres de la base standard à l’aide de la relation de récur-
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rence donnée par l’éq. 4.21, qui nous donne ici

Ŝ− |s,m⟩ =
√
s(s+ 1)−m(m− 1)ℏ |s,m− 1⟩ . (7.17)

Nous allons appliquer cette expression pour s = 1 et m = 1 puis m = 0, de sorte que la quantité
s(s+ 1)−m(m− 1) sera toujours égale à 2. On en déduit

|1, 0⟩ = 1√
2ℏ
Ŝ− |1, 1⟩ =

1√
2ℏ

(
Ŝa− |+⟩ ⊗ |+⟩+ |+⟩ ⊗ Ŝb− |+⟩

)
=
|+−⟩+ |−+⟩√

2
. (7.18)

De même,

|1,−1⟩ = 1√
2ℏ
Ŝ− |1, 0⟩ =

1√
2ℏ
Ŝa− |+⟩ ⊗ |−⟩+ |−⟩ ⊗ Ŝb− |+⟩√

2
= |−−⟩ . (7.19)

Nous avons ainsi construit les trois vecteurs |++⟩ , (|+−⟩ + |−+⟩)/
√
2, |−−⟩ de la base standard

engendrant le sous-espace propre de Ŝ2 pour la valeur propre 2ℏ2. Le vecteur orthogonal à ce sous-
espace, (|+−⟩−|−+⟩)/

√
2, est nécessairement vecteur propre de Ŝ2 pour s = 0, ce que nous pouvons

facilement vérifier. En effet

Ŝ+
|+−⟩ − |−+⟩√

2
=
|+⟩ ⊗ Ŝb+ |−⟩ − Ŝa+ |−⟩ ⊗ |+⟩√

2
=

ℏ |++⟩ − ℏ |++⟩√
2

= 0. (7.20)

Par ailleurs, l’état (|+−⟩− |−+⟩)/
√
2 étant vecteur propre de Ŝz pour la valeur propre 0, l’éq. 7.13

nous permet d’écrire

Ŝ2 |+−⟩ − |−+⟩√
2

=
(
Ŝ−Ŝ+ + Ŝ2

z + ℏŜz
) |+−⟩ − |−+⟩√

2
= 0. (7.21)

L’état que nous avons identifié est donc bien un vecteur propre de Ŝ2 pour la valeur propre 0, que
l’on notera |0, 0⟩. On peut finalement résumer l’addition de deux spins 1/2 de la manière suivante.

Soit ˆ⃗
S =

ˆ⃗
Sa +

ˆ⃗
Sb le moment cinétique résultant de l’addition de deux spins 1/2. Les

valeurs propres de l’observable Ŝ2 sont de la forme s(s + 1)ℏ2, avec s = 0 ou s = 1.
On appelle base couplée l’ensemble des vecteurs propres communs de Ŝ2 et Ŝz, qui
s’écrivent dans la base tensorielle selon les expressions

|0, 0⟩ = |s = 0,m = 0⟩ = |+−⟩ − |−+⟩√
2

(7.22)

|1, 1⟩ = |s = 1,m = 1⟩ = |++⟩ (7.23)

|1, 0⟩ = |s = 1,m = 0⟩ = |+−⟩+ |−+⟩√
2

(7.24)

|1,−1⟩ = |s = 1,m = −1⟩ = |−−⟩ (7.25)

L’état |0, 0⟩ est appelé état singulet tandis que les trois états correspondant à s = 1

sont appelés états triplets.
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7.2 Addition de deux moments cinétiques quelconques

La démarche que nous venons de mettre en œuvre pour l’addition de deux spins 1/2 peut
être généralisée au cas de deux moments cinétiques arbitraires, ˆ⃗

J1 et ˆ⃗
J2, agissant respectivement

dans les espaces E(1) et E(2). Les opérateurs Ĵ2
1 , Ĵ1z, Ĵ2

2 et Ĵ2z commutant entre eux, on peut alors
construire une base dite tensorielle, {|n1, j1,m1⟩⊗|n2, j2,m2⟩}, engendrant l’espace produit tensoriel
EH = E(1) ⊗ E(2) et associée aux valeurs propres respectives j1(j1 + 1)ℏ2, m1ℏ, j2(j2 + 1)ℏ2 et m2ℏ
pour les quatre opérateurs Ĵ2

1 , Ĵ1z, Ĵ2
2 et Ĵ2z. Ces derniers ne constituant pas obligatoirement un

ECOC, les nombres n1 et n2 sont a priori nécessaires.

Considérons maintenant le moment cinétique total, ˆ⃗
J =

ˆ⃗
J1+

ˆ⃗
J2. Avant de diagonaliser Ĵ2 et Ĵz,

remarquons que ces deux opérateurs commutent avec Ĵ2
1 et Ĵ2

2 . En effet, Ĵ2
1 commute d’une part avec

toutes les composantes cartésiennes de ˆ⃗
J1 (voir 4.1.3) et d’autre part avec toutes les composantes

cartésiennes de ˆ⃗
J2 (qui agit dans un autre espace). L’observable Ĵ2

1 commute donc avec toutes les
composantes cartésiennes de ˆ⃗

J =
ˆ⃗
J1+

ˆ⃗
J2. Il en va évidemment de même pour l’observable Ĵ2

2 . Les 4
observables Ĵ2

1 , Ĵ2
2 , Ĵ2 et Ĵz commutent donc entre elles et peuvent être diagonalisées simultanément.

On obtient ainsi une base couplée que l’on peut noter {|n1, n2, j1, j2, j,m⟩}, et obéissant aux relations

Ĵ2
1 |n1, n2, j1, j2, j,m⟩ = j1(j1 + 1)ℏ2 |n1, n2, j1, j2, j,m⟩ (7.26)

Ĵ2
2 |n1, n2, j1, j2, j,m⟩ = j2(j2 + 1)ℏ2 |n1, n2, j1, j2, j,m⟩ (7.27)

Ĵ2 |n1, n2, j1, j2, j,m⟩ = j(j + 1)ℏ2 |n1, n2, j1, j2, j,m⟩ (7.28)

Ĵz |n1, n2, j1, j2, j,m⟩ = mℏ |n1, n2, j1, j2, j,m⟩ (7.29)

L’annexe B.13 montre que, pour des valeurs données des nombres j1 et j2, on a

j ∈ {|j1 − j2|, |j1 − j2|+ 1, · · · , j1 + j2} (7.30)

m ∈ {−j,−j + 1, · · · , j} (7.31)

La démonstration de ce résultat, détaillée dans l’annexe B.13, consiste à partir de l’état de
moment cinétique maximum

|n1, n2, j1, j2, j = j1 + j2,m = j1 + j2⟩ = |n1, j1,m1 = j1⟩ ⊗ |n2, j2,m2 = j2⟩ (7.32)

puis à construire les états |n1, n2, j1, j2, j = j1 + j2,m⟩ par action répétée de l’opérateur Ĵ−. On
construit alors l’état |n1, n2, j1, j2, j = j1 + j2 − 1,m = j1 + j2 − 1⟩, défini comme le seul état propre
de Ĵz pour la valeur propre m = j1 + j2 − 1 qui soit orthogonal à l’état associé à j = j1 + j2 et
m = j1+ j2−1. On itère ensuite cette procédure jusqu’à construire tous les états de la base couplée
jusqu’à j = |j1 − j2|.

Ce résultat généralise ce que nous avons établi en 7.1 dans le cas de deux spins 1/2, i.e. pour
j1 = j2 = 1/2, où nous avions effectivement trouvé que s, associé au moment cinétique total, pouvait
prendre les valeurs s = 1 = 1/2 + 1/2 et s = 0 = |1/2− 1/2|.
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7.3 Interaction spin-orbite

Lors du traitement de l’atome d’hydrogène (chapitre 5), nous n’avons pas tenu compte du degré
de liberté de spin de l’électron. La première conséquence de la prise en compte du spin est a priori
de multiplier par deux la dégénérescence de tous les niveaux que nous avons identifiés, la portant
ainsi à 2n2 pour le niveau d’énergie En. On écrira ainsi

Ĥ0 |n, ℓ,m⟩ ⊗ |±⟩ = En |n, ℓ,m⟩ ⊗ |±⟩ , (7.33)

où En = −EI/n2. Mais il y a plus. En fait, l’hamiltonien Ĥ0 ne décrit pas parfaitement le système
complet et il faut lui ajouter un terme supplémentaire faisant intervenir explicitement le spin de
l’électron en raison d’effets relativistes que nous avons négligés jusqu’ici. En développant l’équation
de Dirac (qui généralise l’équation de Schrödinger dans le cas relativiste), on obtient en effet le
terme correctif suivant, venant s’ajouter à Ĥ0 :

ŴSO =
1

2m2
ec

2

1

r̂

dV

dr
(r̂)

ˆ⃗
L · ˆ⃗Se, (7.34)

où ˆ⃗
Se est l’observable décrivant le spin de l’électron et V (r) est le potentiel central liant l’électron au

noyau. Ce terme correctif est appelé interaction spin-orbite car il fait intervenir le produit entre le
spin et le moment cinétique orbital de l’électron. Sans chercher à démontrer l’expression ci-dessus,
ce qui sortirait du cadre non relativiste de ce cours, essayons d’en donner une interprétation au
moins qualitative. Partons d’une vision très naïve dans laquelle l’électron tourne autour du noyau
selon une trajectoire circulaire. Mais dans le référentiel de l’électron, c’est au contraire le noyau
qui semble tourner autour de l’électron. L’électron est ainsi au centre d’une spire de courant, ce
qui résulte en un champ magnétique apparent B⃗ proportionnel à la vitesse apparente du noyau,
c’est à dire la vitesse v de l’électron dans le référentiel du noyau. Ce champ magnétique apparent
donnera lieu à une énergie magnétique W = −µ⃗e · B⃗, où µ⃗e = γeS⃗e est le moment magnétique
de l’électron. On peut raffiner un peu cette approche en utilisant la transformation de Lorentz du
champ électromagnétique (voir PHY431). En se plaçant dans le référentiel de l’électron, que l’on
supposera galiléen et animé d’une vitesse v⃗, l’approximation non relativiste de la transformation de
Lorentz nous donne le champ magnétique

B⃗ = − v⃗
c2
× E⃗, (7.35)

où E⃗ est le champ électrique dans le référentiel du noyau. Pour une énergie potentielle V (r) =

−qU(r) ne dépendant que de la distance r au noyau, le champ électrique s’écrit

E⃗ = −dU
dr

r⃗

r
=

1

q

dV

dr

r⃗

r
. (7.36)

On en déduit le champ magnétique

B⃗ = − v⃗
c2
× 1

q

dV

dr

r⃗

r
=

1

qmec2
1

r

dV

dr
(r⃗ ×mev⃗) =

1

qmec2
1

r

dV

dr
L⃗. (7.37)
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En utilisant γe ≈ −q/me, on en déduit l’énergie d’interaction

W = −µ⃗e · B⃗ =
q

me
S⃗e ·

1

qmec2
1

r

dV

dr
L⃗ =

1

m2
ec

2

1

r

dV

dr
L⃗ · S⃗e (7.38)

ce qui nous redonne à un facteur 2 près l’expression annoncée plus haut. Ce facteur 2 peut être
attribué au fait que le référentiel de l’électron n’est évidemment pas un référentiel galiléen, de sorte
que l’éq.7.35 n’est pas exacte, même si l’ordre de grandeur reste correct.

Cherchons à évaluer l’ordre de grandeur de WSO dans le cas de l’atome d’hydrogène, pour lequel
V (r) = −e2/r et dV/dr = e2/r2 ∼ e2/a21, où a1 est le rayon de Bohr. Le rapport entre le terme
d’interaction spin-orbite et l’énergie d’ionisation de l’hydrogène EI (donnée par l’éq. 5.9) s’écrit
alors

WSO

EI
∼

e2ℏ2
m2

ec
2a31

ℏ2
mea21

∼ e2

mec2a1
=

e4

ℏ2c2
= α2 ≈

(
1

137

)2

∼ 10−4, (7.39)

où nous avons utilisé l’éq. 5.7 pour exprimer a1 et l’éq. 5.5 pour faire apparaître la constante
de structure fine α. Le terme d’interaction spin-orbite, de l’ordre du meV, est donc très inférieur
aux écarts entre les niveaux d’énergie de Ĥ0, ce qui nous permettra d’utiliser la méthode des
perturbations pour traiter l’effet de ŴSO.

Une conséquence de la présence du terme spin-orbite dans l’hamiltonien total Ĥ = Ĥ0 + ŴSO

est que ce dernier ne commute plus avec le moment cinétique orbital ˆ⃗
L, puisque les composantes

cartésiennes de ˆ⃗
L ne commutent pas entre elles. Il nous faut maintenant considérer le moment

cinétique total ˆ⃗
J =

ˆ⃗
L +

ˆ⃗
Se, qui correspond au véritable générateur infinitésimal des rotations du

système complet, prenant en compte l’ensemble des degrés de liberté (externes et de spin). Le carré
du moment cinétique total s’écrit

Ĵ2 = L̂2 + Ŝ2
e + 2

ˆ⃗
L · ˆ⃗Se (7.40)

ce qui permet d’exprimer le produit scalaire sous la forme

ˆ⃗
L · ˆ⃗Se =

1

2

(
Ĵ2 − L̂2 − Ŝ2

e

)
. (7.41)

Cette expression met explicitement en évidence le fait que le terme d’interaction spin-orbite commute
avec ˆ⃗

J , ce qui n’est pas surprenant compte tenu de l’invariance par rotation du système. Compte
tenu des résultats énoncés plus haut sur l’addition des moments cinétiques, nous savons que les
valeurs propres de Ĵ2 seront de la forme j(j + 1)ℏ2, avec j = ℓ ± 1/2. On pourra ainsi aisément
diagonaliser la restriction de ŴSO dans les sous-espaces propres de Ĥ0.

Dans le cas de l’hydrogène, le niveau fondamental 1s de l’hamiltonien Ĥ0 est doublement dégé-
néré, compte tenu du degré de liberté de spin. Une base de cet espace de dimension 2 peut s’écrire
{|1, 0, 0⟩ ⊗ |+⟩ , |1, 0, 0⟩ ⊗ |−⟩}. Ces deux états, correspondant à ℓ = 0, sont vecteurs propres des
opérateurs L̂x, L̂y et L̂z pour la valeur propre zéro, d’où l’on peut déduire ŴSO |1, 0, 0⟩ ⊗ |±⟩ = 0.
En d’autres termes, l’interaction spin orbite est sans effet sur ces états qui restent états propres de
l’hamiltonien total Ĥ = Ĥ0 + ŴSO. Il nous faudra prendre en compte le couplage avec le spin du
noyau pour observer une levée de dégénérescence, phénomène que l’on appelle structure hyperfine.
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7.4 Structure hyperfine de l’hydrogène

Considérons maintenant une application importante de l’addition de deux spins 1/2, avec l’étude
de la structure hyperfine du niveau fondamental de l’atome d’hydrogène. Pour cela, nous devons
prendre en compte un degré de liberté supplémentaire, à savoir le spin du noyau. Dans le cas
de l’atome d’hydrogène, le noyau est un proton qui porte donc un spin 1/2. Ce degré de liberté
supplémentaire, combiné au spin de l’électron, donnera lieu à une interaction entre les dipôles
magnétiques du proton et de l’électron. L’énergie d’interaction magnétique entre deux tels dipôles
séparés d’une distance r s’écrit

WHF =
µ0
4πr3

(µ⃗e · µ⃗p − 3(µ⃗e · u⃗)(µ⃗p · u⃗))−
2µ0
3
µ⃗e · µ⃗pδ(r⃗) (7.42)

où µ0 est la perméabilité magnétique du vide, tandis que µ⃗e et µ⃗p représentent les moments magné-
tiques de l’électron et du proton. Enfin, u⃗ est un vecteur unitaire porté par le vecteur r⃗ séparant
les deux dipôles. Remarquons la présence du terme de contact proportionnel à la fonction de Dirac
δ(r⃗), qu’il est essentiel de conserver en mécanique quantique car la probabilité que l’électron et le
proton se trouvent au même point est non nulle (dans le cas d’un état de moment cinétique orbital
nul comme l’état fondamental). En termes d’ordre de grandeur, on peut écrire

WHF ∼ µ0
µeµp
a31
∼ µ0

q2ℏ2

mempa31
∼ 10−5 eV. (7.43)

L’interaction hyperfine, de l’ordre de 10 µeV, est donc encore deux ordres de grandeurs plus petite
que l’interaction spin-orbite, qui était elle-même quatre ordres de grandeurs plus petite que l’écart
entre les niveaux d’énergie de Ĥ0. Il est donc parfaitement légitime de traiter l’impact de ŴHF à
l’aide de la méthode des perturbations, ce que nous allons faire dans le cas du niveau fondamental
d’énergie E1 = −EI . Il nous faut donc diagonaliser la restriction de l’observable ŴHF au sous-espace
de dimension 4 engendré par les états |1, 0, 0⟩ ⊗ |e :±⟩ ⊗ |p :±⟩. Comme le montre le calcul reporté
en annexe B.12, on obtient alors un opérateur appelé Ĥ1 agissant dans notre espace de dimension
4, qui est simplement proportionnel au produit scalaire entre les deux observables de spin. On peut
ainsi écrire

Ĥ1 =
A

ℏ2
ˆ⃗
Se ·

ˆ⃗
Sp (7.44)

où A ≈ 5.87µeV, ce qui correspond bien à l’ordre de grandeur annoncé plus haut. Considérons
maintenant le moment cinétique total ˆ⃗

S =
ˆ⃗
Se +

ˆ⃗
Sp, qui peut être considéré comme le générateur

infinitésimal des rotations du système si on se limite aux degrés de liberté de spin. En procédant
comme pour l’interaction spin-orbite, on peut écrire

Ŝ2 = Ŝ2
e + Ŝ2

p + 2
ˆ⃗
Se ·

ˆ⃗
Sp, (7.45)

ce qui nous permet d’écrire le produit scalaire directement à l’aide de Ŝ2,

ˆ⃗
Se ·

ˆ⃗
Sp =

1

2

(
Ŝ2 − Ŝ2

e − Ŝ2
p

)
. (7.46)
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D’après l’éq. 4.24, on a pour un spin 1/2 la relation

Ŝ2
e = Ŝ2

p =
3

4
ℏ2Î (7.47)

ce qui permet d’écrire

Ĥ1 = A

(
1

2

Ŝ2

ℏ2
− 3

4
Î

)
. (7.48)

L’hamiltonien de structure hyperfine s’exprime donc directement en fonction de l’observable Ŝ2.
Nous pouvons ainsi tirer parti de notre travail préalable sur l’addition de deux spins 1/2, la base
couplée constituant à l’évidence une base propre de l’hamiltonien. On peut alors écrire

Ĥ1 |s,m⟩ = A

(
s(s+ 1)

2
− 3

4

)
|s,m⟩ . (7.49)

ou encore
Ĥ1 |1,m⟩ =

A

4
|1,m⟩ et Ĥ1 |0, 0⟩ = −

3A

4
|0, 0⟩ . (7.50)

Comme représenté Fig. 7.1, le niveau fondamental de l’atome d’hydrogène est ainsi clivé en deux
sous-niveaux. Le sous-niveau singulet, non dégénéré, qui est le véritable état fondamental de notre
système, et le sous-niveau triplet, dégénéré trois fois. L’amplitude du clivage, égale à A ≈ 5.87, µeV,

Diagonalisation de l’hamiltonien de structure hyperfine

Niveau 1s
Triplet

Singulet

Durée de vie :

Figure 7.1 – Structure hyperfine du niveau fondamental de l’atome d’hydro-
gène.

est extrêmement faible. Elle correspond à une fréquence de transition ν = A/h ≈ 1.42GHz, soit
une longueur d’onde λ = c/ν ≈ 21 cm. Elle donne lieu à ce que l’on appelle la raie à 21 cm de
l’hydrogène, qui est notamment utilisée en radioastronomie pour observer l’hydrogène interstellaire.

En laboratoire, on pourra observer la transition hyperfine en faisant interagir de l’hydrogène avec
un champ magnétique oscillant de fréquence proche de ν = A/h, de façon similaire à la résonance
magnétique nucléaire (RMN). Considérons ainsi un champ magnétique oscillant B⃗1(t) orienté selon
l’axe z. L’hamiltonien du système s’écrit alors

Ĥ(t) = Ĥ1 + Ŵ (t) (7.51)

où
Ŵ (t) = − ˆ⃗µ · B⃗1(t) = −

(
γeŜez + γpŜpz

)
B1(t). (7.52)

Or le rapport gyromagnétique, inversement proportionnel à la masse, est environ trois ordres de
grandeur plus petit pour le proton que pour l’électron. Il est donc légitime de le négliger et d’écrire
simplement

Ŵ (t) = −γeŜezB1(t). (7.53)
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Dans la base couplée, nous pouvons écrire

Ŝez |1, 1⟩ = Ŝez |++⟩ = ℏ
2
|++⟩ = ℏ

2
|1, 1⟩ (7.54)

Ŝez |1,−1⟩ = Ŝez |−−⟩ = −
ℏ
2
|−−⟩ = −ℏ

2
|1,−1⟩ (7.55)

ainsi que

Ŝez |1, 0⟩ = Ŝez
|+−⟩+ |−+⟩√

2
=

ℏ
2

|+−⟩ − |−+⟩√
2

=
ℏ
2
|0, 0⟩ (7.56)

Ŝez |0, 0⟩ = Ŝez
|+−⟩ − |−+⟩√

2
=

ℏ
2

|+−⟩+ |−+⟩√
2

=
ℏ
2
|1, 0⟩ (7.57)

Dans la base {|1, 1⟩ , |1,−1⟩ , |1, 0⟩ , |0, 0⟩}, la matrice de l’opérateur Ŝez s’écrit alors

Ŝez =
ℏ
2


1 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 0

 . (7.58)

Cette matrice est ainsi bloc-diagonale, ce qui est donc aussi le cas de l’hamiltonien total Ĥ(t). Il
est donc possible de traiter indépendamment l’évolution dans les sous-espaces associés à chacun des
blocs, de sorte que les seules transitions possibles interviendront entre les deux états |1, 0⟩ et |0, 0⟩.
Dans ce sous espace de dimension 2, la matrice de la restriction de Ŝez s’écrit simplement

Ŝez =

(
0 ℏ

2
ℏ
2 0

)
. (7.59)

Cette matrice est exactement identique à celle de l’observable Ŝx pour un spin 1/2. L’effet sur notre
système d’un champ magnétique oscillant selon l’axe z est donc strictement équivalent à celui d’un
champ oscillant selon l’axe x sur une particule de spin 1/2 (dont on aurait levé la dégénérescence
à l’aide d’un champ statique orienté selon l’axe z). On se ramène ainsi à un problème de RMN.

Niveau 1s
Triplet

Singulet

Figure 7.2 – Couplage entre les deux niveaux |0, 0⟩ et |1, 0⟩ sous l’action d’un
champ magnétique orienté selon l’axe z et oscillant à une pulsation ω proche de
A/ℏ.

On en déduit que l’on pourra effectuer une transition efficace entre les deux niveaux |0, 0⟩ et |1, 0⟩
à condition que ω soit proche de A/ℏ (voir PHY3X061), comme représenté sur la Fig. 7.2. Cela
revient à dire que l’énergie ℏω des photons doit être de l’ordre de la différence d’énergie A entre
les deux niveaux. Ce phénomène de résonance est utilisé notamment dans les masers à hydrogène,
ainsi que dans les horloges atomiques.
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7.5 Horloges atomiques

Le clivage hyperfin du niveau fondamental n’est pas limité au seul cas de l’hydrogène et se
rencontre dans tout atome comportant un spin nucléaire non nul. En particulier, dans le cas des
alcalins (atomes situés dans la première colonne du tableau périodique des éléments), la situation est
très similaire à celle de l’hydrogène. Il existe en effet une interaction entre le moment magnétique
du noyau et celui de l’électron de valence célibataire. On obtient ainsi une structure hyperfine
parfaitement similaire à celle de l’hydrogène, donnant lieu à deux sous-niveaux selon les deux valeurs
possibles du moment cinétique total. La fréquence de transition hyperfine est ainsi une grandeur
caractéristique de l’élément considéré, connue avec une précision remarquable, comme le montre le
tableau ci-dessous.

Atome Fréquence (Hz)

Hydrogène 1H 1 420 405 751.768
Rubidium 87Rb 6 834 682 610.904
Césium 133Cs 9 192 631 770

On pourra remarquer que la fréquence de transition hyperfine du césium 133 présente une
caractéristique particulière, à savoir qu’il s’agit d’un nombre entier, et même multiple de 10 Hz. La
raison en est fort simple. Depuis 1967, la seconde est la durée de 9 192 631 770 périodes de la radiation
correspondant à la transition entre les deux niveaux hyperfins de l’état fondamental de l’atome de
césium 133, selon la définition officielle du Bureau International des Poids et Mesures. La valeur de
la transition hyperfine du césium 133 n’est donc pas une mesure mais bien une définition. La mesure
expérimentale de cette fréquence de transition permettra ainsi de disposer d’un étalon primaire de
fréquence. Un étalon secondaire sera obtenu en mesurant la fréquence de transition hyperfine d’un
autre élément, comme par exemple le rubidium 87, dont la fréquence de transition est connue avec
une excellente précision.

Les horloges atomiques sont des dispositifs permettant de mesurer avec une précision extrême
la fréquence de transition hyperfine d’un élément donné. Leurs nombreuses applications portent
notamment sur la synchronisation de réseaux informatiques ou de télécommunication, sur des sys-
tèmes de navigation par satellite comme le GPS ou Galileo, sur la synchronisation d’interféromètres
géants en radio-astronomie, ou encore sur des tests de physique fondamentale (relativité restreinte,
relativité générale et variation des constantes fondamentales).

La Fig. 7.3 représente un exemple d’horloge atomique à rubidium 87. Une telle horloge repose
sur une cavité micro-onde contenant du rubidium 87 à l’état gazeux, dans laquelle est injectée
une onde radio de fréquence proche de la transition hyperfine, soit environ 6.83 GHz. Si elle est
convenablement accordée à la transition, cette onde induira des oscillations de Rabi entre les deux
niveaux hyperfins. Pour évaluer l’efficacité du couplage, on mesure la transmission d’un faisceau
lumineux produit par une lampe à rubidium 87, qui émet un spectre constitué de deux raies très fines
résultant de la désexcitation d’un niveau électronique excité |e⟩ vers les deux niveaux hyperfins du
niveau fondamental. Une cellule de rubidium 85, dont le spectre d’absorption est légèrement décalé
par rapport au rubidium 87, permet d’éliminer l’une des deux raies lumineuses. Ainsi, ce faisceau ne
sera absorbé que par un seul des deux niveaux hyperfin, qu’il finira par dépeupler, donnant lieu à une
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Synthétiseur

micro-onde

RF (6.834682611 GHz)
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87Rb 85Rb Lampe 87Rb

Figure 7.3 – Schéma de principe d’une horloge à rubidium 87.

diminution de l’absorption. Mais si l’onde radio est correctement accordée, les oscillations de Rabi
viendront repeupler ce niveau, augmentant ainsi l’absorption du faisceau lumineux. C’est ce que
l’on appelle la méthode de double résonance, due à Brossel et Kastler [17, 18]. En utilisant comme
signal d’erreur la puissance lumineuse transmise mesurée sur une photodiode, il est alors possible
d’asservir très précisément la fréquence d’un oscillateur à quartz qui constituera le signal de sortie
de l’horloge. Cette architecture permet de disposer d’horloges commerciales à faible coût, de l’ordre
d’un millier d’euros, disposant d’une précision relative de l’ordre de 10−11. Des dispositifs beaucoup
plus précis ont également été développés, notamment à l’aide de systèmes interférométriques et
d’atomes froids. Ces horloges atomiques sont elles-mêmes en train d’être détrônées par les horloges
optiques, qui utilisent des fréquences de transition beaucoup plus élevées (voir contrôle X2016).



Chapitre 8

Particules indiscernables

Il va de soi que deux électrons sont deux particules parfaitement identiques, de même que deux
protons ou deux neutrons. En d’autres termes, aucune expérience ne pourra faire la distinction
entre deux électrons donnés. Cette propriété d’apparence anodine aura des conséquences majeures,
avec par exemple le principe d’exclusion de Pauli sans lequel nous ne pourrions pas comprendre la
structure de la matière.

En physique classique, même si deux objets sont rigoureusement identiques, il sera toujours
possible de marquer l’un d’entre eux sans modifier ses propriétés physiques. Même sans faire un tel
marquage, les lois de la physique classique ne nous interdisent pas d’observer les deux objets en
permanence. En les suivant tout au long de leurs trajectoires respectives, par exemple à l’aide d’une
caméra suffisamment rapide, nous pourrons clairement reconnaître les deux objets à l’issue de leur
interaction. L’identité, même parfaite, entre deux objets classiques ne pose donc pas de difficulté
particulière.

La situation est tout autre en physique quantique. D’une part, les objets auxquels nous nous
intéressons sont évidemment trop petits pour qu’il soit possible de les marquer sans changer leur
comportement. D’autre part, les lois de la physique quantique nous interdisent d’observer conti-
nûment le système sans modifier profondément son évolution temporelle. On dira donc de deux
particules identiques (au sens où la totalité de leurs caractéristiques physiques comme la masse, la
charge, le spin, etc. sont identiques), qu’elles sont indiscernables.

Pour bien comprendre la nature du problème, considérons un système constitué de deux parti-
cules indiscernables de spin 1/2, le degré de liberté de spin étant le seul pris en compte ici. Préparons
le système de sorte que l’une des deux particules soit dans l’état |+⟩z et l’autre dans l’état |−⟩z. Si
les deux particules étaient différentes (par exemple un proton et un électron), il nous faudrait pré-
ciser laquelle des deux particules est dans l’état |+⟩z pour définir complètement l’état du système.
Mais dans le cas de deux particules indiscernables qui nous intéresse ici, il n’existe pas d’expérience
permettant de savoir laquelle des deux particules est dans l’état |+⟩z, précisément parce que les par-
ticules sont indiscernables. Stipuler que l’une de nos deux particules est dans l’état |+⟩z tandis que
l’autre est dans l’état |−⟩z définit donc aussi précisément que possible l’état physique du système.
La question qui se pose maintenant est d’écrire le vecteur d’état |Ψ⟩ représentant ce système dans
l’espace de Hilbert. Une première option consisterait à écrire simplement |Ψ⟩ = |+⟩z⊗|−⟩z, état que
nous noterons |+−⟩ dans la suite. Mais l’état |−+⟩ est a priori tout aussi légitime, de même que
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toute combinaison linéaire de ces deux derniers états, comme les états |0, 0⟩ = (|+−⟩ − |−+⟩)/
√
2

et |1, 0⟩ = (|+−⟩ + |−+⟩)/
√
2 (où nous avons repris la notation introduite au chapitre 7 pour la

base couplée {|s,m⟩}). Pour chacun de ces quatre vecteurs d’état, l’une des deux particules est dans
l’état |+⟩ tandis que l’autre est dans l’état |−⟩. L’ensemble des vecteurs d’états a priori acceptables,
engendré par les deux vecteurs orthogonaux |+−⟩ et |−+⟩, est ainsi un espace vectoriel de dimension
2. On parle de dégénérescence d’échange.

Une telle dégénérescence ne poserait pas de problème particulier si l’ensemble des vecteurs d’états
évoqués plus haut donnait lieu aux mêmes prédictions physiques. Or, il se trouve que tel n’est pas le
cas. Pour nous en convaincre, considérons l’observable Ŝx correspondant au moment cinétique total
selon l’axe x, observable dont les valeurs propres sont −ℏ, 0 et ℏ. Mesurons cette grandeur physique
et intéressons nous à la probabilité de trouver le résultat ℏ. Cette valeur propre est non dégénérée
et correspond au vecteur propre

|+⟩x ⊗ |+⟩x =
|+⟩+ |−⟩√

2
⊗ |+⟩+ |−⟩√

2
=
|++⟩+ |+−⟩+ |−+⟩+ |−−⟩

2
. (8.1)

Il est immédiat de vérifier que la probabilité de mesure P = |(x⟨+| x ⟨+|) |Ψ⟩ |2 vaut 1/4 pour les
états |+−⟩ et |−+⟩, mais 1/2 pour l’état |1, 0⟩, et 0 pour l’état singulet |0, 0⟩ (ce dernier état étant
vecteur propre de Ŝx pour la valeur propre 0). Nous arrivons ainsi au résultat absurde que différents
vecteurs d’état semblant également légitimes pour représenter convenablement l’état physique du
système donnent lieu à des prédictions de mesures physiques totalement incompatibles.

Il nous faut donc en conclure que les principes de la physique quantique dont nous disposons
à ce stade ne sont pas adaptés au traitement d’un système constitué de particules indiscernables.
Cette difficulté majeure nous mènera à l’introduction d’un nouveau postulat, dont nous évoquerons
ensuite les conséquences concernant la structure électronique des atomes et des solides.

8.1 Echange de deux particules

8.1.1 Opérateur d’échange

Considérons deux particules indiscernables appelées 1 et 2 et plaçons-nous dans l’espace produit
tensoriel EH = E(1) ⊗ E(2). On introduit l’opérateur d’échange P̂12 permettant d’échanger l’état des
deux particules. Ainsi, si la particule 1 est dans l’état |ψa⟩ et la particule 2 est dans l’état |ψb⟩, alors
après échange la particule 1 sera dans l’état |ψb⟩ tandis que la particule 2 sera dans l’état |ψa⟩, soit

P̂12 |1 :ψa; 2 :ψb⟩ = |1 :ψb; 2 :ψa⟩ . (8.2)

Cette propriété définit complètement l’opérateur d’échange puisque, pour tout état |Ψ⟩ décomposé
dans la base tensorielle selon l’expression

|Ψ⟩ =
∑
n,m

cn,m |1 :ψn; 2 :ψm⟩ , (8.3)



8.1. ECHANGE DE DEUX PARTICULES 119

on pourra écrire

P̂12 |Ψ⟩ = P̂12

∑
n,m

cn,m |1 :ψn; 2 :ψm⟩ =
∑
n,m

cn,m |1 :ψm; 2 :ψn⟩ =
∑
n,m

cm,n |1 :ψn; 2 :ψm⟩ . (8.4)

En d’autres termes, l’échange des deux particules se ramène simplement à remplacer les coefficients
cn,m par cm,n, c’est à dire à échanger les deux indices. L’opérateur d’échange est évidemment
involutif, soit P̂ 2

12 = Î. Il est également auto-adjoint puisque

⟨1 :ψn′ ; 2 :ψm′ | P̂12 |1 :ψn; 2 :ψm⟩ = ⟨1 :ψn′ ; 2 :ψm′ |1 :ψm; 2 :ψn⟩ = δn′mδm′n. (8.5)

Or, les éléments de matrice de P̂ †
12 s’écrivent

⟨1 :ψn′ ; 2 :ψm′ | P̂ †
12 |1 :ψn; 2 :ψm⟩ = ⟨1 :ψm′ ; 2 :ψn′ |1 :ψn; 2 :ψm⟩ = δm′nδn′m, (8.6)

ce qui nous donne le même résultat que pour les éléments de matrice de P̂12. On peut donc en
déduire P̂ †

12 = P̂12. L’opérateur P̂12 étant à la fois involutif et auto-adjoint, il est donc également
unitaire.

Sachant que P̂ 2
12 = Î, on peut en déduire que les valeurs propres de l’opérateur d’échange sont

+1 et −1. Les états propres associés à la valeur propre +1 sont appelés états symétriques, tandis
que les états propres associés à la valeur propre −1 sont appelés états antisymétriques. D’après
l’éq. 8.4, les états symétriques seront caractérisés par la relation cm,n = cn,m, ce qui permet d’écrire
la forme générale d’un état symétrique,

|ΨS⟩ =
∑
n

cn,n |1 :ψn; 2 :ψn⟩+
∑
n<m

cn,m (|1 :ψn; 2 :ψm⟩+ |1 :ψm; 2 :ψn⟩) . (8.7)

Ecrit sous cette forme, l’état ci-dessus est évidemment symétrique par échange des deux particules.
De même, d’après l’éq. 8.4 les états antisymétriques vérifient la relation cm,n = −cn,m, ce qui impose
notamment cn,n = 0. On peut écrire les états antisymétriques sous la forme

|ΨA⟩ =
∑
n<m

cn,m (|1 :ψn; 2 :ψm⟩ − |1 :ψm; 2 :ψn⟩) . (8.8)

Ecrit sous cette forme, l’état |ΨA⟩ ci-dessus est clairement antisymétrique par échange des deux
particules.

8.1.2 Opérateurs de symétrisation et d’antisymétrisation

Il est utile de considérer les projecteurs sur les deux sous-espaces propres de l’opérateur d’échange.
On définit ainsi l’opérateur symétrisation Ŝ par la relation

Ŝ =
Î + P̂12

2
. (8.9)

Cet opérateur, dont les valeurs propres sont 1 (pour les états symétriques) et 0 (pour les états
antisymétriques) est bien le projecteur sur l’espace propre des états symétriques. On définit de
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même l’opérateur antisymétrisation Â par la relation

Â =
Î − P̂12

2
(8.10)

Cet opérateur, dont les valeurs propres sont 1 (pour les états antisymétriques) et 0 (pour les états
symétriques) est quant à lui le projecteur sur l’espace propre des états antisymétriques. Pour un
état décomposé dans la base tensorielle selon l’éq. 8.3, on pourra écrire

Ŝ |Ψ⟩ =
∑
n,m

cn,m + cm,n
2

|1 :n; 2 :m⟩ =
∑
n,m

cn,m
|1 :n; 2 :m⟩+ |1 :m; 2 :n⟩

2
, (8.11)

ce qui nous donne bien un état symétrique (éventuellement nul si |Ψ⟩ était antisymétrique). De
même,

Â |Ψ⟩ =
∑
n,m

cn,m − cm,n
2

|1 :n; 2 :m⟩ =
∑
n,m

cn,m
|1 :n; 2 :m⟩ − |1 :m; 2 :n⟩

2
, (8.12)

ce qui nous donne bien un état antisymétrique (éventuellement nul si |Ψ⟩ était symétrique).

8.1.3 Invariance de l’hamiltonien

Si les deux particules sont indiscernables, l’énergie du système doit naturellement rester inchan-
gée lors de l’échange des deux particules. Pour tout état |Ψ⟩, l’énergie dans l’état P̂12 |Ψ⟩ doit ainsi
être égale à l’énergie dans l’état |Ψ⟩, soit

⟨Ψ| P̂12ĤP̂12 |Ψ⟩ = ⟨Ψ| Ĥ |Ψ⟩ . (8.13)

Cette relation étant valable pour tout |Ψ⟩, on en déduit P̂12ĤP̂12 = Ĥ, ce qui nous donne (après
multiplication à gauche par P̂12) la relation

ĤP̂12 = P̂12Ĥ. (8.14)

L’hamiltonien commute donc avec l’opérateur d’échange. Au même titre que les invariances géomé-
triques discutées au chapitre 2, l’invariance d’échange d’un système de deux particules identiques
nous permet ainsi d’affirmer que l’hamiltonien commute avec l’opérateur d’échange. En conséquence,
l’opérateur d’échange commutera également avec l’opérateur d’évolution Û(t, t0), ce qui signifie que
ses sous-espaces propres resteront stables sous l’action de l’opérateur d’évolution. Un état initiale-
ment symétrique restera donc toujours symétrique lors de l’évolution du système. De même, un état
antisymétrique restera antisymétrique.

8.2 Postulat de symétrisation

8.2.1 Enoncé du postulat

Comme évoqué au début de ce chapitre, nous avons besoin d’un nouveau postulat nous per-
mettant d’écrire sans ambiguïté l’état |Ψ⟩ d’un système de deux particules identiques. Pour qu’un
vecteur d’état |Ψ⟩ soit physiquement acceptable, il est souhaitable que |Ψ⟩ et P̂12 |Ψ⟩, qui décrivent
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à l’évidence le même état physique, correspondent au même vecteur d’état dans l’espace de Hilbert
(à une phase θ près). Cette condition s’exprime sous la forme

P̂12 |Ψ⟩ = eiθ |Ψ⟩ , (8.15)

ce qui signifie que |Ψ⟩ est un vecteur propre de l’opérateur d’échange P̂12. Comme les valeurs propres
de ce dernier sont ±1, on peut donc proposer la condition suivante pour caractériser un vecteur
d’état physiquement acceptable :

P̂12 |Ψ⟩ = ± |Ψ⟩ . (8.16)

L’état |Ψ⟩ doit donc être soit symétrique, soit antisymétrique. Dans l’exemple de deux spins 1/2
donné dans l’introduction, seuls les états |0, 0⟩ (antisymétrique) et |1, 0⟩ (symétrique) conviendraient
donc. De plus, la stabilité des espaces propres de P̂12 sous l’action de l’opérateur d’évolution nous
assure qu’un état initialement (anti)symétrique le restera tout au long de son évolution ultérieure.

Toutefois, cette seule condition est insuffisante. Par exemple, si une paire d’électrons pouvait
être mise parfois dans un état symétrique, et parfois dans un état antisymétrique, le principe de
superposition imposerait qu’on puisse mettre cette même paire d’électrons dans une combinaison
linéaire de ces deux états, qui ne serait ni symétrique, ni antisymétrique. Une telle situation n’étant
pas physiquement acceptable, il nous faut admettre que pour un type de particule donné, par
exemple l’électron, un seul type d’état (soit symétrique, soit antisymétrique) est acceptable. L’effet
de l’opérateur d’échange sur l’état du système est ainsi directement lié à la nature de la particule.
Ces considérations préalables nous permettent maintenant d’énoncer le postulat de symétrisation,
dont les multiples conséquences sont effectivement en accord avec l’expérience.

Postulat de symétrisation. Les particules de la nature appartiennent toutes à
l’une ou l’autre des deux catégories suivantes.

• Les bosons, pour lesquels le vecteur d’état est symétrique par échange de deux
particules identiques,

P̂12 |Ψ⟩ = |Ψ⟩ . (8.17)

• Les fermions, pour lesquels le vecteur d’état est antisymétrique par échange
de deux particules identiques,

P̂12 |Ψ⟩ = − |Ψ⟩ . (8.18)

On admettra que les particules de spin entier (mésons π, photons, Higgs, etc.) sont
des bosons, tandis que les particules de spin demi-entier (électrons, neutrinos, quarks,
protons, neutrons, etc.) sont des fermions.

8.2.2 Cas des particules composites

Remarquons que le postulat de symétrisation s’applique non seulement à des particules élémen-
taires comme les électrons ou les quarks, mais aussi à des particules dites composites comme les
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nucléons ou même les atomes. Ces systèmes composites ne sont pas des particules élémentaires mais
sont constitués de particules plus petites en interaction mutuelle. Considérons par exemple le cas du
proton, qui est un assemblage de trois quarks liés entre eux sous l’effet de l’interaction forte. Dans la
plupart des situations expérimentales, en particulier en physique des basses énergies, l’état interne
du proton reste en permanence dans son niveau fondamental, de sorte que tout se passe comme si
le proton était une particule élémentaire. Comme pour une véritable particule élémentaire comme
l’électron, les degrés de liberté pertinents du proton seront alors les coordonnées de son centre de
masse et son état de spin. De même, dans certaines situations expérimentales, la structure interne
d’un atome pourra jouer un rôle important (par exemple lors de l’interaction avec un faisceau lumi-
neux). Mais, dans d’autres situations où les énergies disponibles sont très inférieures aux énergies
d’excitation de l’atome (typiquement la dizaine d’eV), alors on pourra considérer que l’atome reste
en permanence dans son niveau fondamental (comme par exemple le niveau 1s pour l’hydrogène).
C’est par exemple le cas d’une vapeur atomique à température ambiante, l’énergie d’agitation ther-
mique (kBT ≈ 26 meV) étant négligeable devant les énergies des transitions électroniques. Dans une
telle situation, on pourra se contenter de considérer l’atome comme un unique objet dont les degrés
de liberté pertinents sont les coordonnées du centre de masse et le moment cinétique intrinsèque (ou
spin total). La question se pose alors de savoir si une telle particule composite doit être considérée
comme un boson ou comme un fermion.

Il existe deux approches pour répondre à cette question. La première consiste à déterminer le
spin total ˆ⃗

S de la particule composite, en s’appuyant sur la relation entre le spin (resp. entier ou
demi-entier) et la nature de la particule (resp. boson ou fermion). Si on appelle ˆ⃗

S1,
ˆ⃗
S2, · · · ,

ˆ⃗
SN les

observables de spin des N particules élémentaires constituant notre particule composite, alors on a
la relation

ˆ⃗
S =

N∑
n=1

ˆ⃗
Sn (8.19)

et donc

Ŝz =
N∑
n=1

Ŝnz. (8.20)

Appelons Nf et Nb les nombres de fermions et de bosons constituant la particule composite, avec
N = Nf +Nb. Lors d’une mesure de Sz, on obtiendra un résultat égal à la somme des Snz, soit mℏ
où m est la somme de Nf nombres demi-entiers et de Nb nombres entiers (car un fermion porte un
spin demi-entier tandis qu’un boson porte un spin entier). Le nombre m sera donc demi-entier si
Nf est impair, et entier si Nf est pair. On peut en conclure qu’une particule composite peut être
considérée comme un fermion (car de spin total demi-entier) si elle comprend un nombre impair de
fermions, tandis qu’elle peut être considérée comme un boson dans le cas contraire.

Une autre approche consiste à considérer l’opérateur échange P̂ab permettant d’échanger deux
particules composites appelées a et b. L’échange de deux particules composites pouvant être défini
comme la composition des échanges deux à deux de tous ses constituants individuels, on peut écrire

P̂ab = P̂a1b1 · · · P̂aNbN (8.21)

où P̂anbn échange la particule n de (a) avec la particule de même numéro n dans (b). Si |Ψ⟩ est
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l’état du système constitué de ces deux particules composites, on peut alors écrire

P̂ab |Ψ⟩ = P̂a1b1 · · · P̂aNbN |Ψ⟩ = (−1)Nf |Ψ⟩ , (8.22)

puisque l’échange des Nb bosons est sans effet tandis que chacun des Nf échanges de fermions change
le signe de l’état. A nouveau, on trouve que la particule composite est un fermion si Nf est impair
(changement de signe de l’état lors de l’échange des deux particules), tandis que c’est un boson dans
le cas contraire (état inchangé suite à l’échange des deux particules).

Lorsqu’un ensemble de particules en interaction mutuelle reste dans son état interne
fondamental, cet ensemble peut être considéré comme une particule composite. Cette
particule composite peut être globalement considérée comme un fermion si elle com-
porte un nombre impair de fermions, tandis qu’elle peut être considérée comme un
boson dans le cas contraire.

A titre d’exemple, les protons et les neutrons sont des particules constituées de trois quarks -
qui sont des fermions. On pourra donc les considérer comme des fermions - ce qui est confirmé par
la valeur de leur spin.

8.3 Cas de 2 particules indépendantes

8.3.1 Hamiltonien d’un système de deux particules indépendantes

Considérons le cas de deux particules indépendantes, ce qui signifie que l’hamiltonien pourra
s’écrire comme la somme de deux opérateurs, l’un agissant dans E(1) et l’autre agissant dans E(2),
soit

Ĥ = ĥ(1) ⊗ Î(2) + Î(1) ⊗ ĥ(2). (8.23)

Cette forme de l’hamiltonien exclut la présence d’un terme supplémentaire qui agirait à la fois
dans les deux espaces et qui rendrait compte d’une interaction entre les deux particules, comme
par exemple une répulsion coulombienne en e2/||ˆ⃗r1− ˆ⃗r2||. Comme les particules sont identiques, les
opérateurs ĥ(1) et ĥ(2) correspondent à un même hamiltonien ĥ que l’on appellera l’hamiltonien à
une particule, pouvant agir indifféremment dans E(1) ou dans E(2). Cet hamiltonien à une particule
admet des vecteurs propres |ψn⟩ associés aux valeurs propres En, qui conviendront aussi bien pour
ĥ(1) que pour ĥ(2). Ainsi, la base tensorielle {|1 :ψn; 2 :ψm⟩} est une base propre de Ĥ, avec

Ĥ |1 :ψn; 2 :ψm⟩ = ĥ(1) |1 :ψn⟩⊗ |2 :ψm⟩+ |1 :ψn⟩⊗ ĥ(2) |2 :ψm⟩ = (En+Em) |1 :ψn; 2 :ψm⟩ (8.24)

L’énergie est donc simplement additive, ce qui est caractéristique du comportement attendu pour
une assemblée de deux sous-systèmes indépendants. Dans la suite, les états |1 :ψn; 2 :ψm⟩ de la base
tensorielle seront simplement notés |ψn, ψm⟩.

8.3.2 Système de deux bosons

Considérons deux bosons identiques de spin nul et supposons pour simplifier que les valeurs
propres de l’hamiltonien à une particule soient non dégénérées, l’état fondamental de ĥ étant associé
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à la valeur propre appelée E1. L’état fondamental de l’hamiltonien total est obtenu en plaçant les
deux bosons dans l’état de plus basse énergie, comme représenté Fig. 8.1(a). L’état correspondant,
|Ψ⟩ = |ψ1, ψ1⟩, est bien symétrique par échange des deux bosons, ce qui satisfait au postulat de
symétrisation. L’énergie associée est simplement égale à 2E1.

(a) (b)

Figure 8.1 – Etat fondamental (a) et premier état excité (b) d’un système de
deux bosons identiques sans spin.

Cherchons maintenant le premier état excité. Comme représenté Fig. 8.1(b), ce dernier peut être
obtenu en transférant l’un des deux bosons de l’état d’énergie E1 vers l’état d’énergie immédiatement
supérieur, c’est à dire l’état |ψ2⟩ d’énergie E2. L’énergie du système sera alors égale à E1+E2. D’un
point de vue mathématique, l’espace propre de Ĥ associé à la valeur propre E1 +E2 est un espace
vectoriel de dimension 2, engendré par les états |ψ1, ψ2⟩ et |ψ2, ψ1⟩. Une autre base possible de ce
même espace est constituée de l’état symétrique, (|ψ1, ψ2⟩+|ψ2, ψ1⟩)/

√
2, et de l’état antisymétrique,

(|ψ1, ψ2⟩ − |ψ2, ψ1⟩)/
√
2. D’après le postulat de symétrisation, seul le premier de ces deux états est

physiquement acceptable pour un système de deux bosons identiques. Nous sommes donc amenés
à en conclure que la valeur propre E1 + E2 est en fait non dégénérée, le seul état associé à cette
valeur propre étant – à une phase près – la combinaison symétrique

|ψ1, ψ2⟩+ |ψ2, ψ1⟩√
2

. (8.25)

Physiquement, ce résultat n’est pas surprenant. En effet, les valeurs propres de l’hamiltonien à
une particule étant non dégénérées, l’état du système est a priori entièrement défini en spécifiant
que l’une des particules est dans l’état |ψ1⟩ tandis que l’autre est dans l’état |ψ2⟩. Une méthode
générale permettant de trouver l’état décrivant alors le système consiste à partir d’un état donné
du sous-espace propre mathématique, par exemple l’état |ψ1, ψ2⟩, puis à lui appliquer l’opérateur
de symétrisation Ŝ défini par l’éq. 8.9. On obtient alors

Ŝ |ψ1, ψ2⟩ =
Î + P̂12

2
|ψ1, ψ2⟩ =

|ψ1, ψ2⟩+ |ψ2, ψ1⟩
2

. (8.26)

Il suffit ensuite de normer l’état obtenu pour obtenir l’unique état physiquement acceptable associé
à la valeur propre E1 + E2. L’état ainsi obtenu sera toujours le même, à une phase près, quel que
soit l’état de départ - sauf si nous avions eu la mauvaise idée de partir d’un état antisymétrique.

8.3.3 Système de deux fermions

Considérons maintenant un système de deux fermions identiques. Remarquons tout d’abord que,
contrairement au cas des bosons, il est impossible de mettre deux fermions dans le même état |α⟩
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car l’état |1 :α, 2 :α⟩ est évidemment symétrique par échange des deux particules, ce qui n’est pas
acceptable pour une paire de fermions. C’est ce que l’on appelle le principe d’exclusion de Pauli. Par
contre, pour deux états |α⟩ et |β⟩ différents, on pourra construire un état physiquement acceptable
par antisymétrisation, ce qui nous donne l’état

Â |1 :α, 2 :β⟩ = |1 :α, 2 :β⟩ − |1 :β, 2 :α⟩
2

, (8.27)

qu’il suffira ensuite de normer. On dispose ainsi d’un état défini de manière unique correspondant à la
configuration où l’une des particules est dans l’état |α⟩ tandis que l’autre est dans l’état |β⟩. Dans le
cas de deux états orthogonaux, l’état du système pourra donc s’écrire (|1 :α, 2 :β⟩−|1 :β, 2 :α⟩)/

√
2.

Décrivons maintenant explicitement le degré de liberté de spin de nos deux fermions, lequel
est par définition demi-entier. Considérons plus particulièrement le cas de deux fermions de spin
1/2, par exemple deux protons, deux neutrons ou deux électrons. L’espace de Hilbert s’écrit alors
EH = E(1)externe ⊗ E

(1)
spin ⊗ E

(2)
externe ⊗ E

(2)
spin. Nous pouvons réordonner ce produit tensoriel en groupant

d’une part la partie orbitale et d’autre part la partie liée au spin, soit

EH =
(
E(1)externe ⊗ E

(2)
externe

)
⊗
(
E(1)spin ⊗ E

(2)
spin

)
. (8.28)

Supposons en outre que l’hamiltonien à une particule n’agisse que sur les degrés de liberté externes
de la particule, de sorte que les valeurs propres En de ĥ sont maintenant deux fois dégénérées, soit

ĥ |ψn⟩ ⊗ |±⟩ = En |ψn⟩ ⊗ |±⟩ . (8.29)

Cherchons l’état fondamental de ce système. Comme précédemment, nous allons mettre chacune
des deux particules dans le niveau E1, ce qui détermine complètement l’état orbital. La forme la
plus générale des états ainsi obtenus s’écrit alors

|Ψ⟩ = |ψ1, ψ1⟩ ⊗ (c++ |++⟩+ c+− |+−⟩+ c−+ |−+⟩+ c−− |−−⟩) . (8.30)

D’un point de vue mathématique – ne tenant pas compte du postulat de symétrisation – la valeur
propre 2E1 est ainsi dégénérée 4 fois. Mais, comme nous avons affaire à des fermions, le postulat de
symétrisation impose que |Ψ⟩ soit antisymétrique, soit P̂12 |Ψ⟩ = − |Ψ⟩. Comme vu en 8.1.1, cette
condition impose c++ = c−− = 0 et c+− = −c−+, soit - après normalisation,

|Ψ⟩ = |ψ1, ψ1⟩ ⊗
|+−⟩ − |−+⟩√

2
. (8.31)

Si on se limite aux états physiquement acceptable, le niveau fondamental est donc non dégénéré,
l’espace propre étant engendré par le seul état antisymétrique défini par l’équation ci-dessus, où
l’on reconnaît un état singulet de spin. Comme le montre la Fig. 8.2, on représente cet état à l’aide
d’une double flèche positionnée sur le niveau E1. Celle-ci ne signifie pas que le premier spin est dans
l’état |+⟩ tandis que l’autre est dans l’état |−⟩, mais bien que l’ensemble des deux spins est dans
l’état antisymétrique (|+−⟩ − |−+⟩)/

√
2.

En s’appuyant sur les résultats du chapitre 7, on aurait pu utiliser directement la base couplée



126 CHAPITRE 8. PARTICULES INDISCERNABLES

(a) (b)

Figure 8.2 – Etat fondamental d’un système de deux fermions identiques de
spin 1/2.

|s,m⟩ pour décrire le sous-espace propre de dimension 4 associé aux degrés de liberté de spin.
D’après les équations 7.22 à 7.25, il est clair que l’état singulet est antisymétrique tandis que les
états triplets sont symétriques, soit

P̂12 |s,m⟩ = (−1)s+1 |s,m⟩ . (8.32)

Parmi les 4 états de base |ψ1, ψ1⟩ ⊗ |s,m⟩ du sous-espace propre mathématique associé à la valeur
propre 2E1, trois sont ainsi symétriques (et donc exclus pour des fermions) et un seul est antisymé-
trique (et donc physiquement acceptable). On peut ainsi directement écrire le seul état fondamental
physiquement acceptable sous la forme

|Ψ⟩ = |ψ1, ψ1⟩ ⊗ |0, 0⟩ . (8.33)

Généralisons cette dernière approche aux autres états propres de l’hamiltonien. En l’absence de
couplage spin-orbite (ce qui est le cas ici où l’hamiltonien ne dépend pas du spin), les états propres
de Ĥ peuvent toujours s’écrire sous la forme |Ψorbital⟩ ⊗ |s,m⟩. On peut alors écrire

P̂12 (|Ψorbital⟩ ⊗ |s,m⟩) = (−1)s+1
(
P̂12 |Ψorbital⟩

)
⊗ |s,m⟩ . (8.34)

Pour que l’état proposé soit antisymétrique, il est donc nécessaire et suffisant que la partie orbitale
soit symétrique lorsque les spins sont dans l’état singulet (s = 0) ou que la partie orbitale soit
antisymétrique lorsque les spins sont dans un état triplet (s = 1).

8.4 Cas de N particules indépendantes

8.4.1 Hamiltonien d’un système de N particules indépendantes

Généralisons maintenant notre propos au cas d’un système constitué de N particules indépen-
dantes. On se place dans l’espace de Hilbert

EH = E(1) ⊗ E(2) ⊗ · · · ⊗ E(N). (8.35)

Les particules étant indépendantes, on peut écrire l’hamiltonien comme une somme d’hamiltoniens
à une particule agissant chacun sur une seule des N particules, soit

Ĥ =

N∑
n=1

Î(1) ⊗ · · · ⊗ ĥ(n) ⊗ · · · ⊗ Î(N) =

N∑
n=1

ĥ(n). (8.36)
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Comme plus haut, on appelle |ψα⟩ et Eα les vecteurs propres et valeurs propres de l’hamiltonien à
une particule. Les états de la base tensorielle sont alors états propres de l’hamiltonien total, ce que
l’on peut écrire sous la forme

Ĥ |1 :ψα1 , 2 :ψα2 , · · · , N :ψαN ⟩ = (Eα1 + Eα2 + · · ·+ EαN ) |1 :ψα1 , 2 :ψα2 , · · · , N :ψαN ⟩ . (8.37)

Comme dans le cas de deux particules indépendantes, l’énergie totale est simplement égale à la
somme des énergies des N particules.

8.4.2 Système de N bosons

Considérons les N ! permutations p de l’ensemble {1, 2, · · · , N}, ainsi que les opérateurs corres-
pondant P̂p agissant dans l’espace EH . On sait que toute permutation p peut se décomposer comme
un produit de transpositions échangeant chacune deux particules, ce qui signifie que P̂p peut se
décomposer de même comme un produit d’opérateurs d’échange de deux particules comme celui
étudié en 8.1.1. Or le postulat de symétrisation stipule que chacun de ces échanges de deux bosons
identiques laisse l’état |Ψ⟩ du système inchangé. On peut en conclure que pour un système de N
bosons, on aura pour toute permutation p la relation

P̂p |Ψ⟩ = |Ψ⟩ . (8.38)

Inversement, si l’équation ci-dessus est vérifiée pour toute permutation p, elle est notamment vérifiée
pour des transpositions ce qui permet d’affirmer que l’état |Ψ⟩ vérifie bien l’éq. 8.17 pour toute
paire de bosons. L’éq. 8.38 est donc une formulation équivalente du postulat de symétrisation
pour un ensemble de N bosons identiques. Dans le cas d’un ensemble de N particules, l’opérateur
symétrisation devient

Ŝ =
1

N !

∑
p

P̂p. (8.39)

En effet, on peut vérifier que

P̂pŜ =
1

N !

∑
p′

P̂pP̂p′ =
1

N !

∑
p′′

P̂p′′ = Ŝ (8.40)

où l’on a simplement renuméroté les permutations d’une autre manière dans la dernière somme,
selon l’effet de la permutation p. On en déduit que P̂pŜ |Ψ⟩ = Ŝ |Ψ⟩, ce qui signifie que l’état Ŝ |Ψ⟩
est bien invariant sous l’action de n’importe quelle permutation. De plus

Ŝ2 =
1

N !

∑
p

P̂pŜ =
1

N !

∑
p

Ŝ = Ŝ, (8.41)

ce qui nous permet de déduire Ŝ2 = Ŝ. Etant idempotent, l’opérateur Ŝ peut donc bien être
identifié au projecteur sur le sous-espace vectoriel des états symétriques sous l’effet de n’importe
quelle permutation, qui correspond à l’espace des états physiquement acceptables selon le postulat
de symétrisation.

Cherchons maintenant à construire l’état physique correspondant à la configuration où une
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particule est dans l’état |ψα1⟩, une autre dans l’état |ψα2⟩, · · · , et la dernière dans l’état |ψαN ⟩. Il nous
suffit pour cela de projeter l’état |1 :ψα1 , 2 :ψα2 , · · · , N :ψαN ⟩ à l’aide de l’opérateur symétrisation,
puis de normer le résultat obtenu. On obtient ainsi

|Ψ⟩ = C
∑
p

P̂p |1 :ψα1 , 2 :ψα2 , · · · , N :ψαN ⟩ , (8.42)

où C est une constante de normalisation. L’opérateur Ŝ étant idempotent, cet état est bien symé-
trique par permutation des particules et satisfait donc au postulat de symétrisation.

L’écriture de l’état fondamental d’un système de N bosons est immédiate. C’est tout simplement
l’état

|Ψ⟩ = |1 :ψ1, 2 :ψ1, · · · , N :ψ1⟩ , (8.43)

d’énergie E = NE1. A l’évidence, cet état est bien invariant sous l’effet de n’importe quelle permu-
tation. Il est donc parfaitement possible de mettre tous les bosons de notre système dans le même
état quantique, comme représenté Fig. 8.3(a). Cette caractéristique remarquable des bosons peut
donner lieu à des effets spectaculaires, comme par exemple la condensation de Bose-Einstein ou
encore le rayonnement laser.

(a) (b)

Figure 8.3 – Etat fondamental d’un système de N bosons identiques (a) et de
N fermions identiques de spin 1/2 (b), où N est supposé pair dans le second
cas.

8.4.3 Système de N fermions

Procédons de même pour un système de N fermions et décomposons à nouveau une permutation
donnée en un produit de transpositions. Chaque transposition changeant ici le signe de l’état du
système, l’effet global de la permutation dépend de la parité du nombre de transpositions. Cet effet
est ainsi directement lié à ce que l’on appelle la signature ϵp de la permutation p, qui vaut +1

(resp. −1) si p se décompose en un nombre pair (resp. impair) de transpositions. Le postulat de
symétrisation appliqué à un système de N fermions identiques peut donc s’écrire

P̂p |Ψ⟩ = ϵp |Ψ⟩ . (8.44)
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Considérons maintenant l’opérateur antisymétrisation d’un ensemble de N particules défini par

Â =
1

N !

∑
p

ϵpP̂p. (8.45)

On obtient alors
P̂pÂ =

1

N !

∑
p′

ϵp′P̂pP̂p′ = ϵp
1

N !

∑
p′′

ϵp′′P̂p′′ = ϵpÂ, (8.46)

où l’on a utilisé que si p′′ = p ◦ p′ alors ϵp′′ = ϵpϵp′ . Sachant que d’une part, P̂pÂ |Ψ⟩ = ϵpÂ |Ψ⟩,
et que d’autre part l’opérateur Â est idempotent (comme Ŝ), on peut en déduire que l’opérateur
Â est le projecteur sur l’espace des états physiquement acceptables pour des fermions, i.e. l’es-
pace des états satisfaisant l’éq. 8.44 pour toute permutation p. Partant d’une configuration donnée
|1 :ψα1 , 2 :ψα2 , · · · , N :ψαN ⟩, on peut ainsi obtenir un état physiquement acceptable en projetant
cette configuration à l’aide de l’opérateur Â, ce qui nous donne l’état

|Ψ⟩ = CÂ |1 :ψα1 , 2 :ψα2 , · · · , N :ψαN ⟩ =
C

N !

∑
p

ϵpP̂p |1 :ψα1 , 2 :ψα2 , · · · , N :ψαN ⟩ , (8.47)

où C est une constante permettant de normaliser l’état |Ψ⟩. On reconnaît dans l’expression ci-dessus
la définition d’un déterminant, ce qui permet d’écrire l’état du système sous la forme

|Ψ⟩ = C

N !

∣∣∣∣∣∣∣∣∣
|1 :ψα1⟩ |1 :ψα2⟩ |1 :ψα3⟩ · · · |1 :ψαN ⟩
|2 :ψα1⟩ |2 :ψα2⟩ |2 :ψα3⟩ · · · |2 :ψαN ⟩

...
...

...
...

|N :ψα1⟩ |N :ψα2⟩ |N :ψα3⟩ · · · |N :ψαN ⟩

∣∣∣∣∣∣∣∣∣ , (8.48)

où chaque ligne représente une particule et chaque colonne un état. Cette expression, appelée déter-
minant de Slater , permet de retrouver immédiatement le principe d’exclusion de Pauli dans le cas
d’un système de N fermions identiques. En effet, il est impossible de mettre deux particules dans
le même état quantique puisqu’on aurait alors deux colonnes identiques, conduisant à une annu-
lation du déterminant de Slater. Pour obtenir un résultat non nul, il est en fait nécessaire que les
N états choisis soient linéairement indépendants. Une façon d’assurer cette indépendance consiste
à choisir des états orthonormés (par exemple les états propres de ĥ). Dans ce cas, le carré de la
norme du déterminant est égal au nombre de permutations, c’est à dire N !, d’où l’on peut déduire
que C =

√
N !. On obtient alors, pour des états |ψα⟩ orthonormés, l’expression suivante

|Ψ⟩ = 1√
N !

∣∣∣∣∣∣∣∣∣
|1 :ψα1⟩ |1 :ψα2⟩ |1 :ψα3⟩ · · · |1 :ψαN ⟩
|2 :ψα1⟩ |2 :ψα2⟩ |2 :ψα3⟩ · · · |2 :ψαN ⟩

...
...

...
...

|N :ψα1⟩ |N :ψα2⟩ |N :ψα3⟩ · · · |N :ψαN ⟩

∣∣∣∣∣∣∣∣∣ . (8.49)

Considérons enfin comme en 8.3.3 le cas de fermions de spin 1/2, dans le cas particulier où l’ha-
miltonien à une particule ne fait pas intervenir le spin. Notons simplement |ψn±⟩ les états propres
|ψn⟩ ⊗ |±⟩ obéissant à l’éq. 8.29. Dans le cas où le nombre N de particule est pair, on pourra alors
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écrire l’état fondamental du système sous la forme du déterminant de Slater

|Ψ⟩ = 1√
N !

∣∣∣∣∣∣∣∣∣
|1 :ψ1+⟩ |1 :ψ1−⟩ |1 :ψ2+⟩ · · · |1 :ψN/2−⟩
|2 :ψ1+⟩ |2 :ψ1−⟩ |2 :ψ2+⟩ · · · |2 :ψN/2−⟩

...
...

...
...

|N :ψ1+⟩ |N :ψ1−⟩ |N :ψ2+⟩ · · · |N :ψN/2−⟩

∣∣∣∣∣∣∣∣∣ . (8.50)

Un tel état est représenté Fig. 8.3(b). On retrouve ainsi la règle de remplissage résultant du principe
d’exclusion de Pauli, avec une particule par état quantique, ou encore – en tenant compte du spin 1/2
– deux particules par état orbital. Cette règle de remplissage joue un rôle central dans la structure
électronique des atomes, des molécules et des solides.

8.4.4 Structure électronique d’un solide cristallin

Considérons à nouveau le modèle de solide cristallin à une dimension déjà discuté en 2.5, associé
à un potentiel périodique de période a, comme celui représenté Fig. 2.6. Rappelons qu’en vertu du
théorème de Bloch, les états propres d’un tel système peuvent s’écrire

ψn,kx(x) = eikxxun,kx(x), (8.51)

où le vecteur d’onde kx est compris dans l’intervalle [−π/a, π/a[ et où la fonction un,kx(x) est une
fonction périodique de période a. Les valeurs propres correspondantes, En(kx), forment des bandes
d’énergies en nombre discret, chaque bande étant une fonction de la variable continue kx. Afin
de pouvoir dénombrer les états intervenant dans ce problème, nous allons considérer un cristal de
longueur L finie, égale à un multiple M supposé pair de la période a du cristal. Pour éviter les
effets de bord, on utilisera en outre les conditions aux limites périodiques. Celles-ci supposent que
le système est globalement périodique de période L, ce qui pourra correspondre par exemple au cas
d’un fil électrique de longueur L et dont la sortie est reliée à l’entrée. Si L est très grand devant
a, on peut s’attendre à ce que les conditions aux limites périodiques ne modifient pas de façon
significative les propriétés du système, tout en nous évitant les complications liées aux effets de
bord. L’hypothèse de périodicité permet de plus de préserver l’invariance par translation de pas a,
qui est essentielle à l’utilisation du théorème de Bloch. L’espace de Hilbert est ainsi limité à des
fonctions d’onde périodiques, i.e. telle que ψ(x + L) = ψ(x). Cet espace de Hilbert sera muni du
produit scalaire hermitien

⟨ψ|ψ′⟩ =
∫ L/2

−L/2
ψ∗(x)ψ′(x)dx, (8.52)

qui nous permettra de normaliser les fonctions ψn,kx(x). D’après l’éq. 8.51, on peut écrire

ψn,kx(x+ L) = eikx(x+L)un,kx(x) = eikxLψn,kx(x), (8.53)

où l’on a utilisé le fait que la fonction périodique un,kx(x) de période a est aussi une fonction
périodique pour la distance L =Ma, cette dernière quantité étant un multiple de a. Les conditions
aux limites périodiques imposent donc que exp(ikxL) = 1, ce qui signifie que kxL est un multiple
de 2π, soit kxL = k2π où k est un entier relatif. Sachant que kx ∈ [−π/a, π/a[, on en déduit
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que les valeurs possibles pour k sont les M entiers −M/2,−M/2 + 1, · · · ,M/2 − 1. Compte tenu
des conditions aux limites périodiques, les bandes d’énergie doivent donc être remplacées par des
niveaux discrets En(2kπ/L), comme représenté Fig. 8.4(a) dans le cas M = 6. Remarquons que
pour une bande n donnée, il y a exactement autant d’états que de périodes M = L/a dans le
cristal (sans compter le spin). On peut ensuite facilement remplir ces niveaux d’énergie à l’aide
des règles établies plus haut. Si l’on dispose de N électrons par cellule élémentaire de période a,
l’état fondamental correspondra au remplissage des NM/2 états orbitaux de plus basse énergie,
comme représenté Fig. 8.4(a) dans le cas où N = 5. On observe que les deux premières bandes sont
totalement remplies, tandis que la troisième bande est à moitié remplie (car nous avons choisi ici
un nombre N impair).

(a) (b)
Figure 8.4 – Remplissage des niveaux d’énergie dans un cristal périodique en
supposant que l’on dispose de 5 électrons par site. (a) correspond à un cristal
de longueur finie L = 6a tandis que (b) correspond à la limite continue, pour
L≫ a.

La Fig. 8.4(b) représente la limite continue, où l’on fait tendre M = L/a vers l’infini. Comme
dans le cas discret, les deux premières bandes sont complètement remplies tandis que la troisième
bande est à moitié remplie. Ces résultats permettent de distinguer différents types de comportements
en relation avec la conduction de l’électricité dans les cristaux périodiques. On appellera bande de
valence la dernière bande totalement remplie, à savoir la deuxième bande dans le cas de la Fig. 8.4,
et bande de conduction la bande immédiatement au-dessus. Dans le cas représenté ici, la bande
de conduction est à moitié remplie. En conséquence, un champ électrique même très faible pourra
facilement exciter un électron et rompre la symétrie de l’état fondamental, de sorte que le cristal
pourra conduire l’électricité. On a affaire à un matériau conducteur . A l’inverse, pour N pair, la
bande de conduction sera totalement vide, de sorte qu’il faudra beaucoup plus d’énergie pour exciter
le système - en l’occurence le gap séparant le haut de la bande de valence du bas de la bande de
conduction. On a donc affaire à un matériau isolant . Dans ce modèle unidimensionnel très simple,
on aura donc un isolant si chaque atome fournit un nombre pair d’électrons et un conducteur si
chaque atome en fournit un nombre impair. En réalité, la situation peut être souvent compliquée
par la nature tridimensionnelle de la structure de bande, mais la distinction qualitative entre isolant
(bande de conduction vide) et conducteur (bande de conduction partiellement remplie) demeure.
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8.5 Structure électronique des atomes

L’hamiltonien d’un atome à Z électrons s’écrit de manière générale sous la forme

Ĥ =
Z∑
n=1

p̂2n
2me

−
Z∑
n=1

Ze2

r̂n
+

Z∑
n=1

Z∑
m=n+1

e2

||ˆ⃗rn − ˆ⃗rm||
, (8.54)

où le premier terme décrit l’énergie cinétique des Z électrons et le second terme décrit l’énergie
potentielle de chacun des Z électrons dans le puits de potentiel coulombien du noyau, comportant
Z protons. Le troisième terme décrit enfin la répulsion coulombienne entre les Z(Z − 1)/2 paires
d’électrons. Ce dernier terme, caractéristique d’un problème à N corps, rend la résolution du pro-
blème extrêmement compliquée. En première approximation, on a souvent recours à la méthode
dite du champ moyen. Celle-ci consiste à remplacer le dernier terme de l’éq. 8.54 par un opérateur à
une particule consistant en une énergie potentielle V (r⃗) représentant l’effet moyen des Z − 1 autres
électrons sur l’électron considéré. Dans l’approximation du champ central , on suppose en outre que
cette grandeur ne dépend que de la distance r séparant le noyau atomique de l’électron considéré.
Dans le cadre de cette approximation, l’électron se trouve donc plongé dans une énergie potentielle

U(r̂) =
Ze2

r̂
+ V (r̂), (8.55)

égale à la somme du potentiel coulombien attractif du noyau, chargé Z fois, et d’un potentiel
décrivant l’effet moyen des Z − 1 autres électrons. La Fig. 8.5 représente de manière qualitative
l’allure du potentiel U(r). A très grande distance, pour r très supérieur à la taille de l’atome, la
charge Zq du noyau est écrantée par les Z−1 autres électrons, de sorte que la charge totale comprise
à l’intérieur d’une sphère de rayon r est égale à Zq − (Z − 1)q = q, où q est la charge élémentaire.
Le théorème de Gauss nous permet alors d’en déduire que l’énergie potentielle est en −e2/r, comme
dans le cas de l’atome d’hydrogène. A l’inverse, lorsque r tend vers zéro, la charge à l’intérieur d’une
sphère de rayon r tend vers Zq, de sorte que le potentiel tend vers −Ze2/r (à une constante additive
près). On peut finalement s’attendre à ce que le potentiel U(r) évolue continûment entre ces deux
cas extrêmes.
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Figure 8.5 – Représentation qualitative du terme U(r), passant progressive-
ment de −Ze2/r à courte distance jusqu’à −e2/r à grande distance.
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Dans le cadre de l’approximation du champ central, on peut donc écrire l’hamiltonien sous la
forme Ĥ =

∑
n ĥ

(n) où ĥ(n) est un hamiltonien agissant uniquement sur l’électron n, dont la forme
générique est l’hamiltonien à une particule

ĥ =
p̂2

2me
+ U(r̂). (8.56)

D’après l’étude effectuée en 5.2 sur le mouvement d’une particule dans un potentiel central, on peut
en déduire que les fonctions propres de cet hamiltonien à une particule peuvent s’écrire comme le
produit d’une fonction radiale par une harmonique sphérique. En reprenant les mêmes nombres
quantiques que pour l’hydrogène, on pourra donc écrire la partie orbitale de la fonction d’onde sous
la forme

ψn,ℓ,m(r, θ, φ) = Rn,ℓ(r)Yℓ,m(θ, φ). (8.57)

On sait en outre qu’en raison de l’invariance par rotation, l’énergie En,ℓ associée à ces états ne
dépend pas de m, de sorte que chaque niveau d’énergie est dégénéré 2ℓ+ 1 fois. Mais, comme U(r)

n’est pas un potentiel en 1/r, les différentes valeurs de ℓ ne correspondront pas à la même valeur
de l’énergie. Par rapport au cas particulier de l’hydrogène, on peut donc s’attendre à une levée
de dégénérescence selon les différentes valeurs de ℓ. En raison de la barrière centrifuge représentée
Fig. 8.5, d’autant plus importante que ℓ est grand, on sait que la densité de probabilité au voisinage
immédiat du noyau est d’autant plus faible que ℓ est grand. Par rapport à un potentiel en 1/r,
on peut donc s’attendre à ce que les niveaux d’énergie soient ordonnés comme représenté Fig. 8.6,
l’énergie augmentant avec la valeur ℓ du moment cinétique orbital.

Figure 8.6 – Représentation qualitative des niveaux d’énergie En,ℓ pour une
valeur donnée de n, ici n = 3.

L’application du principe d’exclusion de Pauli permet ensuite de remplir les niveaux d’énergie
En,ℓ pour les différents atomes de la classification périodique des éléments, comme représenté de
manière qualitative Fig. 8.7.

Les résultats établis ci-dessus nous permettent de retrouver la plupart des règles bien connues
de remplissage des orbitales atomiques. En premier lieu, compte tenu du degré de liberté de spin,
il sera possible de mettre deux électrons pour chaque niveau orbital. Par ailleurs, le remplissage
successif des différentes couches permet de comprendre la nature périodique des propriétés physico-
chimiques des différents éléments, celles-ci étant essentiellement déterminées par la configuration de
la couche externe. Enfin, la règle de Klechkowski, stipulant que les orbitales sont remplies par ordre
de n + ℓ croissant (et par valeur croissante de n pour une valeur donnée de n + ℓ), s’explique par
le fait que le clivage entre les différentes valeurs de ℓ devient plus important que la séparation des
niveaux entre les différentes valeurs de n, de sorte que le niveau 4s est en fait en dessous du niveau
3d, comme représenté Fig. 8.7. C’est pour cette raison que les métaux de transition (correspondant
à ℓ = 2) n’apparaissent qu’à partir de la quatrième ligne du tableau périodique des éléments, après
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Be
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Figure 8.7 – Représentation qualitative des niveaux d’énergie En,ℓ pour les dif-
férents éléments. En réalité, les valeurs exactes des niveaux d’énergie dépendent
fortement de l’élément considéré, même si l’ordre des niveaux reste essentielle-
ment conforme à la représentation ci-dessus.

le remplissage de la couche 4s. De même, les lanthanides (couche 4f , ℓ = 3) et les actinides (couche
5f , ℓ = 3), n’apparaissent qu’à partir des sixièmes et septièmes lignes, juste après le remplissage
des couches 6s et 7s.



Chapitre 9

Etats non stationnaires

Lors des chapitres précédents, nous nous sommes le plus souvent intéressés à un système isolé,
associé à un hamiltonien Ĥ indépendant du temps. Dans cette situation, nous avons alors diago-
nalisé l’hamiltonien, sachant que la connaissance des états propres et des valeurs propres associées
permettait d’en déduire l’évolution temporelle du système sous forme d’une superposition d’états
stationnaires. Malgré l’élégance et la puissance de cette approche, il peut arriver qu’elle ne soit pas
appropriée. Soit parce que l’hamiltonien est trop grand pour être diagonalisé de manière exacte,
soit parce qu’il dépend explicitement du temps. Une résolution directe de l’équation de Schrödinger
dépendant du temps pourra alors être mieux à même de résoudre le problème, tout particulièrement
lorsque l’un des termes de l’hamiltonien peut être considéré comme une perturbation par rapport à
un hamiltonien principal indépendant du temps. C’est l’objet de ce chapitre d’étudier directement
l’évolution de tels états non stationnaires.

9.1 Résolution directe de l’équation de Schrödinger

On cherche à résoudre l’équation de Schrödinger

iℏ
d |ψ(t)⟩
dt

= Ĥ(t) |ψ(t)⟩ (9.1)

dans le cas où l’hamiltonien Ĥ(t) dépend du temps. On suppose en outre que l’hamiltonien s’écrit

Ĥ(t) = Ĥ0 + Ŵ (t) (9.2)

où Ĥ0 est un hamiltonien indépendant du temps dont les états propres |n⟩ sont connus (avec
Ĥ0 |n⟩ = ℏωn |n⟩), et où Ŵ (t) est une perturbation pouvant éventuellement dépendre du temps. On
suppose de plus que l’état initial |ψ(0)⟩ = |i⟩ est un état propre de Ĥ0 d’énergie ℏωi. En l’absence
de perturbation, on sait que l’état |ψ(t)⟩ s’écrit sous la forme d’une somme d’états stationnaires,
soit

|ψ(t)⟩ =
∑
n

γne
−iωnt |n⟩ . (9.3)

135
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Comme Ŵ (t) est petit, on peut s’attendre à ce que l’état recherché soit proche de cette première
approximation. Il est donc naturel de chercher la solution de l’équation de Schrödinger sous la forme

|ψ(t)⟩ =
∑
n

γn(t)e
−iωnt |n⟩ , (9.4)

où les γn(t) sont des fonctions du temps qu’il nous appartient de déterminer. Il ne s’agit pour
l’instant que d’un changement de variable, aucune approximation n’ayant encore été effectuée à ce
stade. Remplaçons cette expression de |ψ(t)⟩ dans l’équation de Schrödinger

iℏ
d |ψ(t)⟩
dt

= (Ĥ0 + Ŵ (t)) |ψ(t)⟩ . (9.5)

On obtient ∑
n

iℏ (γ̇n − iωnγn(t)) e−iωnt |n⟩ =
∑
n

γn(t)e
−iωnt

(
Ĥ0 |n⟩+ Ŵ (t) |n⟩

)
. (9.6)

où γ̇n = dγn/dt. Sachant que Ĥ0 |n⟩ = ℏωn |n⟩, on en déduit∑
n

iℏγ̇ne−iωnt |n⟩ =
∑
n

γn(t)e
−iωntŴ (t) |n⟩ . (9.7)

Enfin, après projection sur l’état |k⟩,

iℏγ̇ke−iωkt =
∑
n

γn(t)e
−iωnt ⟨k| Ŵ (t) |n⟩ . (9.8)

L’équation d’évolution du coefficient γk(t) s’écrit finalement sous la forme

γ̇k = −
i

ℏ
∑
n

γn(t)e
iωkntWkn(t), (9.9)

où ωkn = ωk−ωn et où Wkn(t) = ⟨k| Ŵ (t) |n⟩ est l’élément de matrice de la perturbation Ŵ (t). On
peut alors écrire le coefficient γk(t) sous la forme de la primitive de l’équation précédente,

γk(t) = δki −
i

ℏ
∑
n

∫ t

0
γn(t

′)eiωknt
′
Wkn(t

′)dt′, (9.10)

où l’on a utilisé la condition initiale |ψ(0)⟩ = |i⟩ et donc γk(0) = δki. Bien entendu, il ne s’agit pas
d’une solution explicite puisque l’intégrale fait intervenir la grandeur à déterminer, γn(t′).

9.2 Méthode des perturbations dépendant du temps

Prenons maintenant en compte le fait que Ŵ (t) est supposé petit devant Ĥ0, ce qui va nous
permettre de procéder comme au chapitre 3. On effectue ainsi un développement limité de l’état du
système sous la forme

|ψ(t)⟩ = |ψ(0)(t)⟩+ |ψ(1)(t)⟩+ |ψ(2)(t)⟩+ · · · (9.11)
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où |ψ(p)(t)⟩ est un terme d’ordre p par rapport à la perturbation Ŵ (t). On développe de même le
coefficient introduit plus haut,

γk(t) = γ
(0)
k (t) + γ

(1)
k (t) + γ

(2)
k (t) + · · · . (9.12)

Comme on a par hypothèse |ψ(0)⟩ = |i⟩, et que |i⟩ est un terme d’ordre zéro, on a les conditions
initiales |ψ(0)(0)⟩ = |i⟩ et |ψ(p)(0)⟩ = 0 pour p ≥ 1. On en déduit γ(0)k (0) = δki et γ(p)k (0) = 0 pour
p ≥ 1. L’expression donnée par l’éq. 9.10 est parfaitement adaptée à un développement perturbatif
puisque si on injecte un terme d’ordre p dans l’intégrale, la multiplication par Wkn(t

′) le transforme
en un terme d’ordre p+ 1. On en déduit immédiatement

γ
(p+1)
k (t) = − i

ℏ
∑
n

∫ t

0
γ(p)n (t′)eiωknt

′
Wkn(t

′)dt′. (9.13)

Cette dernière équation est directement utilisable puisque, connaissant γk(t) à l’ordre zéro, on pourra
le calculer à l’ordre 1, puis le réinjecter dans l’intégrale pour calculer le terme d’ordre 2, et ainsi de
suite.

9.3 Résultat au premier ordre

Le principe de la méthode des perturbations dépendant du temps étant établi, nous allons
maintenant l’appliquer afin de calculer l’état du système au premier ordre en W . Pour cela, on
injecte γ(0)k (t′) = δki dans l’éq. 9.13 afin de calculer γ(1)k (t). Seul le terme n = i subsiste dans la
somme sur n, ce qui nous permet d’écrire

γ
(1)
k (t) = − i

ℏ

∫ t

0
eiωkit

′
Wki(t

′)dt′. (9.14)

On peut donc écrire au premier ordre

|ψ(t)⟩ ≈ e−iωit |i⟩ − i

ℏ
∑
k

e−iωkt

∫ t

0
eiωkit

′
Wki(t

′)dt′ |k⟩ . (9.15)

Pour comprendre l’origine physique de cette expression, on peut la reformuler comme suit

|ψ(t)⟩ ≈ e−iωit |i⟩ − i

ℏ
∑
k

∫ t

0
e−iωk(t−t′)Wki(t

′)e−iωit
′
dt′ |k⟩ . (9.16)

Il apparaît alors que l’état |ψ(t)⟩ est une superposition entre différents termes. Le terme principal
e−iωit |i⟩ correspond bien entendu à l’évolution libre de l’état initial |i⟩ sous l’action de l’hamiltonien
non perturbé Ĥ0. Le second terme est lui-même une superposition (via la somme sur k) entre tous les
états |k⟩ accessibles sous l’action de la perturbation Wki(t

′). Pour chaque état |k⟩ intervenant dans
cette superposition, la transition entre l’état initial |i⟩ et l’état |k⟩ pourra intervenir à n’importe quel
instant t′ ∈ [0, t], ce qui donne lieu à une interférence entre différents chemins quantiques traduite
sous la forme de l’intégrale sur t′. Pour chaque terme de cette interférence, le système évolue d’abord
pendant l’intervalle [0, t′] dans l’état initial |i⟩, ce qui donne lieu au facteur de phase e−iωit

′ , puis
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l’élément de matrice Wki(t
′) lui permet de passer à l’instant t′ de l’état |i⟩ à l’état |k⟩. Il lui reste

enfin à évoluer pendant l’intervalle [t′, t], ce qui donne lieu au facteur de phase e−iωk(t−t′).

Dans la suite, nous nous intéresserons plus particulièrement à la transition de l’état initial |i⟩
vers un état final |f⟩ donné, également état propre de Ĥ0. On cherchera à déterminer la probabilité
de transition Pi→f (t) = | ⟨f |ψ(t)⟩ |2 = |e−iωf tγf (t)|2, soit simplement

Pi→f (t) = |γf (t)|2. (9.17)

A l’aide de l’éq. 9.14, la méthode des perturbations dépendant du temps au premier ordre nous
donne finalement

Pi→f (t) =
1

ℏ2

∣∣∣∣∫ t

0
eiωfit

′
Wfi(t

′)dt′
∣∣∣∣2 . (9.18)

9.4 Cas d’une perturbation constante

On s’intéresse ici au problème assez fréquent où, sachant que le système est initialement dans
l’état |i⟩, on lui applique de manière abrupte une perturbation Ŵ à l’instant t = 0, comme repré-
senté Fig. 9.1. Dans la mesure où on ne s’intéresse à l’évolution du système que pour t ≥ 0, cela
revient à dire que la perturbation est indépendante du temps. On aurait pu dans ce cas diagonaliser
l’hamiltonien total Ĥ = Ĥ0 + Ŵ , puis décomposer l’état |i⟩ sur les états propres de Ĥ et écrire la
solution comme une superposition d’états stationnaires (voir par exemple l’exercice C.19). Toutefois,
lorsque Ŵ est petit, il est beaucoup plus simple de résoudre directement l’équation de Schrödinger
et d’écrire la solution dans la base propre de Ĥ0. Une telle démarche peut aussi être plus facile à
interpréter physiquement. C’est donc cette approche que nous allons suivre ici, en nous appuyant
sur les résultats obtenus plus haut.

Figure 9.1 – Cas où la perturbation W (t) est appliquée à l’instant t = 0 et
garde ensuite une valeur constante W .

Dans le cas où Ŵ (t) = Ŵ est constant, le calcul de la primitive apparaissant dans l’éq. 9.14 est
immédiat. On obtient

γ
(1)
f (t) = − i

ℏ

∫ t

0
eiωfit

′
Wfidt

′ (9.19)

= − i
ℏ
Wfi

[
eiωfit

′

iωfi

]t
0

= − i
ℏ
Wfi

eiωfit − 1

iωfi
. (9.20)
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Cette expression peut être symétrisée en mettant exp(iωfit/2) en facteur, ce qui nous donne

γ
(1)
f (t) = − i

ℏ
Wfie

iωfit/2
eiωfit/2 − e−iωfit/2

2iωfi/2
(9.21)

ou encore
γ
(1)
f (t) = − i

ℏ
Wfie

iωfit/2
sinωfit/2

ωfi/2
. (9.22)

A l’aide de l’éq. 9.17, on en déduit la probabilité de transition

Pi→f (t) =
|Wfi|2

ℏ2
sin2 ωfit/2

(ωfi/2)2
(9.23)

On peut encore écrire

Pi→f (t) =
|Wfi|2

ℏ2
y(ωfi, t) =

Ω2
0

4
y(ωfi, t) (9.24)

où l’on a introduit d’une part la fonction

y(ω, t) =
sin2 ωt/2

(ω/2)2
(9.25)

et d’autre part la quantité

Ω0 = 2
|Wfi|
ℏ

. (9.26)

La Fig. 9.2 représente l’évolution temporelle de la probabilité de transition, qui correspond à une
variation sinusoïdale de période 2π/ωfi. La figure représente également le cas limite où ωfi tend
vers zéro. Dans ce cas, on peut écrire

y(ω, t) ∼
ω→0

t2 (9.27)

ce qui nous donne une évolution quadratique de la probabilité de présence, en Ω2
0t

2/4.

Figure 9.2 – Représentation de la probabilité de transition Pi→f (t) évaluée à
l’aide de l’éq. 9.24. La courbe en trait fin représente la limite dans le cas où
ωfi → 0.

Pour que le développement perturbatif au premier ordre soit valable, il faut que la probabilité



140 CHAPITRE 9. ETATS NON STATIONNAIRES

calculée reste très inférieure à 1. C’est en effet dans ce régime qu’il est légitime de remplacer
l’amplitude de probabilité apparaissant dans l’intégrale de l’éq. 9.10 par sa valeur à l’ordre zéro.
Dans le cas étudié ici, le développement au premier ordre sera donc valable pour Ω0 ≪ |ωfi|, de
sorte que l’amplitude de la sinusoïde, Ω2

0/ω
2
fi, soit très petite devant 1. On pourra vérifier avec

l’exercice C.19 que le résultat perturbatif est effectivement en bon accord avec le résultat exact
lorsque Ω0 ≪ |ωfi|. A l’inverse, dans le cas où ωfi tend vers zéro, l’évolution parabolique nous
donne un résultat absurde aux temps longs, avec une probabilité qui devient supérieure à 1.

Figure 9.3 – Cas où la perturbation est appliquée de manière constante pen-
dant une durée finie T .

On s’intéresse souvent au cas représenté Fig. 9.3 où le système est soumis à une impulsion
de durée T , la perturbation étant maintenue constante pendant l’intervalle [0, T ]. Pour t ≥ T , le
système évolue à nouveau sous l’action de l’hamiltonien Ĥ0, de sorte que les populations dans les
différents états propres de Ĥ0 resteront constantes. La probabilité de trouver le système dans l’état
final après l’impulsion pourra donc être évaluée directement à partir de la probabilité de transition

Pi→f (T ) =
Ω2
0

4
y(ωfi, T ) =

|Wfi|2

ℏ2
y(ωfi, T ). (9.28)

La fonction y(ω, T ) apparaissant dans cette grandeur est représentée Fig. 9.4 en fonction de ω. Au
facteur T 2 près il s’agit du carré de la fonction sinus cardinal, dont le premier zéro est obtenu lorsque
son argument est égal à π, soit ωfi = 2π/T .

Figure 9.4 – Représentation de la fonction y(ω, T ) en fonction de ω.

On peut tirer deux conséquences de l’éq. 9.28. D’une part, la probabilité de transition de l’état
initial vers l’état final est significative lorsque ωfi est suffisamment proche de zéro, soit |ωfi| ≲ π/T .
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Cela implique que la différence d’énergie ∆E = |Ef − Ei| soit de l’ordre de ℏ/T , ou encore

∆E × T ∼ ℏ. (9.29)

Cette relation implique que l’énergie de l’état final soit égale à celle de l’état initial, à une tolérance
ℏ/T près qui est inversement proportionnelle à la durée de l’interaction.

D’autre part, pour que la probabilité de transition soit non nulle, il faut bien entendu que
l’élément de matrice Wfi = ⟨f | Ŵ |i⟩ soit lui-même non nul. Des arguments de symétrie permettront
souvent d’identifier quels éléments de matrice de couplage peuvent être nuls ou non nuls.

9.5 Cas d’une perturbation sinusoïdale

Considérons maintenant le cas où la perturbation est une fonction sinusoïdale du temps, ce qui
pourra correspondre par exemple à une expérience de résonance magnétique nucléaire, aux horloges
atomiques discutées en 7.5, ou encore au problème de l’interaction laser-matière. On posera dans ce
cas

Wfi(t) = ℏΩ0 cosωt =
ℏΩ0

2

(
eiωt + e−iωt

)
, (9.30)

où la fréquence ω est supposée positive. On s’intéresse à nouveau à un créneau de durée finie T ,
et on cherche à déterminer la probabilité de transition après l’impulsion excitatrice, à l’instant T .
D’après l’éq. 9.14, on peut alors écrire

γ
(1)
f (T ) = − i

ℏ

∫ T

0
eiωfitWfi(t)dt (9.31)

= − iΩ0

2

(∫ T

0
ei(ωfi+ω)tdt+

∫ T

0
ei(ωfi−ω)tdt

)
. (9.32)

On obtient donc deux intégrales au lieu d’une seule dans le cas étudié plus haut d’une perturbation
constante, la fréquence ωfi étant ici décalée de ±ω. En remplaçant ωfi par ωfi ± ω dans l’éq. 9.20,
on obtient alors

γ
(1)
f (T ) = − iΩ0

2

(
ei(ωfi+ω)T − 1

i(ωfi + ω)
+
ei(ωfi−ω)T − 1

i(ωfi − ω)

)
. (9.33)

Cette expression fait apparaître deux termes, qui seront résonnants pour des valeurs différentes de
la fréquence ω. En effet, le premier terme sera résonnant pour ω proche de −ωfi tandis que le second
terme sera résonnant pour ω proche de +ωfi, lorsque le dénominateur tend vers zéro.

Dans le cas où ωfi est positif (ce qui correspond à Ef > Ei), seul le second terme de l’éq. 9.33
pourra être résonnant. Faisons l’hypothèse d’une excitation proche de la résonance, correspondant
à la condition |ωfi − ω| ≪ ωfi. Dans ce cas, le dénominateur du premier terme sera beaucoup plus
grand que celui du second terme, ce qui permet de négliger le premier terme devant le second. Tout
se passe comme si on avait une onde tournante, en e−iωt, à la place du terme en cosωt. C’est ce
qu’on appelle l’approximation de l’onde tournante (ou RWA pour rotating wave approximation), qui
consiste à ne garder que celle des deux ondes tournantes qui tourne dans le bon sens, et est donc
proche de la résonance. L’expression de γ(1)f (T ) est alors similaire à celle donnée par l’éq. 9.20, à
condition de remplacer ωfi par ωfi−ω. En remplaçant de même ωfi par ωfi−ω dans l’éq. 9.28, on
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obtient alors
Pi→f (T ) =

Ω2
0

4
y(ωfi − ω, T ). (9.34)

A l’inverse, si ωfi est négatif (ce qui correspond à Ef < Ei), seul le premier terme de l’éq. 9.33
pourra être résonnant, pour ω proche de −ωfi. En faisant l’hypothèse que |ωfi + ω| est très petit
devant |ωfi|, on pourra à nouveau appliquer l’approximation RWA, en ne conservant cette fois que
le premier terme de l’éq. 9.33. En remplaçant ωfi par ωfi + ω dans l’éq. 9.28, on obtient alors

Pi→f (T ) =
Ω2
0

4
y(ωfi + ω, T ). (9.35)

La Fig. 9.5 représente ces deux possibilités, avec un état |f⟩ situé au-dessus de l’état initial |i⟩ et
un état |f ′⟩ situé en-dessous.

Absorption

Emission

stimulée

Figure 9.5 – Excitation résonnante pour un état final situé au-dessus ou
en-dessous de l’état initial. Dans le cas d’un couplage avec un champ électroma-
gnétique, les deux processus résonnants peuvent s’interpréter comme l’absorption
ou l’émission stimulée d’un photon d’énergie ℏω.

Grâce à la modulation sinusoïdale de l’élément de matrice de transition, il est maintenant possible
d’effectuer une transition vers un état final d’énergie très différente de celle de l’état initial. C’est
dorénavant ωfi ± ω qui doit être proche de zéro (toujours à 1/T près). On peut interpréter ce
résultat très simplement dans le cas où la perturbation W (t) provient de l’interaction avec une
onde électromagnétique de fréquence ω. En effet, le processus où le système passe de l’état initial,
d’énergie Ei, vers un état final d’énergie Ef plus grande peut s’interpréter comme l’absorption d’un
photon d’énergie ℏω. A l’inverse, lors de la transition vers un niveau d’énergie inférieure, un photon
sera émis par le système : c’est le processus d’émission stimulée. Si on fait un bilan d’énergie en
prenant en compte l’énergie du photon, on observe en effet que

Ef ≈ Ei ± ℏω. (9.36)

Remarquons que, comme discuté en 9.4, l’énergie est conservée à ℏ/T près, où T est la durée de
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l’interaction.

9.6 Transition d’un état discret vers un continuum

Considérons maintenant la situation représentée Fig. 9.6 où la transition s’effectue non pas vers
un état final spécifique mais vers un grand nombre d’états finals possibles, formant un continuum
de niveaux d’énergie.

Figure 9.6 – Transition d’un état discret |i⟩ vers un continuum d’états finals.

Afin de caractériser la manière dont sont distribués les niveaux d’énergie du continuum, nous
avons besoin d’introduire au préalable une nouvelle grandeur appelée densité d’états.

9.6.1 Notion de densité d’états

La Fig. 9.7(a) représente un quasi-continuum de niveaux d’énergie. On introduit alors la grandeur
N(E), qui représente le nombre d’états d’énergie inférieure ou égale à E. Comme le montre la
Fig. 9.7(b), cette grandeur augmente par sauts successifs d’une unité, à chaque fois que E atteint
l’énergie d’un état du système. Toutefois, dans le cas où le nombre d’états est très grand, c’est en
fait une version lissée de cette fonction, également représentée Fig. 9.7(b), qui va nous intéresser.
C’est cette fonction, où l’on a gommé les discontinuités associées à chaque état individuel, que nous
appellerons dorénavant N(E).

(a) (b)

Figure 9.7 – (a) Quasi-continuum de niveaux d’énergie. (b) Représentation
du nombre d’états N(E) (axe horizontal) d’énergie inférieure ou égale à E (axe
vertical).

Considérons le nombre d’états compris dans l’intervalle [E,E+ δE], égal à N(E+ δE)−N(E).
Dans le cas où δE est petit devant l’échelle caractéristique de variation de N(E), on s’attend à ce
que ce nombre d’états soit directement proportionnel à δE. On introduit alors la densité d’états
ρ(E), définie par

N(E + δE)−N(E) = ρ(E)δE. (9.37)
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En faisant tendre δE vers zéro, on peut donc écrire

ρ(E) =
dN

dE
. (9.38)

A titre d’exemple, considérons le cas d’un oscillateur harmonique à une dimension, pour lequel les
niveaux d’énergie s’écrivent En = (n+ 1/2)ℏω0. Pour E ≥ ℏω0/2, on peut donc écrire

N(E) =

⌊
E

ℏω0
+

1

2

⌋
. (9.39)

Mais cette fonction n’est pas continue – et encore moins dérivable. Nous allons donc la remplacer
par une version lissée, que l’on obtient simplement en supprimant la partie entière, soit

N(E) =
E

ℏω0
+

1

2
. (9.40)

La densité d’états s’écrit alors (pour E ≥ ℏω0/2)

ρ(E) =
dN

dE
=

1

ℏω0
. (9.41)

Cette densité d’états est constante, ce qui n’est pas surprenant pour des niveaux équidistants. Sa
valeur est simplement égale à l’inverse de l’écart entre deux niveaux consécutifs.

9.6.2 Règle d’or de Fermi

On se place ici dans le cas d’une perturbation constante comme celle discutée en 9.4, et on
s’intéresse à la probabilité P(t) que le système ait quitté l’état initial |i⟩ à un instant t donné.
Par définition, on peut écrire cette probabilité en sommant sur les états finals |f⟩ les probabilités
Pi→f (t) d’atteindre chacun des états du continuum. En utilisant l’éq. 9.24, on obtient donc

P(t) =
∑
f

Pi→f (t) =
∑
f

|Wfi(Ef )|2

ℏ2
y

(
Ef − Ei

ℏ
, t

)
, (9.42)

où l’on a supposé ici pour simplifier que l’élément de matrice ⟨f | Ŵ |i⟩ = Wfi(Ef ) ne dépendait
que de l’énergie Ef des états |f⟩ contribuant à la somme. Faisons maintenant quelques hypothèses
supplémentaires :

• L’élément de matrice de Wfi(Ef ) varie lentement avec l’énergie Ef ,

• La densité d’état ρ(Ef ) varie lentement avec Ef ,

• Le temps t est choisi assez grand pour que la fonction y(ω, t) soit très étroite.

La troisième hypothèse est en fait directement liée aux deux premières, puisque la largeur caracté-
ristique de la fonction y(ω, t) est de l’ordre de 2π/t, ce qui nous donne une échelle caractéristique
2πℏ/t en énergie. Les deux premières hypothèses peuvent donc s’exprimer en disant que Wfi(Ef )

et ρ(Ef ) peuvent être considérées comme constantes lorsque Ef varie à l’intérieur d’un intervalle de
largeur 2πℏ/t. Les différents termes intervenant dans la somme sur f ne dépendant que de l’énergie,
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commençons par remplacer la somme discrète par une intégrale sur l’énergie. On obtient ainsi

P(t) =
∫ |Wfi(Ef )|2

ℏ2
y

(
Ef − Ei

ℏ
, t

)
ρ(Ef )dEf , (9.43)

où l’on a pris soin de faire apparaître la densité d’états pour compter exactement le même nombre de
termes, ρ(Ef )dEf , lorsqu’on remplace la somme discrète par une intégrale. D’après les hypothèses
formulées plus haut, la fonction |Wfi(Ef )|2ρ(Ef ) peut être considérée comme constante dans l’in-
tervalle de largeur 2πℏ/t sur lequel la fonction y((Ef −Ei)/ℏ, t) prend des valeurs non négligeables.
On pourra donc sortir l’élément de matrice et la densité d’états de l’intégrale, et écrire

P(t) =
|Wfi|2

ℏ2
ρ(Ef = Ei)

∫
y

(
Ef − Ei

ℏ
, t

)
dEf , (9.44)

où Wfi est la valeur prise par l’élément de matrice pour Ef ≈ Ei. L’intégrale ci-dessus peut être
calculée aisément à l’aide du changement de variable Ef = Ei + ℏω, ce qui donne∫

y

(
Ef − Ei

ℏ
, t

)
dEf = ℏ

∫ +∞

−∞
y(ω, t)dω = 2πℏt, (9.45)

où l’on a utilisée l’éq. A.50 établie en annexe A.7. La probabilité de transition s’écrit alors

P(t) = 2π

ℏ
|Wfi|2ρ(Ef = Ei)t. (9.46)

Elle est donc directement proportionnelle au temps t. On peut encore écrire P(t) = Γt où

Γ =
dP
dt

=
2π

ℏ
|Wfi|2ρ(Ef = Ei) (9.47)

est par définition le taux de transition. Le résultat que nous venons d’établir, à savoir que le taux
de transition est donné par l’éq. 9.47, est connu sous le nom de règle d’or de Fermi.

Considérons maintenant la probabilité Pi(t) = 1−P(t) que le système soit toujours dans l’état
initial à l’instant t. D’après ce que nous venons d’établir, on peut écrire

Pi(t) = 1− Γt. (9.48)

La probabilité Pi(t) décroit donc de manière linéaire, en conformité avec un taux de transition Γ

indépendant du temps. Remarquons que ce résultat n’est pas valable pour t petit, auquel cas on
s’attend à une évolution quadratique de Pi(t) – comme dans le cas étudié plus haut où il n’y a
qu’un petit nombre de niveaux couplés à l’état |i⟩. Ce n’est qu’aux temps ultérieurs, lorsque 2πℏ/t
est assez petit, que les hypothèses effectuées plus haut deviennent valides, donnant lieu à l’évolution
linéaire décrite par l’éq. 9.48.

Mais l’éq. 9.48 n’est pas valide non plus lorsque Γt devient non négligeable devant 1, auquel cas
la méthode des perturbations finit par ne plus être applicable. Au-delà du régime perturbatif, on
pourra se convaincre en traitant l’exercice C.20 que la probabilité décroit de manière exponentielle,
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Figure 9.8 – Evolution de la probabilité Pi(t) pour un état discret couplé à
un continuum.

comme représenté Fig. 9.8. On obtient alors

Pi(t) = e−Γt, (9.49)

où Γ est toujours donné par l’éq. 9.47. On retrouve bien le déclin linéaire dans la limite où Γt≪ 1.
On obtient donc une évolution irréversible, associée à une durée de vie de l’état initial de l’ordre de
1/Γ.

9.6.3 Emission spontanée

Le résultat que nous venons d’établir permet de comprendre pour quelle raison un système quan-
tique placé dans un état excité finira toujours par retomber dans l’état fondamental, contrairement
à ce qu’une application un peu trop littérale de la notion d’état stationnaire aurait pu laisser croire.
En effet, à moins de considérer l’état quantique de l’univers entier, un système quantique donné est
toujours plongé dans un environnement auquel il est couplé d’une manière ou d’une autre. Même
si ce couplage peut être réduit à l’extrême dans certaines expériences de physique quantique, il ne
peut jamais être totalement éliminé. En conséquence, un état excité dit stationnaire ne l’est pas
vraiment et le système finira toujours par retomber dans son état fondamental.

A titre d’exemple, considérons un atome placé dans le vide, très loin de tout autre système
physique. Même ainsi, l’atome est couplé au champ électromagnétique qu’il faut traiter dans le cadre
de la physique quantique. Pour un atome préparé dans un état excité |e⟩, l’état initial du système
complet devra s’écrire |i⟩ = |e⟩⊗|0⟩, où |0⟩ représente l’état vide du rayonnement électromagnétique.
Cet état initial est couplé au continuum d’états |f⟩ = |g⟩ ⊗ |1

ϵ⃗,⃗k
⟩, où |g⟩ est l’état fondamental de

l’atome tandis que |1
ϵ⃗,⃗k
⟩ représente l’état du rayonnement défini par un photon associé à un vecteur

d’onde k⃗ et à une direction de polarisation ϵ⃗. Pour des vecteurs d’onde tels que l’énergie du photon
ℏkc est de l’ordre de la différence d’énergie ℏωeg entre les états excité et fondamental, on pourra
s’attendre à un couplage important entre les états |i⟩ et |f⟩. On est donc bien en présence d’un état
discret couplé à un continuum. Dans le cas d’une transition dipolaire électrique, un calcul d’optique
quantique (dont le détail sort du cadre de ce cours) permet de calculer le taux de transition suivant

Γ =
ω3
eg

3πϵ0ℏc3
| ⟨e| ẑ |g⟩ |2, (9.50)

où ẑ est l’opérateur position selon l’axe z de l’électron de notre atome. On peut montrer que ce
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taux de transition, qui décrit le processus d’émission spontanée, est du même ordre de grandeur
pour la plupart des transitions électroniques dans les atomes et les molécules. La durée de vie 1/Γ

varie typiquement entre 1 et 10 ns.
En nous appuyant sur les résultats de ce chapitre, nous pouvons maintenant comprendre l’es-

sentiel de la physique intervenant lors du phénomène de fluorescence, permettant à une molécule
excitée optiquement d’émettre un rayonnement de plus grande longueur d’onde. Comme représenté
Fig. 9.9, le processus fait d’abord intervenir l’absorption résonnante de lumière de fréquence ωe,
comme décrit en 9.5. A partir de ce premier état excité, une désexcitation dite non radiative – avec
un taux de transition Γ1 – amène la molécule dans un état excité de plus basse énergie. Il s’agit de
l’évolution attendue pour un état discret couplé à un continuum, le continuum correspondant ici à
l’ensemble des modes de vibration de la molécule. Une fois dans cet état, la molécule se désexcite
par émission spontanée comme décrit plus haut, donnant lieu à l’émission d’un photon d’énergie
ℏω. Il s’agit alors d’une désexcitation dite radiative, car elle est associée à l’émission de rayonne-
ment. Enfin, un processus de désexcitation non radiatif similaire au premier permet à la molécule
de retomber dans son état fondamental, où elle pourra absorber de nouveaux photons.

E
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Figure 9.9 – Représentation schématique du processus de fluorescence.

Le processus de fluorescence a donné lieu à de nombreuses applications, par exemple dans l’éclai-
rage où des molécules bien choisies excitées par des LED bleues fluorescent à plus basse énergie pour
donner lieu à l’émission de lumière blanche. On pourra également citer les applications aux bios-
ciences, avec l’essor des méthodes de microscopie de fluorescence excitée par laser, en régime linéaire
ou multiphotonique.
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Chapitre 10

La seconde révolution quantique

Outre leurs innombrables applications industrielles, les nouvelles technologies développées dans
le cadre de la première révolution quantique (1.5) ont rendu possibles des avancées scientifiques
majeures, notamment dans le domaine de la manipulation en laboratoire d’objets quantiques in-
dividuels. C’est ce domaine de recherche qui a été couronné par le prix Nobel de physique 2012,
décerné à Serge Haroche et David Wineland. Les systèmes physiques étudiés par ces deux chercheurs
et leurs équipes étaient très différents : des cavités supraconductrices permettant de piéger un ou
plusieurs photons microondes en interaction avec des atomes de Rydberg (i) individuels dans le pre-
mier cas [19] et des ions individuels piégés dans le second cas [20]. Mais nombre de concepts étaient
communs et ont pu être ultérieurement généralisés à une grande variété de systèmes physiques, par
exemple des atomes individuels piégés [21], des défauts individuels dans le diamant [22] ou encore
des circuits quantiques supraconducteurs [23]. Ces nouvelles méthodes ont ainsi transformé en réa-
lité expérimentale les fameuses expériences de pensée qui ont marqué l’émergence de la physique
quantique.

Spin ½

Etat de polarisation

d‘un photon

Atome

Ionqubit

Figure 10.1 – Quelques exemples de réalisation d’un bit quantique, ou qubit.

Pour mieux mettre en évidence le dénominateur commun entre des systèmes quantiques très
divers, on parle – lorsqu’il s’agit de systèmes à deux niveaux – de bits quantiques (ou qubits). A
l’instar d’un bit d’information qui peut prendre les deux valeurs 0 ou 1, un qubit est un système décrit
par un espace de Hilbert de dimension 2 engendré par des états notés |0⟩ et |1⟩. Comme l’illustre la
Fig. 10.1, les réalisations physiques d’un qubit peuvent être très diverses. Il pourra s’agir d’un spin
1/2, des deux états de polarisation d’un photon unique, ou encore de deux niveaux spécifiques |g⟩ et

(i)i.e. des atomes placés dans des états de Rydberg circulaires, comme celui représenté Fig. 5.5(b).
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|e⟩ d’un atome ou d’un ion, que l’on peut isoler des autres niveaux grâce à une méthode résonnante
comme la RMN ou la spectroscopie laser. Par exemple, dans le cas des expériences réalisées à l’aide
d’atomes de Rydberg circulaires, les deux niveaux du qubit peuvent être les états |n, n− 1, n− 1⟩
pour deux valeurs consécutives de l’entier n [19].

Ce que l’on appelle la seconde révolution quantique [24] concerne les recherches actuellement
menées en vue de développer de nouvelles technologies exploitant les deux aspects les plus étranges
de la physique quantique, à savoir le principe de superposition linéaire et l’intrication. Ces aspects
ont fait l’objet de nombreuses expériences de pensée, dont les plus célèbres sont le chat de Schrödin-
ger et le paradoxe EPR (voir PHY3X061). Mais, les progrès effectués dans la manipulation d’objets
quantiques individuels permettent aujourd’hui de transformer certaines de ces expériences de pensée
en réalité expérimentale.

Toutes les grandes puissances scientifiques mettent actuellement en œuvre d’ambitieux pro-
grammes de recherche visant à contribuer à cette seconde révolution quantique, avec notamment le
plan quantique en France (ii) et le Quantum Technology Flagship pour l’Union Européenne [25]. On
distingue habituellement quatre piliers constituant ce nouveau domaine de recherche : les capteurs,
les communications, les ordinateurs et les simulateurs quantiques.

Dans la suite de ce chapitre, nous allons évoquer bièvement trois exemples de ces nouvelles
technologies quantiques : les circuits quantiques supraconducteurs, les photons individuels, et les
simulateurs quantiques.

10.1 Circuits quantiques supraconducteurs

La supraconductivité est l’un des phénomènes emblématiques de la physique quantique. Dé-
couverte par Kamerlingh Onnes en 1911 [26], elle se manifeste par une disparition totale de la
résistivité dans certains matériaux – dits supraconducteurs – lorsque leur température est abaissée
en dessous d’une température critique Tc. La théorie dite BCS [27] a permis de bien comprendre
ce phénomène dans le cas des matériaux supraconducteurs conventionnels comme par exemple le
plomb (Tc ≈ 7.2 K) ou l’alliage niobium-titane (Tc ≈ 10 K). En revanche, la compréhension de la
supraconductivité dite non conventionnelle, donnant lieu à des températures critiques beaucoup plus
élevées (par exemple Tc ≈ 135 K dans certains cuprates) reste aujourd’hui encore l’objet d’intenses
recherches. Les applications de la supraconductivité sont multiples. En particulier, la possibilité
ainsi offerte de maintenir des courants persistants sans dissipation par effet Joule reste la seule tech-
nologie permettant d’engendrer les champs magnétiques intenses utilisés notamment en imagerie
par résonance magnétique.

Les circuits supraconducteurs quantiques sont des dispositifs électroniques à base de matériaux
supraconducteurs, que l’on peut considérer comme des objets quantiques individuels. Ainsi, un
circuit LC supraconducteur peut être considéré comme un oscillateur harmonique quantique, à
condition qu’il soit maintenu à une température T telle que kBT soit sensiblement inférieure au
quantum ℏω0, où ω0 = 1/

√
LC. Pour un circuit associé à une fréquence ω0/(2π) de l’ordre de

5 GHz, on obtient une température typique de ℏω0/kB ∼ 240 mK. Sachant qu’il existe des cryostats
permettant d’abaisser la température du circuit à environ 10 mK, on peut en conclure que le

(ii)https://www.cnrs.fr/fr/cnrsinfo/la-recherche-francaise-au-coeur-du-plan-quantique

https://www.cnrs.fr/fr/cnrsinfo/la-recherche-francaise-au-coeur-du-plan-quantique


10.2. PHOTONS INDIVIDUELS 151

régime quantique est effectivement accessible à l’expérience. De plus, en remplaçant l’inductance du
circuit LC par une jonction Josephson, on introduit une légère anharmonicité qui permet d’exciter
sélectivement les états |0⟩ et |1⟩ de l’oscillateur. On obtient ainsi un système à deux niveaux, c’est-
à-dire un qubit. Des concepts physiques initialement démontrés à l’aide de cavités micro-ondes et
d’atomes de Rydberg [19] peuvent ainsi être implémentés dans un système constitué respectivement
de circuits LC et de qubits supraconducteurs [23]. Les circuits quantiques supraconducteurs font
actuellement l’objet de nombreux travaux scientifiques, notamment à l’Ecole polytechnique dans
l’équipe de Landry Bretheau et Jean-Damien Pillet [28].

10.2 Photons individuels

Après un long débat entre les tenants de la théorie corpusculaire, comme Newton, et ceux de
la théorie ondulatoire, comme Young ou Fresnel, on sait aujourd’hui que la lumière est elle aussi
soumise à la dualité onde-corpuscule. Le photon présente ainsi une nature à la fois corpusculaire
et ondulatoire. Il est toutefois important de souligner que, si un phénomène comme l’effet photo-
électrique est souvent évoqué pour illustrer la notion de photon, il ne constitue pas une preuve directe
de la nature corpusculaire de la lumière [29, 30]. On obtiendrait en effet le même résultat physique
si la lumière était de nature purement ondulatoire, dans le cadre d’une théorie dite semi-classique
où seule la matière est traitée de manière quantique. Ainsi, l’absorption de lumière par un système
à deux niveaux {|g⟩ , |e⟩} peut s’interpréter en termes de photons en remarquant que l’absorption se
produit de manière efficace lorsque l’énergie ℏω des photons est voisine de la différence d’énergie ℏωeg
entre les deux niveaux. Mais, à l’aide de la méthode des perturbations dépendant du temps (9.5),
nous avons obtenu exactement le même résultat en traitant la lumière de façon classique. Ce n’est
qu’avec l’apparition des premières sources de photons uniques, dans les années 1970-1980, que la
nature corpusculaire du photon a réellement été établie de manière irréfutable. Les premières sources
de ce type étaient ce que l’on appelle des sources de photons uniques annoncés. De telles sources
exploitent en fait des paires de photons, obtenus soit par cascade radiative [31] soit par des effets
d’optique non-linéaire comme l’émission paramétrique [32]. La détection – imprévisible – de l’un
des deux photons de la paire permet de savoir que l’on dispose avec certitude d’un photon unique
associé au second mode de la paire de photons. Parmi les applications de ces premières sources,
on peut notamment citer les travaux d’Alain Aspect et Philippe Grangier à l’Institut d’Optique
avec le test expérimental des inégalités de Bell [33] ou encore l’observation dans un même montage
expérimental de la nature à la fois corpusculaire et ondulatoire de la lumière [34].

On dispose aujourd’hui de sources de photons uniques à la demande, qui permettent d’obtenir
de manière déterministe un et un seul photon au moment requis. Ces sources reposent sur un objet
quantique individuel, comme par exemple une boîte quantique, que l’on excite à l’instant souhaité
et dont la désexcitation produit un photon unique. La Fig. 10.2(a) représente un exemple d’une telle
source, développée par l’équipe de Pascale Senellart au Centre de Nanosciences et Nanotechnolo-
gies [35]. On peut vérifier la qualité de la source en séparant le faisceau en deux puis en mesurant
le taux de coïncidences observé lorsque le système est excité par un train d’impulsions périodiques,
ici séparées d’une période T = 12.2 ns. Les pics observés montrent la probabilité importante de
détecter un photon sur l’un des deux détecteurs un nombre entier de périodes T après avoir détecté
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(a) (b)

Figure 10.2 – (a) Boîte quantique excitée par une impulsion laser, placée
dans une micro-cavité optique permettant une collection efficace de l’émission
spontanée. Le faisceau émis, focalisé dans une fibre optique, est ici séparé en
deux parties envoyées sur des photodétecteurs à avalanche (APD). (b) Mesure
des coïncidences entre les deux photodétecteurs en fonction du retard entre évè-
nements de détection. Extrait de Somaschi et al. [35].

un photon sur l’autre détecteur. L’absence de coïncidences pour un retard nul montre que cette
source émet bien ses photons un par un, puisqu’il est effectivement impossible de détecter simul-
tanément un photon sur chacun des deux détecteurs. A l’aide d’un interféromètre approprié, cette
source permet également de produire des paires de photons indiscernables, ce qui a été vérifié à
l’aide de l’effet Hong-Ou-Mandel étudié en PC8 [35].

10.3 Simulateurs quantiques

L’une des premières références à un ordinateur quantique remonte à une conférence du physicien
Richard Feynman en 1982, lors de laquelle ce dernier remarquait que l’effort numérique requis pour

Figure 10.3 – Dispositif expérimental permettant de contrôler la disposition
tridimensionnelle d’atomes individuels dans un piège optique holographique. Ex-
trait de [21].
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simuler un problème de physique quantique augmentait de manière exponentielle avec la taille du
système (de même que la taille de l’espace de Hilbert). Il en concluait que la bonne façon de simuler
un système physique était d’utiliser un simulateur lui-même quantique, pouvant ainsi bénéficier
lui aussi d’une augmentation exponentielle de sa puissance de calcul en fonction de sa taille [36].
Ce concept d’ordinateur quantique spécialisé est ce que l’on appelle aujourd’hui un simulateur
quantique, dont l’objectif est de simuler un problème physique spécifique. A l’instar d’un simulateur
numérique classique, un tel simulateur pourrait permettre de faire varier de manière contrôlée les
paramètres du problème, ce qui permettrait notamment de comprendre les mécanismes physiques
impliqués et de faire des prédictions théoriques dans des situations hors de portée des ordinateurs
classiques.

Figure 10.4 – Quelques structures tridimensionnelles obtenues à l’aide du
montage de la Fig. 10.3. Chaque point lumineux correspond à exactement un
atome, ceux-ci étant disposés selon un hyperboloïde (a), un ruban de Möbius
(b), un fullerène comportant 84 atomes (c), un cône (d), un tore (e), ou une
Tour Eiffel (f). Extrait de [21].

Il existe de nombreux systèmes physiques susceptibles d’implémenter un simulateur quantique.
Nous allons ici discuter l’une de ces approches, développée par l’équipe d’Antoine Browaeys à
l’Institut d’Optique (IOGS) et reposant sur la manipulation d’atomes de Rydberg dans des pièges
optiques. La Fig. 10.3 représente le montage expérimental correspondant, comportant un faisceau
laser diffracté par un réseau de phase programmable à l’aide d’un modulateur spatial de lumière
(SLM). Cette méthode holographique permet de disposer d’un ensemble de pinces optiques indépen-
dantes constituant une centaine de pièges dont les positions sont programmables en 3D. Un second
faisceau laser, dont le point de focalisation est contrôlé à l’aide d’un déflecteur acousto-optique
(AOD), permet de déplacer les atomes un par un afin de s’assurer qu’il y a exactement un atome
dans chaque piège. Les autres éléments du montage permettent de visualiser les pièges ainsi que
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les atomes, dont la fluorescence est détectée à l’aide d’une caméra EMCCD. La Fig. 10.4 repré-
sente quelques exemples de structures tridimensionnelles ainsi réalisées. On observe en particulier
une structure de fullerène à 84 atomes (c), similaire à la structure du Carbone 60. On voit ainsi
comment cette méthode permet de construire un modèle de molécule chimique. Un autre faisceau
laser permet enfin de contrôler le couplage entre les différents atomes, ce qui constitue l’un des
paramètres ajustables faisant l’intérêt d’un tel simulateur quantique.

En résumé, le domaine des simulateurs quantiques est actuellement en plein essor et pourrait
donner lieu à moyen terme à des dispositifs fonctionnels. Ceux-ci devraient permettre de faire des
progrès majeurs dans la compréhension de problèmes physiques particulièrement ardus, comme par
exemple la chimie quantique dans de grosses molécules ou la supraconductivité non conventionnelle.
De tels simulateurs seraient également extrêmement intéressant pour assister l’ingénierie quantique
de nouveaux matériaux.



Annexe A

Rappels mathématiques

Cette annexe regroupe quelques rappels mathématiques. Il n’est pas utile de refaire les calculs
d’intégrales, qui sont donnés ici uniquement à titre de référence.

A.1 Fonction d’opérateur

Etant donné une fonction d’un nombre complexe a 7→ f(a), on peut définir la fonction f(Â)

de l’opérateur Â de deux manières différentes (mais équivalentes). La première méthode consiste à
utiliser le développement en série entière de la fonction f(a), donné par

f(a) =
+∞∑
p=0

f (p)

p!
ap. (A.1)

On pourra alors écrire

f(Â) =
+∞∑
p=0

f (p)

p!
Âp. (A.2)

Une autre méthode consiste à se placer dans la base propre {|n⟩} de l’opérateur Â. On a alors
Â|n⟩ = an|n⟩. Dans cette base, on peut simplement écrire

f(Â)|n⟩ = f(an)|n⟩ (A.3)

ce qui permet de définir la fonction d’opérateur f(Â) selon la relation

f(Â) =
∑
n

f(an)|n⟩⟨n| (A.4)

ou encore, sous forme matricielle dans la base {|n⟩}, selon l’expression

f(Â) =


f(a0) 0 0

0 f(a1) 0
...

0 0 f(a2)

. . .
. . .

 . (A.5)
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A.2 Exponentielle d’opérateur

D’après ce qui précède, on peut définir l’exponentielle de l’opérateur Â comme

eÂ =
+∞∑
p=0

Âp

p!
(A.6)

ou encore comme
eÂ =

∑
n

ean |n⟩⟨n| (A.7)

en utilisant la base propre {|n⟩} de l’opérateur Â. S’il n’est pas vrai de manière générale que
l’exponentielle d’une somme d’opérateurs est égale au produit des exponentielles, ce dernier résultat
devient correct dès lors que les opérateurs considérés commutent.

[Â, B̂] = 0⇒ eÂ+B̂ = eÂeB̂. (A.8)

En effet, si les opérateurs Â et B̂ commutent, on peut d’après 1.4.1 se placer dans une base propre
commune {|m,n, p⟩}, avec

Â|m,n, p⟩ = am|m,n, p⟩ (A.9)

B̂|m,n, p⟩ = bn|m,n, p⟩ (A.10)

On a alors

eÂ+B̂|m,n, p⟩ = eam+bn |m,n, p⟩ (A.11)

= eamebn |m,n, p⟩ (A.12)

= eÂeB̂|m,n, p⟩ (A.13)

ce qui démontre l’éq. A.8. On peut aisément étendre ce résultat au cas d’une somme de plusieurs
opérateurs commutant deux à deux.

[Âk, Âk′ ] = 0 ∀k, k′ ⇒ exp

(∑
k

Âk

)
=
∏
k

exp
(
Âk

)
(A.14)

A.3 Equation différentielle linéaire du 1er ordre à coefficients constants

Il est bien connu que l’équation différentielle linéaire du premier ordre

df

du
= cf(u), (A.15)

où c est une constante, associée à la condition initiale f(u0) = f0, admet la solution unique

f(u) = f(u0) exp(c(u− u0)). (A.16)
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Ce résultat reste vrai pour un opérateur A(u) obéissant à l’équation différentielle linéaire

dÂ(u)

du
= ĈÂ (A.17)

où Ĉ est un opérateur linéaire indépendant de u. La solution s’écrit à l’aide d’une exponentielle
d’opérateur

Â(u) = Â(u0) exp
(
(u− u0)Ĉ

)
, (A.18)

comme montré par exemple en B.2.

A.4 Intégrales de fonctions exponentielles

L’intégrale du produit d’un monôme d’ordre n par une exponentielle décroissante e−λx (ou λ

est un nombre réel positif) a pour valeur

In(λ) =

∫ +∞

0
xne−λxdx =

n!

λn+1
. (A.19)

On vérifie aisément cette expression pour n = 0 :

I0(λ) =

∫ +∞

0
e−λxdx =

−1
λ

[
e−λx

]+∞

0
=

1

λ
(A.20)

Par ailleurs, en dérivant par rapport à λ, on obtient

dIn
dλ

=

∫ +∞

0
xn(−x)e−λxdx = −In+1(λ) (A.21)

ce qui nous permet de vérifier par récurrence la validité de l’éq. A.19.

A.5 Intégrales de fonctions gaussiennes

On donne la fonction gaussienne

gσ(x) =
1

σ
√
2π

exp

(
− x2

2σ2

)
. (A.22)

où σ est un nombre réel positif. En dérivant par rapport à x, on obtient

dgσ
dx

=
−2x
2σ2

1

σ
√
2π
e−

x2

2σ2 = − x

σ2
gσ(x) (A.23)

ce qui nous donne l’équation différentielle génératrice des fonctions gaussiennes

xgσ(x) + σ2
dgσ
dx

= 0. (A.24)
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Remarquons que l’intégrale de la fonction gσ(x) est égale à l’unité. En effet

∫ +∞

−∞
e−

x2

2σ2 dx =

√√√√+∞x

−∞
e−

x2+y2

2σ2 dxdy (A.25)

=

√
2π

∫ +∞

0
e−

r2

2σ2 rdr (A.26)

=

√
2π

[
−σ2e−

r2

2σ2

]+∞

0

= σ
√
2π (A.27)

(A.28)

soit ∫ +∞

−∞
gσ(x)dx = 1. (A.29)

On se propose d’évaluer les intégrales de la forme

In =
1

σ
√
2π

∫ +∞

−∞
x2ne−

x2

2σ2 dx =

∫ +∞

−∞
x2ngσ(x)dx. (A.30)

D’après l’éq. A.29, on sait déjà que I0 = 1. Pour évaluer In pour n > 0, effectuons une intégration
par parties

In =

∫ +∞

−∞
x2n−1 (xgσ(x)) dx (A.31)

= −σ2
∫ +∞

−∞
x2n−1dgσ

dx
dx (A.32)

= −σ2
([
x2n−1gσ(x)

]+∞
−∞ −

∫ +∞

−∞
(2n− 1)x2n−2gσ(x)dx

)
(A.33)

= (2n− 1)σ2
∫ +∞

−∞
x2(n−1)gσ(x)dx (A.34)

ce qui nous donne la relation de récurrence

In = (2n− 1)σ2In−1 (A.35)

soit
In = (2n− 1)× (2n− 3) · · · × 3× 1× σ2nI0 (A.36)

ou encore
In =

(2n− 1)!

2n−1(n− 1)!
σ2n. (A.37)

Les premiers termes s’écrivent donc

I0 = 1 I1 = σ2 I2 = 3σ4 (A.38)

Si on interprète la fonction gσ(x) comme une densité de probabilité (ce qui est possible en vertu de
l’éq. A.29 qui nous dit que son intégrale est bien égale à 1), la relation I1 = σ2 peut s’écrire sous la
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forme
⟨x2⟩ =

∫ +∞

−∞
x2gσ(x)dx = σ2. (A.39)

En d’autres termes, σ2 est la variance associée à notre distribution gaussienne et σ est l’écart
quadratique moyen.

A.6 Intégrales de fonctions lorentziennes

L’intégrale d’une lorentzienne élevée à la puissance n s’écrit

In =

∫ +∞

−∞

1

(x2 + a2)n
dx =

(2n− 2)!

22n−2(n− 1)!2
π

a2n−1
(A.40)

soit
I1 =

π

a
I2 =

π

2a3
I3 =

3π

8a5
I4 =

5π

16a7
. (A.41)

Pour prouver ce résultat, commençons par établir une relation de récurrence entre In et In+1 en
dérivant l’intégrale par rapport à a. On obtient

dIn
da

=

∫ +∞

−∞

−2na
(x2 + a2)n+1

dx = −2naIn+1 (A.42)

ou encore
In+1 = −

1

2na

dIn
da

=
2n− 1

2na2
In (A.43)

où nous avons utilisé la forme en 1/a2n−1 proposée pour In. Il est aisé de vérifier que cette relation de
récurrence est bien vérifiée grâce au préfacteur apparaissant dans le membre de droite de l’éq. A.40.
Il nous reste à établir le résultat pour n = 1, ce qui est immédiat :

I1 =

∫ +∞

−∞

1

x2 + a2
dx =

1

a

∫ +∞

−∞

1

u2 + 1
du =

1

a
[atanu]+∞

−∞ =
π

a
. (A.44)

A.7 Intégrale de la fonction sinus cardinal

La transformée de Fourier inverse de la fonction créneau f(t), valant 1 dans l’intervalle [−T/2, T/2]
et 0 partout ailleurs, s’écrit

f(ω) =
1√
2π

∫ +∞

−∞
f(t)eiωtdt =

1√
2π

∫ T/2

−T/2
eiωtdt =

1√
2π

[
eiωt

iω

]T/2
−T/2

=
1√
2π

sinωT/2

ω/2
. (A.45)

Rappelons que la transformée de Fourier s’écrit alors

f(t) =
1√
2π

∫ +∞

−∞
f(ω)e−iωtdω. (A.46)

Ces deux expressions permettent d’écrire l’intégrale de la fonction sinus cardinal,∫ +∞

−∞
sinc

ωT

2
dω =

∫ +∞

−∞

sinωT/2

ωT/2
dω =

√
2π

T

∫ +∞

−∞
f(ω)dω =

√
2π

T

√
2πf(t = 0) =

2π

T
. (A.47)
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Par ailleurs, la fonction y(ω, T ) définie par l’éq. 9.25 peut encore s’écrire

y(ω, T ) =
sin2 ωT/2

(ω/2)2
= 2πf(ω)2. (A.48)

Le théorème de Parseval-Plancherel nous permet alors d’écrire∫ +∞

−∞
y(ω, T )dω = 2π

∫ +∞

−∞
|f(ω)|2dω = 2π

∫ +∞

−∞
|f(t)|2dt = 2π

∫ +T/2

−T/2
dt, (A.49)

soit ∫ +∞

−∞
y(ω, T )dω = 2πT. (A.50)



Annexe B

Quelques démonstrations techniques

Cette annexe établit un certain nombre de résultats qui ont été admis dans le corps du docu-
ment. Les démonstrations correspondantes, parfois un peu techniques, constituent de bons exercices
permettant d’acquérir une maîtrise plus approfondie du formalisme.

B.1 Unitarité de l’opérateur d’évolution

Pour montrer que l’opérateur d’évolution est unitaire, commençons par calculer la dérivée du
produit Û †(t, t0)Û(t, t0). On obtient

∂

∂t

(
Û †(t, t0)Û(t, t0)

)
= Û †(t, t0)

∂Û(t, t0)

∂t
+
∂Û †(t, t0)

∂t
Û(t, t0) (B.1)

= Û †(t, t0)
−i
ℏ
Ĥ(t)Û(t, t0) +

i

ℏ
Û †(t, t0)Ĥ(t)Û(t, t0) = 0, (B.2)

où l’on a utilisé l’éq. 2.13 (et sa conjuguée hermitienne). Le produit Û †(t, t0)Û(t, t0) est donc
indépendant du temps. Comme il est évidemment égal à l’identité pour t = t0, on en déduit
Û †(t, t0)Û(t, t0) = Î, ce qui nous donne l’une des deux conditions exprimées par l’éq. 2.14. En
multipliant à droite par Û(t0, t), on obtient Û †(t, t0)Û(t, t0)Û(t0, t) = Û(t0, t). Enfin, en utilisant
les éq. 2.6 et 2.10, on en déduit

Û †(t, t0) = Û(t0, t) = Û(t, t0)
−1 (B.3)

ce qui – après multiplication à droite par Û(t, t0) – nous permet de retrouver l’éq. 2.14, à savoir

Û †(t, t0)Û(t, t0) = Û(t, t0)Û
†(t, t0) = Î . (B.4)

B.2 Développement en série entière de l’opérateur d’évolution

Partons de l’éq. 2.20, rappelée ci-dessous

Û(t, t0) = exp

(
−iĤ

ℏ
(t− t0)

)
, (B.5)
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valable pour un Hamiltonien Ĥ indépendant du temps. On peut effectuer un développement en série
entière de l’exponentielle. On obtient ainsi

Û(t, t0) =

+∞∑
p=0

1

p!

(
−i
ℏ

)p
(t− t0)p Ĥp. (B.6)

En dérivant par rapport au temps t, on obtient

∂Û(t, t0)

∂t
=

+∞∑
p=1

1

p!

(
−i
ℏ

)p
p (t− t0)p−1 Ĥp (B.7)

soit
∂Û(t, t0)

∂t
=
−iĤ
ℏ

+∞∑
p=1

1

(p− 1)!

(
−i
ℏ

)p−1

(t− t0)p−1 Ĥp−1. (B.8)

En remplaçant (p− 1) par p dans la somme, on reconnaît la série donnée par l’éq. B.6, ce qui nous
donne

∂Û(t, t0)

∂t
= − i

ℏ
ĤÛ(t, t0). (B.9)

On retrouve ainsi l’éq. 2.12, ce qui nous permet d’affirmer que l’expression de Û(t, t0) donnée par
l’éq. B.5 est bien l’unique solution de cette équation différentielle du premier ordre.

B.3 Unitarité de l’opérateur représentant l’effet d’une isométrie

Considérons une isométrie R quelconque comme par exemple une rotation, une symétrie ou
une translation. L’opérateur R̂ représentant cette isométrie dans l’espace de Hilbert est alors un
opérateur unitaire. Pour montrer ce résultat, remarquons que pour deux états |ψ1⟩ et |ψ2⟩ arbitraires,
le produit scalaire hermitien ⟨ψ1|ψ2⟩ doit être inchangé après application de l’isométrie. On sait que
sous l’effet de cette transformation l’état |ψ1⟩ devient R̂ |ψ1⟩ tandis que l’état |ψ2⟩ devient R̂ |ψ2⟩.
Le bra ⟨ψ1| devenant ⟨ψ1| R̂†, on a alors l’égalité

⟨ψ1|ψ2⟩ = ⟨ψ1| R̂†R̂ |ψ2⟩ . (B.10)

Remarquons que dans le cas de L2(R3), l’égalité ci-dessus correspond au simple changement de
variable r⃗ 7→ Rr⃗ dans l’intégrale triple apparaissant dans le membre de droite de l’égalité. La
relation étant valable quels que soient les états |ψ1⟩ et |ψ2⟩, on en déduit

R̂†R̂ = Î . (B.11)

Pour conclure la démonstration, utilisons le fait que l’opérateur R̂ est nécessairement inversible, son
inverse R̂−1 correspondant simplement à la représentation dans l’espace de Hilbert de l’isométrie
R−1. En multipliant l’éq. B.11 à droite par R̂−1, on obtient R̂†R̂R̂−1 = R̂−1, soit R̂† = R̂−1. Après
multiplication à gauche par R̂, on en déduit R̂R̂† = Î. On a donc bien

R̂R̂† = R̂†R̂ = Î , (B.12)
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ce qui signifie que l’opérateur R̂ est effectivement un opérateur unitaire.

B.4 Vitesse d’un électron dans un cristal

Considérons un cristal unidimensionnel décrit par des bandes d’énergie En(kx). La vitesse
moyenne d’une particule placée dans l’état de Bloch ψn,kx(x) = eikxxun(x) s’écrit alors

⟨vx⟩ =
1

ℏ
dEn
dkx

. (B.13)

Pour établir ce résultat, nous aurons besoin d’évaluer à diverses reprises l’intégrale du produit d’une
fonction a-périodique, notée ξ(x), par une fonction notée f(x). Lorsque cette dernière fonction est
lentement variable à l’échelle de la période a, une valeur approximative de l’intégrale peut être
obtenue en remplaçant la fonction périodique par sa valeur moyenne, soit

∫ +∞

−∞
f(x)ξ(x)dx ≈

(
1

a

∫ a/2

−a/2
ξ(x)dx

)∫ +∞

−∞
f(x)dx. (B.14)

En effet,

∫ +∞

−∞
f(x)ξ(x)dx =

+∞∑
n=−∞

∫ a/2+na

−a/2+na
f(x)ξ(x)dx (B.15)

≈
+∞∑

n=−∞
f(na)

∫ a/2+na

−a/2+na
ξ(x)dx, (B.16)

où nous avons remplacé f(x) par f(na) en négligeant, conformément à l’hypothèse, la variation de
f(x) à l’intérieur de l’intervalle [−a/2+na, a/2+na]. L’intégrale alors obtenue est simplement égale
à l’intégrale de ξ(x) sur une période, grandeur indépendante de n que l’on peut donc sortir de la
somme sur n. La somme sur n restante est quant à elle une valeur approchée de l’intégrale de f(x)
divisée par a, toujours grâce au fait que f(x) varie lentement à l’échelle de a. On retrouve donc bien
l’éq. B.14.

La fonction propre ψn,kx(x) n’étant pas normalisable, considérons là comme la limite du paquet
d’ondes gaussien

ψ(x) =
√
ag(x)eikxxun,kx(x), (B.17)

où g(x) est une enveloppe gaussienne lentement variable définie par

g(x) = (2πσ2)−1/4 exp(−x2/4σ2), (B.18)

où σ est un nombre réel très supérieur à la période a du cristal. Pour normaliser la fonction ψ(x),
évaluons la grandeur

⟨ψ|ψ⟩ = a

∫ +∞

−∞
g(x)2|un,kx(x)|2dx ≈

∫ a/2

−a/2
|un,kx(x)|2dx

∫ +∞

−∞
g(x)2dx, (B.19)

où nous avons appliqué l’éq. B.14 avec f(x) = g(x)2 et ξ(x) = |un,kx(x)|2. La gaussienne étant
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normée, on en déduit que

⟨ψ|ψ⟩ =
∫ a/2

−a/2
|un,kx(x)|2dx. (B.20)

Le ket |ψ⟩ sera donc bien normé à condition de supposer que la fonction périodique un,kx(x) est
normée sur une période. Dans toute la suite, nous allons considérer l’espace de Hilbert Ea constitué
des fonctions a-périodiques muni du produit scalaire hermitien

⟨u|v⟩ =
∫ a/2

−a/2
u∗(x)v(x)dx. (B.21)

D’après 2.5, nous savons que |un,kx⟩ est fonction propre de l’hamiltonien Ĥkx , agissant dans Ea et
défini par

Ĥkx =
(p̂x + ℏkx)2

2m
+ V (x), (B.22)

selon la relation
Ĥkx |un,kx⟩ = En(kx) |un,kx⟩ . (B.23)

Le système étant placé dans l’état |ψ⟩, calculons maintenant la vitesse moyenne, définie par

⟨ψ| v̂x |ψ⟩ =
⟨ψ| p̂x |ψ⟩

m
=

1

m

∫ +∞

−∞
ψ∗(x)

ℏ
i

dψ

dx
dx. (B.24)

En remarquant que dg/dx = −xg(x)/(2σ2), on obtient

dψ

dx
= − x

2σ2
ψ(x) + ikxψ(x) +

√
ag(x)eikxx

dun,kx
dx

, (B.25)

soit
ψ∗(x)

ℏ
i

dψ

dx
= iℏ

x

2σ2
|ψ(x)|2 + ℏkx|ψ(x)|2 + ag(x)2u∗n,kx(x)

ℏ
i

dun,kx
dx

(B.26)

et finalement
⟨vx⟩ = iℏ

⟨x⟩
2mσ2

+
ℏkx
m

+
a

m

∫ +∞

−∞
g(x)2u∗n,kx(x)

ℏ
i

dun,kx
dx

dx. (B.27)

Le premier terme est imaginaire pur tandis que les deux suivants sont clairement réels. Le résultat
final devant être réel, le premier terme est donc nécessairement nul (ce qu’on peut vérifier en appli-
quant l’éq. B.14 avec f(x) = xg(x)2 et ξ(x) = |un,kx(x)|2, et en remarquant que la gaussienne est cen-
trée). Par ailleurs, en utilisant à nouveau l’éq. B.14 avec f(x) = g(x)2 et ξ(x) = u∗n,kx(x)dun,kx/dx,
on obtient finalement

⟨ψ| v̂x |ψ⟩ =
ℏkx
m

+
1

m

∫ +a/2

−a/2
u∗n,kx(x)

ℏ
i

dun,kx
dx

dx (B.28)

soit
⟨vx⟩ =

⟨un,kx | (ℏkx + p̂x) |un,kx⟩
m

. (B.29)

Pour conclure la démonstration, remarquons que En(kx) = ⟨un,kx | Ĥkx |un,kx⟩ et calculons

dEn(kx)

dkx
= ⟨un,kx |

dĤkx

dkx
|un,kx⟩+

d ⟨un,kx |
dkx

Ĥkx |un,kx⟩+ ⟨un,kx | Ĥkx

d |un,kx⟩
dkx

. (B.30)
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Sachant que Ĥkx |un,kx⟩ = En(kx) |un,kx⟩ et ⟨un,kx | Ĥkx = En(kx) ⟨un,kx |, on en déduit

dEn(kx)

dkx
= ⟨un,kx |

dĤkx

dkx
|un,kx⟩+ En(kx)

(
d ⟨un,kx |
dkx

|un,kx⟩+ ⟨un,kx |
d |un,kx⟩
dkx

)
(B.31)

= ⟨un,kx |
dĤkx

dkx
|un,kx⟩+ En(kx)

d

dkx
⟨un,kx |un,kx⟩ . (B.32)

Or ⟨un,kx |un,kx⟩ = 1 est indépendant de kx, ce qui nous permet d’en déduire

dEn(kx)

dkx
= ⟨un,kx |

dĤkx

dkx
|un,kx⟩ . (B.33)

Enfin, en dérivant l’éq. B.22 on obtient

dĤkx

dkx
=

ℏ
m
(p̂x + ℏkx), (B.34)

soit
dEn(kx)

dkx
=

ℏ
m
⟨un,kx | (p̂x + ℏkx) |un,kx⟩ . (B.35)

Cette expression, associée à l’éq. B.29, nous permet d’établir le résultat recherché.

B.5 Méthode variationnelle linéaire

La méthode variationnelle linéaire introduite en 3.2.4 s’appuie sur deux résultats d’algèbre li-
néaire démontrés dans cette annexe. Il s’agit de l’équivalence entre diagonalisation et minimisation
dans un sous-espace vectoriel, et du fait que les valeurs propres ainsi obtenues sont des bornes
supérieures des valeurs exactes, y compris pour les niveaux excités.

B.5.1 Minimisation dans un sous-espace vectoriel

Montrons que la recherche des extremums de la fonctionnelle

E(|ψ⟩) = ⟨ψ| Ĥ |ψ⟩
⟨ψ|ψ⟩

(B.36)

est équivalente à la diagonalisation de l’hamiltonien Ĥ, d’abord dans l’espace entier puis à l’intérieur
d’un sous-espace vectoriel. Pour cela, considérons un déplacement arbitraire et infinitésimal |δψ⟩
autour du point |ψ⟩ et différentions l’égalité ⟨ψ|ψ⟩E = ⟨ψ| Ĥ |ψ⟩ déduite de l’éq. B.36. On obtient

⟨ψ|ψ⟩ δE + ⟨ψ|δψ⟩E + ⟨δψ|ψ⟩E = ⟨ψ| Ĥ |δψ⟩+ ⟨δψ| Ĥ |ψ⟩ , (B.37)

où δE est le déplacement associé pour l’énergie E. On peut encore écrire

⟨ψ|ψ⟩ δE = ⟨ψ| (Ĥ − E) |δψ⟩+ c.c. (B.38)

où c.c. représente le complexe conjugué du terme précédent. On en déduit immédiatement que si |ψ⟩
est un vecteur propre de Ĥ pour la valeur propre E, alors δE = 0 pour tout |δψ⟩, ce qui revient à
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dire que la grandeur E(|ψ⟩) est bien stationnaire en ce point. Inversement, si δE est nulle pour tout
|δψ⟩, alors on peut par exemple choisir |δψ⟩ = η(Ĥ − E) |ψ⟩, où η est une grandeur infinitésimale
réelle. En remplaçant dans l’éq. B.38, on obtient η ⟨ψ| (Ĥ − E)2 |ψ⟩ + c.c. = 0, ce qui peut encore
s’écrire ||(Ĥ − E) |ψ⟩ ||2 = 0. On obtient donc Ĥ |ψ⟩ = E |ψ⟩, ce qui signifie que |ψ⟩ est vecteur
propre de Ĥ pour la valeur propre E. La recherche des points stationnaires de la fonctionnelle
dans l’ensemble de l’espace de Hilbert est donc équivalente à la recherche des vecteurs propres de
l’hamiltonien Ĥ, ce qui est en soi un théorème important.

Mais dans le cas de la méthode variationnelle linéaire, les variations de |ψ⟩ sont confinées à
l’intérieur du sous-espace vectoriel Eessai. Il est alors utile d’introduire le projecteur P̂ sur l’espace
Eessai et de définir l’opérateur ĥ = P̂ ĤP̂ , qui correspond à la restriction de l’hamiltonien Ĥ dans
sous-espace vectoriel Eessai. En effet, les éléments de matrice de ĥ entre deux vecteurs de base
appartenant à Eessai sont identiques à ceux de Ĥ (puisque le projecteur P̂ est alors sans effet), tandis
que les éléments de matrice entre deux vecteurs de base appartenant au sous-espace supplémentaire
orthogonal à Eessai seront égaux à zéro. Considérons donc un vecteur |ψ⟩ ∈ Eessai correspondant à
un extremum de la fonctionnelle E(|ψ⟩), ce qui signifie que pour tout |δψ⟩ ∈ Eessai on aura δE = 0.
En procédant comme ci-dessus, choisissons le cas particulier |δψ⟩ = ηP̂ (Ĥ − E) |ψ⟩. L’application
du projecteur P̂ nous assure que |δψ⟩ est bien un élément de Eessai. En remplaçant dans l’éq. B.38,
on obtient

η ⟨ψ| (Ĥ − E)P̂ (Ĥ − E) |ψ⟩+ c.c. = 0 (B.39)

ce que l’on peut encore écrire

η ⟨ψ| P̂ (Ĥ − E)P̂ (Ĥ − E)P̂ |ψ⟩+ c.c. = 2 ⟨ψ| (ĥ− E)(ĥ− E) |ψ⟩ = 0 (B.40)

puisque P̂ |ψ⟩ = |ψ⟩. On en déduit ||(ĥ−E) |ψ⟩ ||2 = 0. Notre vecteur |ψ⟩ est donc bien un vecteur
propre de ĥ pour la valeur propre E. Inversement, si |ψ⟩ est un vecteur propre de ĥ pour la valeur
propre E, alors on a évidemment δE = 0 pour tout |δψ⟩ ∈ Eessai, ce qui achève la démonstration
du résultat annoncé plus haut. En conséquence, pour déterminer les extremums de la fonctionnelle
E(|ψ⟩), il nous suffira de diagonaliser la restriction de l’hamiltonien au sous-espace vectoriel Eessai.

B.5.2 Majoration des valeurs propres exactes

Nous allons montrer ici que les valeurs propres de la restriction de l’hamiltonien à l’intérieur du
sous-espace vectoriel Eessai sont des bornes supérieures des premières valeurs propres de l’hamiltonien
Ĥ. Pour établir ce résultat, appelons |n⟩ les vecteurs propres de l’hamiltonien Ĥ et En les valeurs
propres correspondantes, soit Ĥ|n⟩ = En|n⟩, avec la convention E0 ≤ E1 ≤ E2 ≤ · · · Posons de
même ĥ|ψn⟩ = ϵn|ψn⟩, avec ϵ0 ≤ ϵ1 ≤ ϵ2 ≤ · · · et |ψn⟩ ∈ Eessai. Pour montrer que ϵn ≥ En pour
tout n inférieur ou égal à la dimension de l’espace Eessai, introduisons un ket |ψ⟩ ∈ Eessai engendré
par les n+ 1 premiers vecteurs propres de ĥ :

|ψ⟩ =
n∑

m=0

cm|ψm⟩. (B.41)
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La valeur moyenne de ĥ lorsque le système est placé dans l’état |ψ⟩, résultant d’une moyenne
pondérée de ϵ0, · · · , ϵn, est naturellement inférieure ou égale à ϵn :

⟨ψ|ĥ|ψ⟩ =
n∑

m=0

|cm|2ϵm ≤
n∑

m=0

|cm|2ϵn = ϵn (B.42)

où l’on a utilisé le fait que |ψ⟩ était normé. Choisissons maintenant les coefficients cm de sorte
que |ψ⟩ soit orthogonal aux n premiers vecteurs propres de Ĥ, soit ⟨m|ψ⟩ = 0 ∀m ≤ n − 1. Au
sein de l’espace vectoriel de dimension n + 1 défini par l’éq. B.41, l’ensemble des solutions du
système homogène constitué par les n équations linéaires ⟨m|ψ⟩ = 0 est en effet un espace vectoriel
de dimension supérieure ou égale à 1, où nous pourrons choisir un vecteur normé |ψ⟩ approprié.
Comme |ψ⟩ ∈ Eessai, on peut en outre écrire ⟨ψ|ĥ|ψ⟩ = ⟨ψ|Ĥ|ψ⟩, soit

⟨ψ|ĥ|ψ⟩ = ⟨ψ|Ĥ|ψ⟩ (B.43)

= ⟨ψ|Ĥ
+∞∑
m=0

|m⟩⟨m|ψ⟩ (B.44)

=
+∞∑
m=n

Em|⟨m|ψ⟩|2 (B.45)

≥
+∞∑
m=n

En|⟨m|ψ⟩|2 = En

+∞∑
m=0

|⟨m|ψ⟩|2 = En. (B.46)

On peut donc en conclure ϵn ≥ ⟨ψ|ĥ|ψ⟩ ≥ En, ce qui démontre le résultat annoncé.

B.6 Relations de commutation entre les composantes de ˆ⃗
J

Sachant que le moment cinétique ˆ⃗
J est défini comme le générateur infinitésimal du groupe des

rotations (éq. 4.1), il est possible d’établir de manière générale les relations de commutation entre ses
composantes cartésiennes. Pour cela, considérons une rotation d’angle α autour du vecteur unitaire
u⃗ = (cosϕ, sinϕ, 0) placé dans le plan xy, comme représenté Fig. B.1. On peut exprimer cette

Figure B.1 – Rotation d’un angle α autour du vecteur u⃗ situé dans le plan xy.

rotation comme la composition d’une rotation autour de l’axe z d’angle −ϕ, qui ramène le vecteur
u⃗ selon l’axe x, suivie d’une rotation autour de l’axe x d’angle α, suivie enfin d’une rotation autour
de l’axe z d’angle +ϕ qui remet le vecteur u⃗ à sa place initiale. Ainsi R̂u⃗,α = R̂z,ϕR̂x,αR̂z,−ϕ. En
exprimant les opérateurs rotation à l’aide du moment cinétique, on obtient

e−i
α
ℏ
ˆ⃗
J ·u⃗ = e−i

ϕ
ℏ Ĵze−i

α
ℏ Ĵxei

ϕ
ℏ Ĵz . (B.47)
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Faisons tendre α vers zéro et effectuons un développement au premier ordre en α :

Î − iα
ℏ
ˆ⃗
J · u⃗ = e−i

ϕ
ℏ Ĵz
(
Î − iα

ℏ
Ĵx

)
ei

ϕ
ℏ Ĵz = Î − iα

ℏ
e−i

ϕ
ℏ Ĵz Ĵxe

iϕℏ Ĵz . (B.48)

En identifiant les termes d’ordre 1 en α, on en déduit

ˆ⃗
J · u⃗ = e−i

ϕ
ℏ Ĵz Ĵxe

iϕℏ Ĵz . (B.49)

On considère maintenant le cas où ϕ tend également vers zéro. Le membre de gauche de l’eq. B.49
s’écrit alors ˆ⃗

J · u⃗ = Ĵx cosϕ+ Ĵy sinϕ = Ĵx + ϕĴy, au premier ordre en ϕ. En développant de même
à l’ordre 1 en ϕ le membre de droite de l’eq. B.49, on obtient

Ĵx + ϕĴy =

(
Î − iϕ

ℏ
Ĵz

)
Ĵx

(
Î + i

ϕ

ℏ
Ĵz

)
= Ĵx − i

ϕ

ℏ
(ĴzĴx − ĴxĴz). (B.50)

En identifiant les termes d’ordre 1 en ϕ, on obtient la relation de commutation [Ĵz, Ĵx] = iℏĴy. Les
deux autres relations de commutation peuvent s’obtenir soit par simple permutation circulaire, soit
en plaçant le vecteur u⃗ dans le plan yz ou zx. On en déduit donc les trois relations de commutations
énoncées à l’éq. 4.5.

B.7 Dimension des espaces propres communs de Ĵ2 et Ĵz

Sachant que notre espace de Hilbert est de dimension supérieure ou égale à 1, nous savons qu’il
existe au moins un vecteur propre commun aux observables Ĵ2 et Ĵz. Appelons j(j+1)ℏ2 et m0ℏ les
valeurs propres correspondantes. Partant de ce vecteur propre, appartenant à l’espace Ej,m0 , nous
pouvons construire à l’aide de l’opérateur Ĵ− une série d’éléments appartenant aux espaces Ej,m
pour m = m0 − 1,m0 − 2, · · · ,−j + 1,−j. Le processus ne s’interrompra qu’après avoir atteint un
élément de l’espace Ej,−j , auquel cas une nouvelle application de l’opérateur Ĵ− ne donnerait que le
vecteur nul. Nous en déduisons donc que l’espace Ej,−j existe. Construisons une base hilbertienne de
cet espace et notons-là {|n, j,−j⟩}, où n est un indice variant de 1 à la dimension (éventuellement
infinie) de Ej,−j . A partir de cette base, construisons les vecteurs notés |n, j,m⟩ définis par la relation
de récurrence

|n, j,m+ 1⟩ = Ĵ+|n, j,m⟩√
j(j + 1)−m(m+ 1)ℏ

. (B.51)

En faisant varier l’indice m de −j à j, nous allons montrer par récurrence que, pour j et m fixés,
{|n, j,m⟩} constitue une base hilbertienne de chacun des sous-espaces Ej,m. Ce résultat est par
définition vrai pour m = −j. Supposons donc que le résultat soit vérifié pour m, et cherchons à le
montrer pour m+ 1. Remarquons tout d’abord que ces vecteurs forment une famille orthonormée.
En effet,

⟨n, j,m+ 1|n′, j,m+ 1⟩ = ⟨n, j,m|Ĵ−Ĵ+|n′, j,m⟩
(j(j + 1)−m(m+ 1))ℏ2

. (B.52)

Or, d’après l’éq. 4.15, nous savons que Ĵ−Ĵ+|n′, j,m⟩ = (j(j + 1) − m(m + 1))ℏ2|n′, j,m⟩. Donc
⟨n, j,m + 1|n′, j,m + 1⟩ = ⟨n, j,m|n′, j,m⟩ = δn,n′ . Montrons maintenant que ces vecteurs linéai-
rement indépendants engendrent bien la totalité de l’espace Ej,m+1. Pour cela, considérons un état
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|ψ⟩ quelconque dans Ej,m+1. Nous savons alors que Ĵ−|ψ⟩ appartient à l’espace Ej,m, et peut donc
s’écrire comme une combinaison linéaire des vecteurs de base de cet espace : Ĵ−|ψ⟩ =

∑
n cn|n, j,m⟩.

En faisant agir Ĵ+ sur cet état, on obtient

Ĵ+Ĵ−|ψ⟩ =
∑
n

cnĴ+|n, j,m⟩ =
∑
n

√
j(j + 1)−m(m+ 1)ℏcn|n, j,m+ 1⟩. (B.53)

Or nous savons d’après l’éq. 4.15 que Ĵ+Ĵ− = Ĵ2− Ĵz(Ĵz −ℏÎ). Comme |ψ⟩ ∈ Ej,m+1, l’action de ce
produit d’opérateur sur |ψ⟩ peut être directement remplacée par une multiplication par le scalaire
(j(j + 1)− (m+ 1)(m+ 1− 1))ℏ2 = (j(j + 1)−m(m+ 1))ℏ2. On obtient donc

|ψ⟩ =
∑
n

cn√
j(j + 1)−m(m+ 1)ℏ

|n, j,m+ 1⟩ (B.54)

d’où l’on peut déduire que {|n, j,m+1⟩} constitue bien une base hilbertienne de Ej,m+1. Ceci conclut
la démonstration par récurrence. La dimension des espace Ej,m est donc indépendante de m.

B.8 Opérateurs différentiels associés au moment cinétique orbital

Pour déterminer l’expression de l’opérateur L̂x en coordonnées sphériques, considérons une ro-
tation d’angle α autour de l’axe x, transformant un point de coordonnées (x, y, z) en un point de
coordonnées (x′, y′, z′). On a alors x′

y′

z′

 =

 1 0 0
0 cosα − sinα
0 sinα cosα

 x
y
z

 . =

 x
y cosα− z sinα
y sinα+ z cosα

 (B.55)

Dans le cas d’une rotation infinitésimale d’angle dα autour de l’axe x, on obtient donc x′

y′

z′

 =

 x
y − zdα
ydα+ z

 . (B.56)

La coordonnée r étant conservée lors d’une rotation, la différentiation de l’éq. 4.35 nous donne

dx = r cos θ cosφdθ − r sin θ sinφdφ = 0 (B.57)

dy = r cos θ sinφdθ + r sin θ cosφdφ = −r cos θdα (B.58)

dz = −r sin θdθ = r sin θ sinφdα (B.59)

soit dθ = − sinφdα et

dφ =
cos θ cosφ

sin θ sinφ
dθ = −cosφ

tan θ
dα. (B.60)

On en déduit

R̂x,dαψ(r, θ, φ) = ψ(r, θ − dθ, φ− dφ) = ψ(r, θ, φ) + sinφ
∂ψ

∂θ
dα+

cosφ

tan θ

∂ψ

∂φ
dα. (B.61)
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En comparant avec R̂x,dα = Î − (i/ℏ)L̂xdα, on identifie

L̂xψ(r, θ, φ) = −
ℏ
i

(
sinφ

∂ψ

∂θ
+

cosφ

tan θ

∂ψ

∂φ

)
, (B.62)

ce qui nous redonne bien l’éq. 4.39. Pour déterminer l’expression de l’opérateur L̂y, on procède de
même avec une rotation d’angle α autour de l’axe y, associée à la transformation x′

y′

z′

 =

 cosα 0 sinα
0 1 0

− sinα 0 cosα

 x
y
z

 =

 x cosα+ z sinα
y

−x sinα+ z cosα

 (B.63)

Dans le cas d’une rotation infinitésimale d’angle dα autour de l’axe y, on obtient donc x′

y′

z′

 =

 x+ zdα
y

−xdα+ z

 (B.64)

En procédant comme plus haut, on obtient

dx = r cos θ cosφdθ − r sin θ sinφdφ = r cos θdα (B.65)

dy = r cos θ sinφdθ + r sin θ cosφdφ = 0 (B.66)

dz = −r sin θdθ = −r sin θ cosφdα (B.67)

soit dθ = cosφdα et dφ = − sinφ
tan θdα. On en déduit

R̂y,dαψ(r, θ, φ) = ψ(r, θ − dθ, φ− dφ) = ψ(r, θ, φ)− cosφ
∂ψ

∂θ
dα+

sinφ

tan θ

∂ψ

∂φ
dα (B.68)

En comparant avec R̂y,dα = Î − (i/ℏ)L̂ydα, on identifie

L̂yψ(r, θ, φ) =
ℏ
i

(
cosφ

∂ψ

∂θ
− sinφ

tan θ

∂ψ

∂φ

)
(B.69)

ce qui nous redonne bien l’éq. 4.40. Connaissant L̂x et L̂y, on peut en déduire

L̂± = L̂x ± iL̂y = iℏ
(
(sinφ∓ i cosφ) ∂

∂θ
+

cosφ± i sinφ
tan θ

∂

∂φ

)
(B.70)

ce qui nous permet de retrouver l’éq. 4.42. Enfin, en utilisant l’éq. 4.15 qui nous donne L̂2 =

L̂−L̂+ + L̂z(L̂z + ℏÎ), on obtient

L̂2 = ℏ2e−iφ
(
− ∂

∂θ
+ i cot θ

∂

∂φ

)
eiφ
(
∂

∂θ
+ i cot θ

∂

∂φ

)
− ℏ2

∂

∂φ

(
∂

∂φ
+ i

)
(B.71)

= ℏ2
(
− ∂2

∂θ2
− i∂ cot θ

∂θ

∂

∂φ
− cot θ

(
∂

∂θ
+ i cot θ

∂

∂φ

)
− (cot2 θ + 1)

∂2

∂φ2
− i ∂

∂φ

)
(B.72)

= −ℏ2
(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
+ i

1− cos2 θ − sin2 θ

sin2 θ

∂

∂φ

)
(B.73)
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où l’on a utilisé la relation ∂/∂θ sin θ ∂/∂θ = sin θ ∂2/∂θ2+cos θ ∂/∂θ = sin θ(∂2/∂θ2+cot θ ∂/∂θ).
Le terme en ∂/∂φ étant nul, on retrouve bien l’éq. 4.43.

B.9 Le problème à deux corps

Cette annexe porte sur ce que l’on appelle le problème à deux corps, correspondant à un système
constitué de deux particules interagissant entre elles. L’espace de Hilbert associé à ce problème est
le produit tensoriel EH = L2(R3)⊗L2(R3), la fonction d’onde décrivant l’état du système s’écrivant
alors Ψ(r⃗1, r⃗2), où r⃗1 et r⃗2 correspondent aux positions de chacune des deux particules. L’hamiltonien
total décrivant le problème s’écrit

Ĥtot =
p̂21
2m1

+
p̂22
2m2

+ V (||ˆ⃗r2 − ˆ⃗r1||) (B.74)

où V (r) est le potentiel d’interaction entre les deux particules. En raison de l’invariance par trans-
lation et par rotation du système, ce potentiel ne dépend que de la distance r = ||ˆ⃗r2 − ˆ⃗r1|| entre les
deux particules. Comme en mécanique classique, on peut considérablement simplifier la résolution
de ce problème en remarquant qu’il se découple en deux problèmes indépendants, correspondant
d’une part au mouvement du centre de masse et d’autre part au mouvement relatif entre les deux
particules. On effectue ainsi un changement de variable en posant

R⃗ =
m1r⃗1 +m2r⃗2

M
(B.75)

qui correspond à la position du centre de masse, M = m1+m2 étant la masse totale du système, et

r⃗ = r⃗2 − r⃗1 (B.76)

qui correspond à la position relative de la particule 2 par rapport à la particule 1. En inversant ces
deux relations, on obtient

r⃗1 = R⃗− µ

m1
r⃗ (B.77)

et
r⃗2 = R⃗+

µ

m2
r⃗ (B.78)

où l’on a introduit la masse réduite µ définie par

1

µ
=

1

m1
+

1

m2
. (B.79)

On peut alors introduire une nouvelle fonction d’onde Φ(R⃗, r⃗) s’exprimant en fonction des variables
R⃗ et r⃗, ce qui nous donne

Φ(R⃗, r⃗) = ηΨ

(
R⃗− µ

m1
r⃗, R⃗+

µ

m2
r⃗

)
, (B.80)



172 ANNEXE B. QUELQUES DÉMONSTRATIONS TECHNIQUES

où η est une constante permettant d’assurer la normalisation de la nouvelle fonction d’onde (i).
Le fait de travailler dorénavant avec la nouvelle fonction d’onde Φ(R⃗, r⃗) revient à dire que nous
écrivons l’espace de Hilbert sous la forme d’un nouveau produit tensoriel EH = L2(R3)⊗L2(R3), où
le premier espace correspond maintenant à la position R⃗ du centre de masse tandis que le second
espace correspond à la position r⃗ d’une particule fictive de masse µ. Il nous faut maintenant identifier
les observables impulsions ˆ⃗

P et ˆ⃗p associées à ces deux nouvelles variables, en utilisant la définition
de l’impulsion comme générateur infinitésimal du groupe des translations. Ainsi,

Φ(R⃗− da⃗, r⃗) = ηΨ

(
R⃗− da⃗− µ

m1
r⃗, R⃗− da⃗+ µ

m2
r⃗

)
(B.81)

= Φ(R⃗, r⃗)− η ∂Ψ
∂r⃗1
· da⃗− η ∂Ψ

∂r⃗2
· da⃗ (B.82)

=

(
1− i

ℏ

(
ˆ⃗p1 + ˆ⃗p2

)
· da⃗
)
Φ(R⃗, r⃗). (B.83)

Sachant que Φ(R⃗ − da⃗, r⃗) = (1 − (i/ℏ) ˆ⃗P · da⃗)Φ(R⃗, r⃗), on en déduit que l’impulsion associée au
mouvement du centre de masse n’est autre que l’impulsion totale

ˆ⃗
P = ˆ⃗p1 + ˆ⃗p2, (B.84)

en accord avec l’éq. 2.75. Procédons de même pour une translation de la variable r⃗. On obtient alors

Φ(R⃗, r⃗ − da⃗) = ηΨ

(
R⃗− µ

m1
r⃗ +

µ

m1
da⃗, R⃗+

µ

m2
r⃗ − µ

m2
da⃗

)
(B.85)

= Φ(R⃗, r⃗)− η−µ
m1

∂Ψ

∂r⃗1
· da⃗− η µ

m2

∂Ψ

∂r⃗2
· da⃗ (B.86)

=

(
1− i

ℏ
µ

(
ˆ⃗p2
m2
−

ˆ⃗p1
m1

)
· da⃗

)
Φ(R⃗, r⃗) (B.87)

Sachant que Φ(R⃗, r⃗ − da⃗) = (1 − (i/ℏ)ˆ⃗p · da⃗)Φ(R⃗, r⃗), on en déduit que l’impulsion associée à la
variable spatiale r⃗ s’écrit

ˆ⃗p =
m1m2

m1 +m2

m1
ˆ⃗p2 −m2

ˆ⃗p1
m1m2

=
m1

ˆ⃗p2 −m2
ˆ⃗p1

M
. (B.88)

En inversant les éq. B.84 et B.88, on peut exprimer les impulsions des deux particules en fonction
des nouvelles observables à l’aide des relations

ˆ⃗p1 =
m1

M
ˆ⃗
P − ˆ⃗p et ˆ⃗p2 =

m2

M
ˆ⃗
P + ˆ⃗p. (B.89)

Ces expressions nous permettent de reformuler l’énergie cinétique totale du système

p̂21
2m1

+
p̂22
2m2

=
m2

1

M2

P̂ 2

2m1
+

p̂2

2m1
− 2

m1

M

ˆ⃗
P · ˆ⃗p
2m1

+
m2

2

M2

P̂ 2

2m2
+

p̂2

2m2
+ 2

m2

M

ˆ⃗
P · ˆ⃗p
2m2

, (B.90)

(i)Cette constante pourrait être facilement calculée à l’aide du jacobien associé au changement de variable, mais sa
valeur exacte n’a pas d’importance pour la suite.
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soit
p̂21
2m1

+
p̂22
2m2

=
P̂ 2

2M
+
p̂2

2µ
. (B.91)

On retrouve donc le même résultat qu’en mécanique classique (voir par exemple 4.5.2 dans le cas
P⃗ = 0), à savoir que l’énergie cinétique des deux particules peut s’écrire comme la somme de
l’énergie cinétique du centre de masse et de l’énergie cinétique d’une particule fictive dont la masse
est égale à la masse réduite µ = m1m2/(m1 + m2). On peut alors écrire l’hamiltonien total du
système (éq. B.74) avec les nouvelles observables sous la forme

Ĥtot = Ĥcm + Ĥ (B.92)

où Ĥcm = P̂ 2/(2M) correspond à l’hamiltonien du centre de masse et

Ĥ =
p̂2

2µ
+ V (r̂) (B.93)

correspond à l’hamiltonien de la particule fictive placée dans le potentiel central V (r). De plus, on
peut affirmer que les opérateurs Ĥcm et Ĥ commutent car ils agissent dans deux espaces différents.
La diagonalisation de l’hamiltonien Ĥtot peut donc se ramener à la recherche d’une base propre
commune des opérateurs Ĥcm et Ĥ. En utilisant les états propres |P⃗ ⟩ de l’opérateur impulsion
totale, on peut donc écrire les fonctions propres de l’hamiltonien total sous la forme

Φ(R⃗, r⃗) =
eiP⃗ ·R⃗/ℏ

(2πℏ)3/2
ψ(r⃗), (B.94)

où ψ(r⃗) est une fonction propre de Ĥ associée à la valeur propre E. L’énergie totale sera alors égale
à P 2/(2M) + E. Le mouvement du centre de masse étant ici trivial, on s’intéresse en général au
mouvement relatif gouverné par l’hamiltonien Ĥ, comme par exemple en 5.2.

B.10 Détermination des fonctions radiales de l’atome d’hydrogène

L’objet de cette annexe est de démontrer les résultats annoncés en 5.3 sur les niveaux d’énergie
et les fonctions propres radiales de l’atome d’hydrogène, en s’inspirant de l’exercice 6 du chapitre 11
de [1] (mais avec des notations sensiblement différentes). On considère pour cela l’équation radiale
pour l’atome d’hydrogène associée à l’hamiltonien effectif Ĥℓ défini par l’éq. 5.26, pour une valeur
donnée ℓ du moment cinétique orbital :

Ĥℓu(r) =

(
− ℏ2

2µ

d2

dr2
+
ℓ(ℓ+ 1)ℏ2

2µr2
− e2

r

)
u(r) = Eu(r). (B.95)

On utilise comme unité de longueur le rayon de Bohr a1 = ℏ2/(µe2) et, comme unité d’énergie,
l’énergie d’ionisation de l’atome d’hydrogène

EI =
µe4

2ℏ2
=

e2

2a1
=

1

2
µc2α2 ≈ 13.6 eV. (B.96)
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On montre aisément que l’équation aux valeurs propres faisant intervenir les variables sans dimension
ρ = r/a1 et ϵ = E/EI s’écrit alors

ĥℓu(ρ) =

(
− d2

dρ2
+
ℓ(ℓ+ 1)

ρ2
− 2

ρ

)
u(ρ) = ϵu(ρ). (B.97)

On introduit l’opérateur différentiel

âℓ =
1

ℓ+ 1
− ℓ+ 1

ρ
− d

dρ
. (B.98)

Son adjoint s’écrit alors

â†ℓ =
1

ℓ+ 1
− ℓ+ 1

ρ
+

d

dρ
. (B.99)

En effet, l’observable correspondant à p̂ est l’opérateur différentiel −id/dρ. Donc −id/dρ est auto-
adjoint, ce qui implique que l’adjoint de d/dρ soit −d/dρ (résultat que l’on peut aussi établir à
l’aide d’une intégration par parties). Le produit âℓâ

†
ℓ s’écrit

âℓâ
†
ℓ =

(
1

ℓ+ 1
− ℓ+ 1

ρ
− d

dρ

)(
1

ℓ+ 1
− ℓ+ 1

ρ
+

d

dρ

)
=

1

(ℓ+ 1)2
− 1

ρ
+

1

ℓ+ 1

d

dρ
− 1

ρ
+

(ℓ+ 1)2

ρ2
− ℓ+ 1

ρ

d

dρ
− 1

ℓ+ 1

d

dρ
+
ℓ+ 1

ρ

d

dρ
− ℓ+ 1

ρ2
− d2

dρ2

= − d2

dρ2
+
ℓ(ℓ+ 1)

ρ2
− 2

ρ
+

1

(ℓ+ 1)2

= ĥℓ +
1

(ℓ+ 1)2
.

De même

â†ℓâℓ =

(
1

ℓ+ 1
− ℓ+ 1

ρ
+

d

dρ

)(
1

ℓ+ 1
− ℓ+ 1

ρ
− d

dρ

)
=

1

(ℓ+ 1)2
− 1

ρ
− 1

ℓ+ 1

d

dρ
− 1

ρ
+

(ℓ+ 1)2

ρ2
+
ℓ+ 1

ρ

d

dρ
+

1

ℓ+ 1

d

dρ
− ℓ+ 1

ρ

d

dρ
+
ℓ+ 1

ρ2
− d2

dρ2

= − d2

dρ2
+

(ℓ+ 1)(ℓ+ 2)

ρ2
− 2

ρ
+

1

(ℓ+ 1)2

= ĥℓ+1 +
1

(ℓ+ 1)2
.

Intéressons nous maintenant à l’action de l’opérateur â†ℓ sur un état propre |u⟩ de ĥℓ associé à la
valeur propre ϵ. D’après ce qui précède, la relation ĥℓ|u⟩ = ϵ|u⟩ peut s’écrire(

âℓâ
†
ℓ −

1

(ℓ+ 1)2

)
|u⟩ = ϵ|u⟩. (B.100)

En faisant agir l’opérateur â†ℓ sur cette équation, on obtient(
â†ℓâℓ −

1

(ℓ+ 1)2

)
â†ℓ|u⟩ = â†ℓϵ|u⟩, (B.101)
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soit ĥℓ+1â
†
ℓ|u⟩ = ϵâ†ℓ|u⟩. Le vecteur â†ℓ|u⟩ est donc soit nul soit vecteur propre de ĥℓ+1 pour la même

valeur propre ϵ. De même, la relation ĥℓ|u⟩ = ϵ|u⟩ peut aussi s’écrire(
â†ℓ−1âℓ−1 −

1

ℓ2

)
|u⟩ = ϵ|u⟩. (B.102)

En faisant agir l’opérateur âℓ−1 sur cette équation, on obtient(
âℓ−1â

†
ℓ−1 −

1

ℓ2

)
âℓ−1|u⟩ = âℓ−1ϵ|u⟩, (B.103)

soit ĥℓ−1âℓ−1|u⟩ = ϵâℓ−1|u⟩. Le vecteur âℓ−1|u⟩ est donc soit nul soit vecteur propre de ĥℓ−1 pour
la même valeur propre ϵ. Par ailleurs, le carré de la norme de â†ℓ|u⟩ s’écrit

||â†ℓ|u⟩||
2 = ⟨u|âℓâ†ℓ|u⟩ = ⟨u|

(
ĥℓ +

1

(ℓ+ 1)2

)
|u⟩ = ϵ+

1

(ℓ+ 1)2
(B.104)

Cette grandeur étant nécessairement positive ou nulle, on en déduit

ϵ ≥ − 1

(ℓ+ 1)2
. (B.105)

On peut maintenant employer un raisonnement similaire à celui utilisé par Dirac pour l’oscillateur
harmonique ou par Cartan pour le moment cinétique : pour une valeur donnée de ϵ < 0, l’action
successive de â†ℓ, â

†
ℓ+1, â

†
ℓ+2, etc. permet de grimper dans l’échelle des valeurs de ℓ jusqu’à un point

où l’inégalité ci-dessus ne sera plus valable, ce qui serait absurde. Il faut donc que ce processus
s’arrête. On en déduit qu’il existe une valeur ℓmax de ℓ telle que |u⟩ soit vecteur propre de ĥℓmax

pour la valeur propre ϵ mais que â†ℓmax
|u⟩ soit le vecteur nul. Le carré de la norme de ce dernier

vecteur s’écrit ϵ + 1/(ℓmax + 1)2 = 0. En considérant le nombre entier défini par n = ℓmax + 1, on
en déduit que les seules valeurs permises des énergies des états liés vérifient la condition

ϵ = ϵn = − 1

n2
. (B.106)

Dans le cas où ℓ = ℓmax = n−1, on peut écrire â†n−1|u⟩ = 0. On obtient donc l’équation différentielle
du premier ordre (

1

n
− n

ρ
+

d

dρ

)
u(ρ) = 0. (B.107)

Il s’agit d’une équation différentielle aux variables séparables, que l’on peut mettre sous la forme

du

u
= −

(
1

n
+
n

ρ

)
dρ (B.108)

qui s’intègre en
lnu(ρ) = n ln ρ− ρ

n
+Cste = ln ρn − ρ

n
+Cste (B.109)

soit
un,n−1(ρ) ∝ ρn exp

(
−ρ
n

)
. (B.110)
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On pourrait calculer explicitement les autres fonctions radiales à l’aide de la relation

|un,ℓ−1⟩ =
âℓ−1|un,ℓ⟩
||âℓ−1|un,ℓ⟩||

, (B.111)

le dénominateur étant non-nul en raison de la relation

||âℓ−1|un,ℓ⟩||2 = ⟨un,ℓ|â†ℓ−1âℓ−1|un,ℓ⟩ = ⟨un,ℓ|
(
ĥℓ +

1

ℓ2

)
|un,ℓ⟩ = −

1

n2
+

1

ℓ2
> 0 (B.112)

car ℓ < n.

Montrons par récurrence le résultat annoncé en 5.3 avec l’éq. 5.32, stipulant que un,ℓ(ρ) est
le produit d’un polynôme de degré n′ = n − ℓ − 1 (ne s’annulant pas en 0) par ρℓ+1 exp(−ρ/n).
D’après l’expression de un,n−1(ρ), ce résultat est bien vérifié pour ℓ = n − 1. Supposons donc le
résultat valable pour une valeur donnée de ℓ et posons un,ℓ(ρ) = P (ρ)ρℓ+1 exp(−ρ/n), où P (ρ) est
un polynôme de degré n′ = n− ℓ− 1 ne s’annulant pas en 0. On obtient alors

âℓ−1un,ℓ(ρ) =

(
1

ℓ
− ℓ

ρ
− d

dρ

)
P (ρ)ρℓ+1 exp(−ρ/n) (B.113)

=

(
1

ℓ
P (ρ)ρℓ+1 − ℓP (ρ)ρℓ − dP

dρ
ρℓ+1 − (ℓ+ 1)P (ρ)ρℓ +

1

n
P (ρ)ρℓ+1

)
exp(−ρ/n)

(B.114)

=

((
1

n
+

1

ℓ

)
ρP (ρ)− (2ℓ+ 1)P (ρ)− ρdP

dρ

)
ρℓ exp(−ρ/n) (B.115)

Le préfacteur est clairement un polynôme de degré n′ + 1 = n − (ℓ − 1) − 1, prenant la valeur
(2ℓ+ 1)P (0) ̸= 0 en ρ = 0, ce qui démontre bien la propriété recherchée pour un,ℓ−1.

B.11 Théorème de Helmholtz-Hodge

Le théorème de Helmholtz-Hodge stipule que tout champ de vecteur V⃗ (r⃗) peut s’écrire comme
la somme d’un rotationnel et d’un gradient, soit

V⃗ (r⃗) = ∇⃗ × A⃗(r⃗)− ∇⃗U(r⃗). (B.116)

Nous allons en donner ci-dessous une démonstration simple en passant dans l’espace de Fourier.
Définissons la transformée de Fourier du champ V⃗ (r⃗) à l’aide de l’expression

V⃗ (k⃗) =
1

(2π)3/2

y
V⃗ (r⃗) exp

(
−ik⃗ · r⃗

)
d3r (B.117)

On rappelle qu’on peut alors écrire la relation inverse

V⃗ (r⃗) =
1

(2π)3/2

y
V⃗ (k⃗) exp

(
ik⃗ · r⃗

)
d3k (B.118)
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En dérivant cette équation par rapport à x, on obtient

∂V⃗

∂x
=

1

(2π)3/2

y
V⃗ (k⃗)ikx exp

(
ik⃗ · r⃗

)
d3k. (B.119)

La transformée de Fourier de ∂V⃗ /∂x s’écrit donc ikxV⃗ (k⃗). On en déduit de même

∇⃗V⃗ (r⃗)
F←→ ik⃗ · V⃗ (k⃗) (B.120)

∇⃗ × V⃗ (r⃗)
F←→ ik⃗ × V⃗ (k⃗) (B.121)

∇⃗U(r⃗)
F←→ ik⃗U(k⃗) (B.122)

Ecrivons maintenant l’éq. B.116 dans l’espace de Fourier (sans nous soucier ici d’éventuels problèmes
de convergence). On obtient alors

V⃗ (k⃗) = ik⃗ × A⃗(k⃗)− ik⃗ U(k⃗). (B.123)

Cette expression nous permet d’associer U(k⃗) à la composante longitudinale (i.e. parallèle à k⃗)
tandis que A⃗(k⃗) produira la composante transverse (i.e. perpendiculaire à k⃗) du champ de vecteurs
V⃗ (k⃗). En calculant le rotationnel de V⃗ (r⃗), ce qui revient à un simple produit vectoriel dans l’espace
de Fourier, on obtient

ik⃗ × V⃗ (k⃗) = ik⃗ × (ik⃗ × A⃗(k⃗)) = −(k⃗ · A⃗(k⃗))k⃗ + k2A⃗(k⃗). (B.124)

Cette expression sera effectivement vérifiée à condition de choisir

A⃗(k⃗) = i
k⃗ × V⃗ (k⃗)

k2
+ iξ(k⃗)k⃗ (B.125)

où ξ(k⃗) est une grandeur arbitraire. Posons

A⃗0(k⃗) =
ik⃗ × V⃗ (k⃗)

k2
. (B.126)

On peut alors écrire
A⃗(r⃗) = A⃗0(r⃗) + ∇⃗ξ(r⃗). (B.127)

On peut de même projeter l’éq. B.123 sur le vecteur k⃗. On obtient alors

ik⃗ · V⃗ (k⃗) = k2U(k⃗) (B.128)

On en déduit donc, pour k ̸= 0, la relation

U(k⃗) =
ik⃗ · V⃗ (k⃗)

k2
. (B.129)
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Appelons U0(k⃗) la fonction prenant la valeur ci-dessus pour k ̸= 0 et s’annulant en k = 0. On peut
alors écrire U(k⃗) = U0(k⃗) + aδ(k⃗) où a est un nombre arbitraire. On en déduit

U(r⃗) = U0(r⃗) + Cste. (B.130)

Ces résultats confirment donc la validité de l’éq. B.116 et permettent de calculer explicitement les
grandeurs A⃗(r⃗) et U(r⃗) en passant dans l’espace de Fourier. Ces grandeurs ne sont toutefois pas
définies de manière unique. D’après l’éq. B.127, le gradient de n’importe quelle quantité ξ(r⃗) peut
être ajouté à A⃗(r⃗), ce qui n’est pas surprenant puisque le rotationnel d’un gradient est nul. De
même, la quantité U(r⃗) est définie à une constante additive près.

Dans le cas particulier d’un champ de rotationnel nul (comme le champ électrique en électro-
statique), on sait que V⃗ (k⃗) sera purement longitudinal, ce qui nous permet d’écrire simplement
V⃗ (r⃗) = −∇⃗U(r⃗). De même, pour un champ de divergence nulle, comme le champ magnétique, V (k⃗)

sera purement transverse. On pourra alors écrire V⃗ (r⃗) = ∇⃗ × A⃗(r⃗).

B.12 Calcul de l’hamiltonien de structure hyperfine

Compte tenu de la démarche exposée en 7.4, nous pouvons calculer la structure hyperfine du
niveau fondamental de l’atome d’hydrogène à l’aide de la méthode des perturbations dans le cas
dégénéré. En remplaçant le vecteur unitaire u⃗ par r⃗/r dans l’éq. 7.42, nous pouvons écrire l’opérateur
associé au couplage dipôle-dipôle entre le proton et l’électron à l’aide de l’expression

Ŵ =
µ0
4π

(
ˆ⃗µe · ˆ⃗µp
r̂3

− 3
(ˆ⃗µe · ˆ⃗r)(ˆ⃗µp · ˆ⃗r)

r̂5

)
− 2µ0

3
ˆ⃗µe · ˆ⃗µp δ(ˆ⃗r ). (B.131)

Il nous suffit maintenant de calculer la restriction de cet opérateur dans l’espace de dimension 4
engendré par les états |1, 0, 0⟩ ⊗ |σe, σp⟩, où σe = ± et σp = ±. Les 16 éléments de matrice ainsi
obtenus peuvent s’écrire

(⟨1, 0, 0| ⊗ ⟨σe, σp|) Ŵ
(
|1, 0, 0⟩ ⊗ |σ′e, σ′p⟩

)
= ⟨σe, σp| Ĥ1 |σ′e, σ′p⟩ , (B.132)

où Ĥ1 est un opérateur agissant dans notre espace de dimension 4, correspondant au niveau fon-
damental de Ĥ0. D’après l’expression ci-dessus, l’opérateur Ĥ1 peut s’écrire comme la moyenne de
Ŵ sur r⃗, pondérée par la densité de probabilité |ψ1s(r⃗)|2 associée à l’état orbital |1, 0, 0⟩. On peut
donc écrire

Ĥ1 =
µ0
4π

(〈
1

r3

〉
ˆ⃗µe · ˆ⃗µp − 3

〈
(ˆ⃗µe · r⃗)(ˆ⃗µp · r⃗)

r5

〉)
− 2µ0

3
ˆ⃗µe · ˆ⃗µp ⟨δ(r⃗ )⟩ (B.133)

où les moyennes s’entendent uniquement sur la variable r⃗ et non sur les degrés de liberté de spin.
Commençons par calculer la moyenne intervenant dans le second des trois termes de l’équation
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ci-dessus. On obtient〈
(ˆ⃗µe · r⃗)(ˆ⃗µp · r⃗)

r5

〉
=

〈
1

r5
(µ̂exx+ µ̂eyy + µ̂ezz)(µ̂pxx+ µ̂pyy + µ̂pzz)

〉
(B.134)

= µ̂exµ̂px

〈
x2

r5

〉
+ µ̂eyµ̂py

〈
y2

r5

〉
+ µ̂ezµ̂pz

〈
z2

r5

〉
(B.135)

où nous n’avons pas conservé les produits associés à deux composantes cartésiennes différentes,
comme ⟨xy/r5⟩, qui sont évidemment nuls compte tenu de la symétrie de l’état 1s. Par ailleurs,
toujours par symétrie, on peut écrire〈

x2

r5

〉
=

〈
y2

r5

〉
=

〈
z2

r5

〉
=

1

3

〈
x2 + y2 + z2

r5

〉
=

1

3

〈
1

r3

〉
(B.136)

d’où l’on déduit〈
1

r5
(ˆ⃗µe · r⃗)(ˆ⃗µp · r⃗)

〉
=

1

3

〈
1

r3

〉
(µ̂exµ̂px + µ̂eyµ̂py + µ̂ezµ̂pz) =

1

3

〈
1

r3

〉
ˆ⃗µe · ˆ⃗µp. (B.137)

Les deux premiers termes de l’éq. B.133 sont donc exactement opposés. Ainsi, seul le terme de
contact subsiste, faisant intervenir la moyenne de la fonction de Dirac, soit

⟨δ(r⃗ )⟩ =
y
|ψ1s(r⃗)|2δ(r⃗ )d3r = |ψ1s(0)|2. (B.138)

Sachant que l’expression correctement normalisée de la fonction d’onde du fondamental s’écrit
ψ1s(r⃗) =

√
1/(πa31) exp(−r/a1) (voir par exemple l’exercice C.11), on en déduit que ⟨δ(r⃗ )⟩ =

1/(πa31), soit

Ĥ1 = −
2µ0
3

ˆ⃗µe · ˆ⃗µp ⟨δ(r⃗ )⟩ = −
2µ0
3πa31

ˆ⃗µe · ˆ⃗µp. (B.139)

Exprimons enfin les moments magnétiques en fonction des observables de spin à l’aide des relations
ˆ⃗µe = γe

ˆ⃗
Se et ˆ⃗µp = γp

ˆ⃗
Sp, où γe et γp sont respectivements les rapports gyromagnétiques de l’électron

et du proton. On peut donc écrire

Ĥ1 =
A

ℏ2
ˆ⃗
Se ·

ˆ⃗
Sp (B.140)

où
A = −2µ0γeγpℏ2

3πa31
≈ 5.87µeV. (B.141)

Il ne reste plus qu’à diagonaliser l’opérateur Ĥ1, comme effectué en 7.4.

B.13 Construction de la base couplée dans le cas général

Dans cette annexe, nous allons mettre en œuvre la démarche évoquée en 7.2, qui permet de
construire les états propres de Ĵ2 et Ĵz, où ˆ⃗

J =
ˆ⃗
J1 +

ˆ⃗
J2 est le moment cinétique total d’un système

composite constitué de deux sous-systèmes (1) et (2). Cette démarche généralise l’addition de deux
spins 1/2 effectuée en 7.1. Comme indiqué en 7.2, une première base de l’espace produit tensoriel
est la base tensorielle {|n1, j1,m1⟩ ⊗ |n2, j2,m2⟩}. Dans toute la suite, nous allons nous placer dans
un espace propre commun donné de Ĵ2

1 et Ĵ2
2 , associé aux deux valeurs propres j1(j1 + 1)ℏ2 et
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j2(j2 + 1)ℏ2 et donc à deux valeurs données des nombres j1 et j2. Nous supposerons de plus que
les nombres n1 et n2 sont fixés, et nous les omettrons dans toute la suite de la discussion. La base
tensorielle sera donc simplement notée {|m1⟩⊗ |m2⟩}, ou encore {|m1;m2⟩}. Les nombres m1 et m2

pouvant prendre respectivement (2j1 + 1) et (2j2 + 1) valeurs différentes, le sous-espace considéré
est donc de dimension (2j1 +1)(2j2 +1). Comme Ĵ2

1 et Ĵ2
2 commutent avec Ĵ2 et Ĵz, il est possible

de diagonaliser ces deux derniers opérateurs à l’intérieur du sous-espace considéré, ce qui revient à
construire ce que l’on a coutume d’appeler la base couplée, notée {|j,m⟩} [1, 2].

0
1 2

1

2

-1

-2

3

3

-3

Figure B.2 – Valeurs possibles de m1 et m2 (cas j1 = 2 et j2 = 1).

Remarquons tout d’abord que les éléments de la base tensorielle sont déjà vecteurs propres de
l’observable Ĵz = Ĵ1z + Ĵ2z, avec

Ĵz |m1;m2⟩ = (m1 +m2)ℏ |m1;m2⟩ . (B.142)

Les valeurs propres de Ĵz sont donc de la forme mℏ, avec m = m1 +m2. Compte tenu des valeurs
prises par m1 et m2, on a donc m ∈ {−j1 − j2,−j1 − j2 + 1, · · · , j1 + j2}. Comme l’illustre la
Fig. B.2, la dégénérescence de l’espace propre Em associé à la valeur propre mℏ dépend de la valeur
de m considérée. Pour la plus grande valeur de m, soit m = j1 + j2, il n’y a qu’un seul couple
(m1,m2) qui convienne, à savoir m1 = j1 et m2 = j2. L’espace Ej1+j2 est donc de dimension 1.
Mais pour m = j1 + j2 − 1 il y a deux couples possibles, à savoir (m1 = j1,m2 = j1 − 1) et
(m1 = j1 − 1,m2 = j2). L’espace Ej1+j2−1 est donc de dimension 2. De manière plus générale, on
montre facilement que dim Em = j1+j2−|m|+1, relation qui n’est valide que pour |m| ≥ |j1−j2|. A
l’inverse, pour |m| ≤ |j1− j2|, la dimension de l’espace Em est indépendante de m et est simplement
égale à 2min(j1, j2)+1, ce qui correspond à la situation où la ligne m = Cste croise les deux grands
côtés du rectangle de la Fig. B.2.

Considérons l’espace Ej1+j2 correspondant à m = j1 + j2, c’est à dire à la plus grande valeur
possible de Jz. Cet espace, de dimension 1, est engendré par l’état |m1 = j1;m2 = j2⟩. Comme Ĵz
commute avec Ĵ2, on peut diagonaliser cette dernière observable à l’intérieur de l’espace Ej1+j2 .
Mais comme l’espace est de dimension 1, on peut en conclure que Ĵ2 est déjà diagonal, et donc
que |m1 = j1;m2 = j2⟩ est vecteur propre de Ĵ2. On sait que la valeur correspondante de j est
nécessairement supérieure ou égale à m = j1 + j2, en raison de la relation générale −j ≤ m ≤ j.
Par ailleurs, si j était strictement supérieur à j1+ j2, cela impliquerait qu’il existe des états propres
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de Ĵz associés à m = j > j1 + j2, ce qui est exclu puisque nous avons vu plus haut que j1 + j2

était la valeur maximale de m. On peut donc en déduire que l’état |m1 = j1;m2 = j2⟩ est associé à
j = j1 + j2. Ce résultat peut être vérifié directement à l’aide de l’éq. 4.16, qui nous permet d’écrire

Ĵ2 |m1 = j1;m2 = j2⟩ =
(
Ĵ2
z + ℏĴz + Ĵ−Ĵ+

)
|m1 = j1;m2 = j2⟩ . (B.143)

Or Ĵ+ |m1 = j1;m2 = j2⟩ = (Ĵ1+ + Ĵ2+) |m1 = j1;m2 = j2⟩ = 0 car les valeurs de J1z et J2z sont
déjà maximales dans cet état. On en déduit Ĵ−Ĵ+ |m1 = j1;m2 = j2⟩ = 0 et donc

Ĵ2 |m1 = j1;m2 = j2⟩ = ((j1 + j2)
2 + (j1 + j2))ℏ2 |m1 = j1;m2 = j2⟩ (B.144)

= j(j + 1)ℏ2 |m1 = j1;m2 = j2⟩ (B.145)

avec j = j1 + j2, ce qui nous permet de vérifier que l’état |m1 = j1;m2 = j2⟩ est un vecteur propre
commun de Ĵ2 et Ĵz associé à j = m = j1 + j2. On peut de plus affirmer que ce vecteur est unique
(à une phase près) puisque dim Ej1+j2 = 1. Il est donc légitime d’identifier ce vecteur à un premier
élément de la base couplée, que l’on note

|j = j1 + j2,m = j1 + j2⟩ = |m1 = j1;m2 = j2⟩ . (B.146)

Ce premier état étant connu, on peut en déduire par application répétée de l’opérateur Ĵ− (éq. 4.21)
toute la série des états |j = j1 + j2,m⟩ pour −j1 − j2 ≤ m ≤ j1 + j2. Ces 2(j1 + j2) + 1 états de la
base couplée correspondent à la colonne la plus à droite de la Fig. B.3. A titre d’exemple, on a

|j1 + j2, j1 + j2 − 1⟩ = 1√
j(j + 1)− j(j − 1)ℏ

(
Ĵ1− + Ĵ2−

)
|m1 = j1;m2 = j2⟩ (B.147)

=

√
j1

j1 + j2
|m1 = j1 − 1;m2 = j2⟩+

√
j2

j1 + j2
|m1 = j1;m2 = j2 − 1⟩

(B.148)

Plaçons nous maintenant dans l’espace Ej1+j2−1, espace de dimension 2 engendré par les états
|m1 = j1 − 1;m2 = j2⟩ et |m1 = j1;m2 = j2 − 1⟩. Nous connaisons déjà un élément de la base cou-
plée appartenant à cet espace, à savoir l’état |j1 + j2, j1 + j2 − 1⟩ donné par l’éq. B.148. Comme
Ĵ2 peut être diagonalisé à l’intérieur de cet espace, nous savons que l’unique vecteur orthogonal à
l’état |j1 + j2, j1 + j2 − 1⟩ est nécessairement un vecteur propre de Ĵ2. Ce vecteur étant par ailleurs
vecteur propre de Ĵz pour m = j1+ j2− 1, un raisonnement similaire à celui déjà effectué plus haut
nous permet d’affirmer qu’il correspond à j = j1 + j2 − 1 (ce que l’on pourrait vérifier en faisant
agir explicitement Ĵ2 sur cet état). On peut donc poser

|j1 + j2 − 1, j1 + j2 − 1⟩ =

√
j2

j1 + j2
|m1 = j1 − 1;m2 = j2⟩ −

√
j1

j1 + j2
|j1; j2, j2 − 1⟩ . (B.149)

Une application répétée de l’opérateur Ĵ− nous permet alors de construire l’ensemble des états
|j1 + j2 − 1,m⟩, ce qui correspond à la deuxième colonne en partant de la droite de la Fig. B.3. Cette
approche itérative peut ensuite être étendue par récurrence. Soit un nombre j donné et supposons



182 ANNEXE B. QUELQUES DÉMONSTRATIONS TECHNIQUES

0
1 2

1

2

-1

-2

3

3

-3

Figure B.3 – Valeurs possibles de j et m, dans le cas j1 = 2 et j2 = 1.

que l’ensemble des états |j′,m′⟩ a déjà été construit pour j+1 ≤ j′ ≤ j1+ j2 (avec −j′ ≤ m′ ≤ j′).
Considérons alors l’espace Ej , dont la dimension est égale à j1 + j2 − j + 1 (si j ≥ |j1 − j2|). Nous
connaissons déjà j1 + j2 − j vecteurs orthogonaux de la base couplée appartenant à cet espace : les
états |j′,m = j⟩ pour j+1 ≤ j′ ≤ j1+ j2. On peut donc construire un unique vecteur de l’espace Ej
orthogonal à l’espace engendré par ces j1 + j2 − j vecteurs. Un raisonnement similaire à celui déjà
effectué plus haut permet alors d’affirmer que ce vecteur est vecteur propre de Ĵ2 pour la valeur
propre j(j + 1)ℏ2. Nous pouvons ainsi reconnaître l’état |j,m = j⟩, puis en déduire les 2j + 1 états
|j,m⟩ de la base couplée. De cette manière, nous pourrons construire l’ensemble des états |j,m⟩ pour
|j1− j2| ≤ j ≤ j1+ j2. Il sera impossible de continuer pour j < |j1− j2| car la dimension de l’espace
propre de Ĵz sera alors insuffisante pour construire de nouveaux états. Cherchons maintenant à
dénombrer le nombre d’états de la base couplée ainsi construits. Sachant que chaque colonne de la
Fig. B.3 contient 2j + 1 états, on obtient au total

j1+j2∑
j=|j1−j2|

(2j + 1) =

2j2∑
k=0

(2(j1 − j2 + k) + 1) (B.150)

= (2j2 + 1)(2j1 − 2j2 + 1) + 2
2j2(2j2 + 1)

2
= (2j1 + 1)(2j2 + 1). (B.151)

où nous avons supposé que j1 était supérieur à j2 pour alléger les notations, mais le résultat obtenu
étant symétrique en j1 et j2, il aurait bien entendu été identique dans le cas j2 ≥ j1. Le nombre
d’états ainsi construit est donc exactement égal à la dimension de l’espace dans lequel nous nous
sommes placés. Nous pouvons donc en conclure que nous avons achevé la construction de la la base
couplée {|j,m⟩}.

En résumé, nous avons établi le résultat annoncé en 7.2, à savoir que le nombre j prenait toutes
les valeurs de l’ensemble {|j1−j2|, |j1−j2|+1, · · · , j1+j2}. La démarche évoquée dans cette annexe
nous donne en outre une méthode générale permettant de construire explicitement la base couplée.



Annexe C

Exercices

C.1 Base continue

On considère un opérateur auto-adjoint Â dont le spectre de valeurs propres (supposées non
dégénérées) est l’ensemble des nombres réels, R. L’ensemble des vecteurs propres {|a⟩} constitue
une base de l’espace de Hilbert, ce qui permet d’écrire pour tout |ψ⟩ la relation

|ψ⟩ =
∫ +∞

−∞
⟨a|ψ⟩|a⟩da (C.1)

Montrer que les vecteurs |a⟩ obéissent nécessairement à la relation ⟨a|a′⟩ = δ(a− a′), et donc qu’ils
n’appartiennent pas à l’espace de Hilbert.

C.2 Calcul de quelques commutateurs

L’objet de cet exercice est de calculer quelques commutateurs utiles dans L2(R3).

1. Calculer le commutateur [x̂, p̂x]

2. En déduire l’expression de [x̂, p̂2x].

3. Calculer le commutateur [p̂x, f(x̂, ŷ, ẑ)].

4. Calculer le commutateur [p̂x, g(r̂)], où r =
√
x2 + y2 + z2.

C.3 Théorème du Viriel

On considère une particule placée dans un potentiel V (r) = ark, où k est un nombre entier. On
cherche à établir une relation entre la valeur moyenne de l’énergie cinétique T̂ = p̂2/(2m) et celle de
l’énergie potentielle V̂ = V (r̂) lorsque le système est placé dans un état propre |ψ⟩ de l’hamiltonien
Ĥ = T̂ + V̂ .

1. Montrer que pour tout opérateur Â, on a la relation ⟨ψ| [Â, Ĥ] |ψ⟩ = 0.

2. On considère l’opérateur Â = x̂p̂x + ŷp̂y + ẑp̂z. Exprimer [Â, Ĥ] en fonction de T̂ et V̂ .
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3. En déduire une relation entre ⟨T ⟩ et ⟨V ⟩ puis appliquer le résultat obtenu aux cas de l’oscillateur
harmonique et de l’atome d’hydrogène. Dans ce dernier cas, on en déduira la valeur de ⟨1/r⟩ lorsque
le système est dans l’état d’énergie En = −e2/(2n2a1).

C.4 Théorème d’Ehrenfest

L’objet de cet exercice est d’appliquer l’éq. 1.69 au cas de la position et de l’impulsion d’une
particule dont le mouvement à une dimension est gouverné par l’hamiltonien

Ĥ =
p̂2x
2m

+ V (x̂). (C.2)

1. Exprimer d⟨x⟩/dt à l’aide de ⟨px⟩.

2. Exprimer de même d⟨px⟩/dt.

3. Commenter les résultats obtenus.

C.5 Propagation d’un paquet d’ondes libre

On s’intéresse dans cet exercice à l’étalement d’un paquet d’ondes libre pour une particule se
propageant dans un espace à une dimension.

1. En vous aidant du théorème d’Ehrenfest généralisé, donner l’expression de d⟨x2⟩/dt.

2. Montrer que d2⟨x2⟩/dt2 ne dépend pas du temps.

3. En déduire que la variance ∆x(t)2 peut s’écrire comme une fonction quadratique du temps,
puis exprimer en fonction de ∆px le coefficient figurant devant le terme en t2.

4. On appelle ∆x0 la valeur minimale atteinte par la fonction ∆x(t), et on suppose que l’origine
des temps est choisie de sorte que cette valeur soit atteinte à l’instant t = 0. En déduire l’expression
de ∆x(t) en fonction de ∆x0 et ∆px.

5. Interpréter le résultat obtenu, notamment dans le cas où t→ +∞.

C.6 Inégalité de Heisenberg généralisée

On cherche à établir une relation d’incertitude pour deux grandeurs physiques associées à des
observables Â et B̂ ne commutant pas. On appelle ∆a et ∆b les écarts quadratiques moyens associés
à A et B, le système étant préparé dans un état |ψ⟩ donné. On introduit les observables Â′ =

Â− ⟨ψ|Â|ψ⟩Î et B̂′ = B̂ − ⟨ψ|B̂|ψ⟩Î.

1. Montrer que ∆a2 = ⟨ψ|Â′2|ψ⟩ et ∆b2 = ⟨ψ|B̂′2|ψ⟩.

2. Que dire de [Â′, B̂′] ?
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3. On considère la grandeur P (λ) = ||(Â′ + iλB̂′)|ψ⟩||2, où λ est un nombre réel. En étudiant le
signe de P (λ), montrer que le produit ∆a∆b admet une borne inférieure que l’on déterminera.

4. Appliquer l’inégalité obtenue au cas des observables x̂ et p̂x.

5. En appliquant l’inégalité au cas d’une particule de spin 1/2 placée dans l’état |+⟩z, montrer
que ∆Sx et ∆Sy atteignent leur valeur maximale et que ⟨Sx⟩ = ⟨Sy⟩ = 0.

C.7 Théorème de non clonage

On considère un système constitué de deux sous-systèmes identiques (a) et (b). On suppose qu’à
l’instant initial le système est dans l’état |Ψ(t0)⟩ = |a : φ0⟩⊗|b : φ⟩, où |φ0⟩ est un état donné tandis
que |φ⟩ est un état arbitraire inconnu.

1. Montrer que, sans connaître l’état |φ⟩, il est impossible de faire évoluer le système pour qu’à
l’instant t1 il soit dans l’état |Ψ(t1)⟩ = |a : φ⟩⊗|b : φ⟩. Ce résultat, appelé théorème de non clonage,
démontre l’impossibilité de cloner l’état d’un premier atome sur un second atome sans détruire l’état
du premier atome. Pour l’établir, on pourra considérer deux états |b : φ⟩ et |b : φ′⟩ bien choisis.

2. Est-il possible de faire évoluer le système vers l’état |Ψ(t1)⟩ = |a : φ⟩ ⊗ |b : φ0⟩ ?

C.8 Méthode numérique de calcul des bandes d’énergie

L’objet de cet exercice est d’étudier le principe de base de la méthode numérique utilisée pour
effectuer le calcul dont le résultat est représenté Fig. 2.7. Cette méthode s’appuie sur le théorème de
Bloch pour calculer les bandes d’énergie associées à un potentiel périodique à une dimension V (x).
On cherche donc une fonction propre d’énergie E que l’on écrit selon le théorème de Bloch

ψ(x) = u(x)eikx (C.3)

où u(x) est une fonction périodique et k ∈ [−π/a, π/a[. On rappelle que toute fonction périodique
comme u(x) peut être décomposée selon une série de Fourier

u(x) =

+∞∑
K=−∞

uK exp(i2πKx/a) (C.4)

où K est un nombre entier et où les coefficients uK sont définis par

uK =
1

a

∫ a/2

−a/2
u(x) exp(−i2πKx/a)dx. (C.5)

On définit de même les coefficients de Fourier VK associés au potentiel périodique V (x).

1. Retrouver l’équation à laquelle obéit la fonction périodique u(x).
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2. Montrer que les coefficients de Fourier uK obéissent à l’équation

(2πℏK/a+ ℏk)2

2m
uK +

∑
K′

VK−K′uK′ = EuK . (C.6)

3. Pour un potentiel V (x) suffisamment régulier, que peut-on dire du coefficient de Fourier VK
lorsque |K| tend vers l’infini ?

4. En déduire que le problème peut alors se ramener de manière approximative à la diagonalisation
d’une matrice carrée de taille finie.

5. Décrire un algorithme permettant de calculer la structure de bande représentée Fig. 2.7.

C.9 Déplacement du niveau fondamental

On considère un système gouverné par l’hamiltonien Ĥ = Ĥ0 + Ŵ , où l’effet de Ŵ peut être
traité dans le cadre de la méthode des perturbations. On suppose que l’état fondamental de Ĥ0 est
non dégénéré et que la valeur moyenne de Ŵ dans l’état fondamental est égale à zéro : ⟨0|Ŵ |0⟩ = 0.
Que peut-on dire du déplacement du niveau fondamental au plus bas ordre pertinent de la méthode
des perturbations ?

C.10 Méthode variationnelle appliquée à l’oscillateur harmonique

On applique dans cet exercice la méthode variationnelle à la recherche du niveau fondamental
d’un oscillateur harmonique à une dimension, associé à l’hamiltonien

Ĥ =
p̂2x
2m

+
1

2
mω2x̂2. (C.7)

1. On utilise dans un premier temps des fonctions d’essai de forme lorentzienne, données par
l’expression

φa(x) =
1

x2 + a2
. (C.8)

On définit les intégrales

In =

∫ +∞

−∞

1

(x2 + a2)n
dx (C.9)

dont on donne les premiers éléments (voir éq. A.41) :

I1 =
π

a
I2 =

π

2a3
I3 =

3π

8a5
I4 =

5π

16a7
. (C.10)

Déterminer E(a) = ⟨φa| Ĥ |φa⟩ / ⟨φa|φa⟩ puis en déduire une approximation de l’énergie du niveau
fondamental.
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2. Procéder de même avec des fonctions d’essai gaussiennes, définies par

χa(x) =
1

(2πa2)1/4
exp

(
− x2

4a2

)
. (C.11)

On pourra s’aider des intégrales

Jn =
1

a
√
2π

∫ +∞

−∞
x2ne−

x2

2a2 dx (C.12)

dont on donne les premiers éléments (voir éq. A.38)

J0 = 1 J1 = a2 J2 = 3a4. (C.13)

3. Laquelle des deux familles de fonctions d’essai donne-t-elle le meilleur résultat ? Commenter.

C.11 Méthode variationnelle appliquée à l’atome d’hydrogène

On applique dans cet exercice la méthode variationnelle à la recherche du niveau fondamental
de l’atome d’hydrogène. L’hamiltonien s’écrit ici

Ĥ =
p̂2

2m
− e2

r̂
, (C.14)

où e2 = q2/(4πϵ0). On utilisera des fonctions d’essai exponentiellement décroissantes, définies par

φa(r⃗) =

√
1

πa3
exp

(
−r
a

)
. (C.15)

On pourra s’aider des intégrales (voir éq. A.19)

In(a) =

∫ +∞

0
xne−x/adx = n! an+1. (C.16)

1. Vérifier que les fonctions d’essai φa(r⃗) sont normées.

2. Calculer ⟨φa| 1/r̂ |φa⟩.

3. Pour une fonction d’onde ψ(r⃗) = f(r) ne dépendant que de r =
√
x2 + y2 + z2, évaluer

||p̂x |ψ⟩ ||2 puis en déduire que

⟨ψ| p̂2 |ψ⟩ = 4πℏ2
∫ +∞

0
|f ′(r)|2r2dr, (C.17)

où f ′(r) = df/dr.

4. Calculer E(a) = ⟨φa| Ĥ |φa⟩.

5. En déduire une approximation de l’énergie du niveau fondamental. Commenter le résultat
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obtenu.

6. Décrire qualitativement ce que l’on aurait obtenu dans le cas d’une fonction d’essai gaussienne
de largeur a variable.

C.12 Moment cinétique orbital

L’objet de cet exercice est de vérifier explicitement que le moment cinétique orbital, ˆ⃗
L = ˆ⃗r × ˆ⃗p,

obéit bien aux propriétés générales attendues pour un moment cinétique. On considère pour cela
une rotation d’angle α autour de l’axe z transformant le repère {x′, y′, z′} en {x, y, z}, selon la
relation 

x = x′ cosα− y′ sinα
y = x′ sinα+ y′ cosα
z = z′

ou


x′ = x cosα+ y sinα
y′ = −x sinα+ y cosα
z′ = z

(C.18)

où l’on a exprimé les coordonnées {x′, y′, z′} à partir des coordonnées
{x, y, z} à l’aide d’une rotation d’angle −α. La rotation considérée est
schématisé par la figure ci-contre. Par définition, l’action de l’opérateur ro-
tation R̂z,α sur une fonction d’onde ψ(x, y, z) s’écrira alors selon la relation
ci-dessous.

Effet d’une rotation dans 

(
R̂z,αψ

)
(x, y, z) = ψ(x′, y′, z′) (C.19)

1. En supposant que l’angle α est petit, développer l’expression ci-dessus au premier ordre en α.
En déduire que L̂z est bien le générateur infinitésimal des rotations autour de l’axe z.

2. On rappelle que

L̂x = ŷp̂z − ẑp̂y (C.20)

L̂y = ẑp̂x − x̂p̂z (C.21)

L̂z = x̂p̂y − ŷp̂x (C.22)

Calculer explicitement le commutateur [L̂x, L̂y].

C.13 Construction des premières harmoniques sphériques

L’objet de cet exercice est de construire les premières harmoniques sphériques Yℓ,m(θ, φ), no-
tamment pour ℓ = 0 et ℓ = 1. On rappelle les relations vues en cours

Yℓ,m(θ, φ) = Fℓ,m(θ) exp(imφ) (C.23)

et
L̂±Yℓ,m(θ, φ) =

√
ℓ(ℓ+ 1)−m(m± 1)ℏYℓ,m±1(θ, φ) (C.24)
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où
L̂± = L̂x ± iL̂y = ℏe±iφ

(
± ∂

∂θ
+ i cot θ

∂

∂φ

)
. (C.25)

On rappelle que les fonctions Y (θ, φ) sont normalisées selon la relation

⟨Y |Y ⟩ =
∫ π

0

∫ 2π

0
|Y (θ, φ)|2 sin θdθdφ = 1. (C.26)

1. Rappeler l’équation différentielle du premier ordre dont Yℓ,−ℓ(θ, φ) est solution. En déduire
une équation portant sur Fℓ,−ℓ(θ) et montrer que Fℓ,−ℓ(θ) = cℓ sin

ℓ θ, où cℓ est une constante de
normalisation.

2. Déterminer la constante de normalisation cℓ, en vous aidant de l’expression ci-dessous que l’on
admettra (et qui pourrait aisément être démontrée par intégration par parties).

Iℓ =

∫ π

0
sin2ℓ+1 θdθ = 2

(2ℓℓ!)2

(2ℓ+ 1)!
(C.27)

3. Déterminer les fonctions Yℓ,m(θ, φ) pour ℓ = 0 puis pour ℓ = 1.

C.14 Parité des harmoniques sphériques

On considère l’opérateur parité Π̂ défini par Π̂ |r⃗⟩ = |−r⃗⟩. On rappelle l’action de cet opérateur
sur une fonction d’onde exprimée en coordonnées cartésiennes, Π̂ψ(r⃗) = ψ(−x,−y,−z), ou en
coordonnées sphériques, Π̂ψ(r, θ, φ) = ψ(r, π − θ, φ + π). L’objet de cet exercice est de démontrer
l’éq. 4.62 annoncée en 4.4.4, à savoir

Π̂Yℓ,m(θ, φ) = Yℓ,m(π − θ, φ+ π) = (−1)ℓYℓ,m(θ, φ). (C.28)

1. Exprimer Π̂x̂ en fonction de x̂Π̂.

2. Exprimer de même Π̂p̂y en fonction de p̂yΠ̂.

3. En déduire l’expression des commutateurs [Π̂, x̂p̂y] et [Π̂, L̂z].

4. Que peut-on dire du commutateur [Π̂, L̂+] ?

5. Montrer que les harmoniques sphériques ont une parité bien définie (ce qui signifie que les
fonctions Yℓ,m(θ, φ) sont des fonctions propres de l’opérateur parité).

6. Montrer que Π̂Yℓ,−ℓ(θ, φ) = (−1)ℓYℓ,−ℓ(θ, φ).

7. En déduire que Π̂Yℓ,m(θ, φ) = (−1)ℓYℓ,m(θ, φ).
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C.15 Atomes hydrogénoïdes

On appelle atome hydrogénoïde un ion positif constitué d’un atome de rang Z ionisé Z − 1 fois,
comme He+ ou Li++. On fera l’hypothèse que la masse réduite µ peut être prise égale à celle de
l’électron me.

1. Ecrire l’hamiltonien

2. Ecrire les valeurs des niveaux d’énergie

3. Que peut-on dire du rayon de Bohr d’un ion hydrogénoïde ?

C.16 Reconnaître une orbitale atomique

La Figure ci-dessous représente une orbitale atomique ψn,ℓ,m(r, θ, φ) de l’atome d’hydrogène,
tracée selon les conventions utilisées en cours. On a représenté une vue écorchée (a), de haut (b),
ainsi que l’échelle de niveaux de gris permettant de coder la phase (c). Donner les valeurs de n, ℓ
et m, en justifiant votre réponse.

0

p/2

p

3p/2

2p

(a) (b) (c)

C.17 Invariance de jauge

En procédant comme en 6.3, on considère un changement de jauge

A⃗′(r⃗, t) = A⃗(r⃗, t) + ∇⃗χ(r⃗, t) (C.29)

Φ′(r⃗, t) = Φ(r⃗, t)− ∂χ

∂t
(C.30)

associé à la fonction χ(r⃗, t), qui est maintenant fonction du temps. On introduit la transformation
unitaire T̂ permettant de passer de |ψ(t)⟩ à |ψ′(t)⟩ selon l’expression

ψ′(r⃗, t) = T̂ψ(r⃗, t) = exp

(
i
qχ(r⃗, t)

ℏ

)
ψ(r⃗, t). (C.31)

Vérifier que, si |ψ(t)⟩ est solution de l’équation de Schrödinger associée à l’hamiltonien Ĥ, alors
|ψ′(t)⟩ est solution de l’équation de Schrödinger associée à l’hamiltonien Ĥ ′ dans la nouvelle jauge.

C.18 Niveaux de Landau

On considère une particule chargée placée dans un champ magnétique uniforme orienté selon
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l’axe z. On utilisera la jauge de Landau.

1. Ecrire l’hamiltonien Ĥ du système.

2. Vérifier que l’hamiltonien commute avec p̂y et p̂z et en déduire sous quelle forme peuvent être
recherchées les fonctions propres de l’hamiltonien.

3. A l’aide d’un changement de variable approprié, déterminer les valeurs propres et les fonctions
propres de Ĥ en vous ramenant au problème de l’oscillateur harmonique à une dimension.

4. On s’intéresse maintenant au cas d’une structure semiconductrice à puits quantiques où le
mouvement de la particule selon z est confiné dans le plan z = 0. Que dire des niveaux d’énergie ?

C.19 Evolution d’un système à deux niveaux

L’objet de cet exercice est de résoudre de manière exacte le problème d’un système à deux
niveaux soumis à une perturbation constante, puis de comparer avec le résultat obtenu à l’aide de
la méthode des perturbations dépendant du temps.

On écrit l’hamiltonien du système sous la forme Ĥ = Ĥ0+ Ŵ , avec Ĥ0 = ℏωi |i⟩ ⟨i|+ℏωf |f⟩ ⟨f |
et Ŵ = (ℏΩ0/2)(|f⟩ ⟨i|+ |i⟩ ⟨f |), où Ω0 est une quantité réelle. On introduit la grandeur

Ω =
√
ω2
fi +Ω2

0 (C.32)

et l’angle θ défini par
ωfi = Ωcos θ et Ω0 = Ωsin θ. (C.33)

1. Diagonaliser l’hamiltonien de manière exacte et exprimer le résultat à l’aide de ωfi, Ω et θ.

2. Sachant que le système est placé dans l’état |i⟩ l’instant t = 0, calculer de manière exacte l’état
|ψ(t)⟩ pour t ≥ 0 puis en déduire la probabilité de transition Pi→f (t).

3. Commenter le résultat obtenu.

4. Traiter le même problème à l’aide de la méthode des perturbations dépendant du temps.
Discuter le domaine de validité selon les valeurs des paramètres.

C.20 Désexcitation d’un état couplé à un continuum

On considère un système placé dans un état initial |i⟩ couplé à un continuum d’états finals |f⟩,
comme représenté ci-dessous.

3. 

Transition d’un état discret vers un continuum 

On fait l’hypothèse que l’hamiltonien s’écrit Ĥ = Ĥ0 + Ŵ , les états |i⟩ et |f⟩ étant des états
propres de Ĥ0 (avec Ĥ0|i⟩ = ℏωi|i⟩ et Ĥ0|f⟩ = ℏωf |f⟩). On suppose en outre que les seuls éléments
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de matrice non nuls du terme de couplage Ŵ sont ceux faisant intervenir à la fois l’état initial
et l’un des états finals. Comme dans le cours, ces éléments de matrice ⟨f |Ŵ |i⟩ = Wfi(Ef ) seront
supposés ne dépendre que de l’énergie Ef de l’état final impliqué. Enfin, pour simplifier les calculs,
on supposera que la fonction g(ω) = |Wfi(Ei + ℏω)|2 ρ(Ei + ℏω) est paire et varie lentement avec
ω (ρ(Ef ) étant la densité d’états finals). On posera

|ψ(t)⟩ = γi(t) exp(−iωit)|i⟩+
∑
f

γf (t) exp(−iωf t)|f⟩. (C.34)

1. A l’aide des résultats établis en cours, rappeler les expressions de γ̇i(t) et γ̇f (t).

2. Etablir une équation intégro-différentielle portant sur γi(t), que l’on exprimera à l’aide de la
fonction

g(t) =
1√
2π

∫ +∞

−∞
g(ω) exp(−iωt)dω (C.35)

3. Compte tenu des hypothèses effectuées sur la fonction g(ω), que peut-on en conclure sur sa
transformée de Fourier g(t) ?

4. On suppose que le terme de couplage est suffisamment faible pour que l’échelle de variation de
γi(t) soit beaucoup plus lente que l’inverse de la largeur ∆ω de la fonction g(ω). En déduire une
équation d’évolution simplifiée de γi(t) faisant intervenir le taux de transition calculé en cours

Γ =
2π

ℏ
|Wfi(Ef = Ei)|2ρ(Ef = Ei). (C.36)

5. En déduire l’évolution temporelle de la population subsistant dans l’état initial. Retrouve-t-on
le résultat du cours aux temps courts ?



Annexe D

Correction des exercices

D.1 Base continue

Projetons l’éq. C.1 sur le bra ⟨a|. On obtient alors

⟨a|ψ⟩ =
∫ +∞

−∞
⟨a′|ψ⟩⟨a|a′⟩da′

Si on note f(a) = ⟨a|ψ⟩, on obtient donc f(a) =
∫ +∞
−∞ f(a′)⟨a|a′⟩da′. Cette dernière relation, valable

pour toute fonction f(a), est la définition même de la distribution de Dirac. On peut donc en déduire
⟨a|a′⟩ = δ(a−a′) = δ(a′−a). Cette relation vient remplacer la relation d’orthonormalité rencontrée
pour une base hilbertienne. On en déduit en particulier ⟨a|a⟩ = δ(0) = +∞. Les vecteurs propres
d’un opérateur dont le spectre est continu ne peuvent donc pas appartenir à l’espace de Hilbert, ce
que nous avons déjà rencontré pour les vecteurs propres des opérateurs position et impulsion.

D.2 Calcul de quelques commutateurs

1. On a
⟨x| [x̂, p̂x] |ψ⟩ = x

ℏ
i

∂

∂x
ψ(x)− ℏ

i

∂

∂x
xψ(x) = iℏψ(x) = iℏ ⟨x|ψ⟩

d’où [x̂, p̂x] = iℏÎ.

2. On peut écrire [x̂, p̂2x] = [x̂, p̂x]p̂x + p̂x[x̂, p̂x] = 2iℏp̂x.

3. Regardons l’action de l’opérateur p̂x sur le produit f(x, y, z)ψ(x, y, z), où ψ(r⃗) est une fonction
d’onde quelconque.

p̂xf(x, y, z)ψ(x, y, z) =
ℏ
i

∂

∂x
f(x, y, z)ψ(x, y, z)

= −iℏ
(
∂f

∂x
ψ(x, y, z) + f(x, y, z)

∂ψ

∂x

)
= −iℏ∂f

∂x
ψ(x, y, z) + f(x, y, z)p̂xψ(x, y, z)

193



194 ANNEXE D. CORRECTION DES EXERCICES

On en déduit

(p̂xf(x, y, z)− f(x, y, z)p̂x)ψ(x, y, z) = −iℏ
∂f

∂x
ψ(x, y, z)

Ceci étant vrai pour toute fonction ψ, on en déduit que

[p̂x, f(x̂, ŷ, ẑ)] = −iℏ
∂f

∂x
(x̂, ŷ, ẑ).

En posant f(x, y, z) = x, on retrouve bien le résultat [x̂, p̂x] = iℏÎ établi plus haut.

4. Il suffit de calculer ∂g/∂x. On a

∂g(r(x))

∂x
=
∂g

∂r

∂r

∂x

et
∂
√
x2 + y2 + z2

∂x
=

2x

2
√
x2 + y2 + z2

=
x

r

d’où la relation
[p̂x, g(r̂)] = −iℏ

x̂

r̂
g′(r̂)

où g′(r) = dg/dr.

D.3 Théorème du Viriel

1. On a ⟨ψ| [Â, Ĥ] |ψ⟩ = ⟨ψ| ÂĤ |ψ⟩ − ⟨ψ| ĤÂ |ψ⟩ = ⟨ψ| ÂE |ψ⟩ − ⟨ψ|EÂ |ψ⟩ = 0.

2. On a
[x̂p̂x, T̂ ] =

1

2m
[x̂, p̂2x]p̂x =

iℏ
m
p̂2x,

où l’on a utilisé la valeur de [x̂, p̂2x] obtenue à l’exercice précédent. D’où [Â, T̂ ] = iℏp̂2/m = 2iℏT̂ .
Par ailleurs,

[x̂p̂x, V (r̂)] = x̂[p̂x, V (r̂)] = −iℏ x̂
2

r̂
V ′(r̂),

où l’on a utilisée la valeur de [p̂x, V (r̂)] obtenue à l’exercice précédent. On en déduit

[Â, V (r̂)] = −iℏ x̂
2 + ŷ2 + ẑ2

r̂
V ′(r) = −iℏr̂V ′(r̂) = −iℏkV (r̂),

car compte tenu de la forme de V (r), on a rV ′(r) = kV (r). On en déduit [Â, Ĥ] = iℏ(2T̂ − kV̂ ).

3. On en déduit que si le système est dans un état propre de l’hamiltonien, alors

2 ⟨T ⟩ = k ⟨V ⟩ .

Pour l’oscillateur harmonique (k = 2), on trouve ⟨T ⟩ = ⟨V ⟩, tandis que pour un potentiel Coulom-
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bien (k = −1), on obtient ⟨T ⟩ = −⟨V ⟩ /2. Dans le cas de l’hydrogène, on en déduit

En = ⟨T ⟩+ ⟨V ⟩ = −⟨V ⟩
2

+ ⟨V ⟩ = ⟨V ⟩
2

=
e2

2
⟨−1
r
⟩ .

On obtient donc ⟨1/r⟩ = 1/(n2a1).

D.4 Théorème d’Ehrenfest

1. D’après le théorème d’Ehrenfest généralisé, on a

d⟨x⟩
dt

=
1

iℏ
⟨ψ(t)| [x̂, Ĥ] |ψ(t)⟩

or
[x̂, Ĥ] = [x̂,

p̂2x
2m

] =
1

2m
2iℏpx = iℏ

p̂x
m

où l’on a utilisé la relation [x̂, p̂2x] = 2iℏp̂x établie en C.2. On en déduit la relation

d⟨x⟩
dt

=
⟨px⟩
m

.

2. On a de même
d⟨px⟩
dt

=
1

iℏ
⟨ψ(t)| [p̂x, Ĥ] |ψ(t)⟩

or
[p̂x, Ĥ] = [x̂, V (x̂)] = −iℏ∂V

∂x
(x̂)

où l’on a utilisé l’un des résultats de l’exercice C.2. On en déduit la relation

d⟨px⟩
dt

= −
〈
∂V

∂x

〉
.

3. La première relation obtenue reproduit, pour les valeurs moyennes, la relation classique

dx

dt
=
px
m

entre vitesse et impulsion. La seconde relation ressemble beaucoup à la relation classique

dpx
dt

= −dV
dx

reliant la dérivée de l’impulsion à la force, elle même égale à l’opposé du gradient du potentiel. Mais
on ne peut pas pour autant dire que la position moyenne d’un paquet d’ondes obéit aux mêmes
lois qu’un objet classique. En témoigne par exemple l’effet tunnel. Ce n’est que lorsque le potentiel
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varie lentement devant la taille du paquet d’ondes que l’on pourra faire l’approximation〈
∂V

∂x

〉
≈ ∂V

∂x
(⟨x⟩)

ce qui nous permettra de retrouver la relation classique entre accélération et force. On peut également
citer le cas particulier de l’oscillateur harmonique, pour lequel la moyenne de la force (proportionnelle
à x) est égale à la force au point moyen, ce qui donne une évolution sinusoïdale en mécanique
quantique comme en mécanique classique.

D.5 Propagation d’un paquet d’ondes libre

1. D’après le théorème d’Ehrenfest généralisé, on peut écrire

d⟨x2⟩
dt

=
1

iℏ
⟨ψ(t)| [x̂2, Ĥ] |ψ(t)⟩

Calculons le commutateur

[x̂2, Ĥ] = x̂[x̂, Ĥ] + [x̂, H]x̂ =
iℏ
m

(x̂p̂x + p̂xx̂) ,

où nous avons utilisé le résultat [x̂, Ĥ] = iℏp̂x/m établi à l’exercice C.4. On en déduit

d⟨x2⟩
dt

=
⟨ψ(t)| (x̂p̂x + p̂xx̂) |ψ(t)⟩

m
.

2. D’après le théorème d’Ehrenfest, on peut écrire

d

dt
⟨ψ(t)| (x̂p̂x + p̂xx̂) |ψ(t)⟩ =

1

iℏ
⟨ψ(t)|

[
(x̂p̂x + p̂xx̂) , Ĥ

]
|ψ(t)⟩

Or, pour une particule libre, l’hamiltonien s’écrit

Ĥ =
p̂2x
2m

,

ce qui nous permet d’écrire [p̂x, Ĥ] = 0. On en déduit

[x̂p̂x, Ĥ] = [x̂, Ĥ]p̂x =
iℏ
m
p̂2x.

On peut écrire de même

[p̂xx̂, Ĥ] = p̂x[x̂, Ĥ] =
iℏ
m
p̂2x.

On en déduit
d

dt
⟨ψ(t)| (x̂p̂x + p̂xx̂) |ψ(t)⟩ =

2⟨p2x⟩
m

.

et donc
d2⟨x2⟩
dt2

=
2⟨p2x⟩
m2

.
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Cette grandeur est indépendante du temps car pour une particule libre toute fonction de l’impulsion
se conserve (ce dont on peut se convaincre immédiatement à l’aide du théorème d’Ehrenfest puisque
[f(p̂x), Ĥ] = 0).

3. En intégrant deux fois le résultat obtenu à la question précédente, on peut écrire

⟨x2⟩(t) = ⟨p
2
x⟩

m2
t2 +Bt+ C.

Par ailleurs, on sait d’après l’exercice C.4 que

⟨x⟩(t) = ⟨px⟩
m

t+ ⟨x⟩(t = 0).

En élevant au carré, on obtient

⟨x⟩2(t) = ⟨px⟩
2

m2
t2 +B′t+ C ′.

Sachant que ∆x2 = ⟨x2⟩ − ⟨x⟩2, on en déduit

∆x(t)2 =
∆p2x
m2

t2 +B′′t+ C ′′,

où l’on a utilisé ∆p2x = ⟨p2x⟩ − ⟨px⟩2.

4. D’après la question précédente, la fonction ∆x(t)2 est une parabole de courbure positive. Le
choix proposé pour l’origine des temps nous permet d’affirmer que le sommet de cette parabole
est atteint à l’instant t = 0, et donc que la constante d’intégration B′′ est nulle. Par ailleurs, la
constante d’intégration C ′′ est simplement égale à la valeur atteinte en t = 0, soit ∆x20. On en déduit

∆x(t) =

√
∆p2x
m2

t2 +∆x20,

ce qui correspond à une variation hyperbolique de la largeur ∆x(t) du paquet d’ondes.

5. On en déduit que le paquet d’ondes va s’étaler au cours du temps, ce qui est une conséquence
directe de la relation d’incertitude de Heisenberg, puisque

∆px ≥
ℏ

2∆x0
.

Lorsque t tend vers l’infini, on obtient la relation approchée

∆x(t) ∼
t→+∞

∆px
m

t,

qui correspond à l’asymptote de l’hyperbole. On peut interpréter ce résultat en remarquant que la
dispersion ∆px des impulsions constituant notre paquet d’ondes a pour conséquence une dispersion
∆px/m des vitesses, ce qui conduit à un étalement (∆px/m)t des positions atteintes à l’instant t.
Cette approximation est valide pour un instant t tel que que l’étalement initial du paquet d’ondes,
∆x0, soit négligeable devant l’étalement dû à la dispersion des vitesses.
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D.6 Inégalité de Heisenberg généralisée

1. On a évidemment ⟨A′⟩ = ⟨A⟩ − ⟨A⟩ = 0, et de même ⟨B′⟩ = 0. Par ailleurs,

⟨A′2⟩ = ⟨(A− ⟨A⟩)2⟩ = ⟨A2⟩ − 2⟨⟨A⟩A⟩+ ⟨A⟩2 = ⟨A2⟩ − ⟨A⟩2 = ∆a2

On retrouve les deux définitions de la variance : soit la différence entre la moyenne du carré et le
carré de la moyenne, soit la moyenne du carré de l’écart à la valeur moyenne. On a évidemment le
même résultat avec B : ∆b2 = ⟨ψ|B̂′2|ψ⟩.

2. Le changement d’origine ne change évidemment pas le commutateur, car l’identité commute
avec tout autre opérateur :

[Â′, B̂′] = [Â− ⟨A⟩Î , B̂ − ⟨B⟩Î] = [Â, B̂]− [⟨A⟩Î , B̂]− [Â, ⟨B⟩Î] + [⟨A⟩Î , ⟨B⟩Î] = [Â, B̂]

3. On a

P (λ) = ⟨ψ|(Â′ − iλB̂′)(Â′ + iλB̂′)|ψ⟩

= ⟨ψ|
(
Â′2 + iλ(Â′B̂′ − B̂′Â′) + λ2B̂′2

)
|ψ⟩

= ⟨B′2⟩λ2 + iλ⟨ψ|[Â′, B̂′]|ψ⟩+ ⟨A′2⟩

= ∆b2λ2 + iλ⟨ψ|[Â, B̂]|ψ⟩+∆a2

On peut tout d’abord s’assurer que c’est un polynôme du second degré à coefficient réels, car i[Â, B̂]

est hermitien et sa valeur moyenne est donc réelle. Ce polynôme du second degré doit être positif
pour tout λ, et ne peut donc admettre de racines distinctes. Son discriminant est donc négatif ou
nul, ce qui nous donne l’inégalité

|⟨ψ|[Â, B̂]|ψ⟩|2 − 4∆a2∆b2 ≤ 0

soit
∆a∆b ≥ 1

2
|⟨ψ|[Â, B̂]|ψ⟩|

qui nous donne la relation d’incertitude généralisée (éq. 1.66).

4. On sait que [x̂, p̂x] = iℏÎ. Notre inégalité nous permet donc de retrouver l’inégalité de Heisen-
berg ∆x∆px ≥ ℏ/2.

5. Remarquons que
∆S2

x = ⟨S2
x⟩ − ⟨Sx⟩2 ≤ ⟨S2

x⟩ = ℏ2/4.

∆Sx atteint donc sa valeur maximale, ℏ/2, ssi ⟨Sx⟩ = 0. Sachant que [Ŝx, Ŝy] = iℏŜz, l’inégalité de
Heisenberg généralisée nous donne

∆Sx∆Sy ≥
1

2
| z⟨+|[Ŝx, Ŝy]|+⟩z| =

ℏ
2
| z⟨+|Ŝz|+⟩z| =

ℏ2

4
.
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Par ailleurs,

∆Sx∆Sy ≤
(
ℏ
2

)2

=
ℏ2

4
.

On en déduit que ∆Sx∆Sy = ℏ2/4 et donc que ∆Sx = ∆Sy = ℏ/2, ce qui implique ⟨Sx⟩ = ⟨Sy⟩ = 0.
Les grandeurs physiques Sx, Sy et Sz, associées à des observables qui ne commutent pas, sont ainsi
incompatibles. Une connaissance parfaite de Sz a pour conséquence une incertitude maximale sur
Sx et Sy. On aurait bien entendu pu retrouver directement ce résultat à l’aide d’un calcul direct
des valeurs moyennes de Ŝx et Ŝy lorsque le système est placé dans l’état |+⟩z.

D.7 Théorème de non clonage

1. Comme établi en cours, le produit scalaire est une grandeur conservée :

⟨Ψ(t1)|Ψ′(t1)⟩ = ⟨Ψ(t0)| Û †(t1, t0)Û(t1, t0) |Ψ′(t0)⟩ = ⟨Ψ(t0)|Ψ′(t0)⟩

car Û(t1, t0) est un opérateur unitaire. A l’instant t0, ce produit scalaire s’écrit

⟨Ψ(t0)|Ψ′(t0)⟩ = ⟨φ0|φ0⟩ ⟨φ|φ′⟩ = ⟨φ|φ′⟩ .

Si l’on pouvait avoir |Ψ(t1)⟩ = |a : φ⟩ ⊗ |b : φ⟩, le produit scalaire à l’instant t1 s’écrirait

⟨Ψ(t1)|Ψ′(t1)⟩ = ⟨φ|φ′⟩ ⟨φ|φ′⟩ = ⟨φ|φ′⟩2 .

Il suffit de choisir ⟨φ|φ′⟩ ∈]0, 1[ pour en conclure qu’il est impossible de réaliser un tel clonage, sauf
si l’on sait que les états |φ⟩ possibles appartiennent à une base orthonormée. Il est donc impossible
de cloner un état quantique arbitraire.

2. Dans ce cas, le produit scalaire s’écrit

⟨Ψ(t1)|Ψ′(t1)⟩ = ⟨φ|φ′⟩ ⟨φ0|φ0⟩ = ⟨φ|φ′⟩

ce qui conserve bien le produit scalaire. Une telle évolution est donc possible. Ce processus où l’état
quantique est transféré de (b) vers (a) est appelé la téléportation quantique.

D.8 Méthode numérique de calcul des bandes d’énergie

1. En remplaçant ψ(x) par son expression dans l’équation Ĥψ(x) = Eψ(x), on obtient

1

2m
(p̂x + ℏk)2u(x) + V (x)u(x) = Eu(x),

où l’on a utilisé l’identité p̂xeikxu(x) = eikx(p̂x + ℏkx)u(x) (éq. 2.95).

2. On a p̂x exp(i2πKx/a) = (2πℏK/a) exp(i2πKx/a). Par ailleurs,

V (x)u(x) =
∑
K,K′

VKuK exp(i2π(K +K ′)x/a) =
∑
K,K′

VK−K′uK′ exp(i2πKx/a)
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L’équation aux valeurs propres s’écrit donc

∑
K

(
(2πℏK/a+ ℏk)2

2m
uK +

∑
K′

VK−K′uK′

)
exp(i2πKx/a) =

∑
K

EuK exp(i2πKx/a)

La décomposition de Fourier étant unique, on en déduit l’équation demandée.

3. On s’attend à ce que VK tende vers zéro lorsque |K| tend vers l’infini. En pratique, la distri-
bution des coefficient VK est d’autant plus large que V (x) varie rapidement, ce qui est l’équivalent
de la relation d’incertitude de Heisenberg pour les séries de Fourier. Plus précisément, si on appelle
δx l’échelle caractéristique la plus rapide de variation de la fonction V (x), on sait que VK sera
négligeable pour Kδx≫ a. En d’autres termes, des sinusoïdes de période beaucoup plus petite que
δx ne contribueront pas de manière significative à la série de Fourier représentant V (x).

4. L’éq. C.6 correspond à la recherche des vecteurs propres (dont les composantes sont les coef-
ficients uK) d’une matrice de dimension infinie, pour les valeurs propres E. Dans la base choisie,
le terme d’énergie cinétique est diagonal tandis que le terme d’énergie potentielle correspond à une
matrice non diagonale dont les éléments de matrice s’écrivent ⟨K| V̂ |K ′⟩ = VK−K′ . D’après la ques-
tion précédente, les éléments non négligeables de cette matrice sont proche de la diagonale. Par
ailleurs, si on cherche les niveaux de plus basse énergie, on pourra donc tronquer la matrice en ne
conservant que les valeurs de K pour lesquelles |K| ≤ N , ou N est un nombre entier qu’il faudra
choisir selon la forme du potentiel (par exemple N ∼ 10a/δx).

5. On obtient finalement l’algorithme suivant :

• Calculer les 2N + 1 coefficients de Fourier VK et la matrice ⟨K| V̂ |K ′⟩ = VK−K′

• Effectuer une boucle sur k variant continûment de −π/a à π/a

• Pour chaque valeur de k, calculer la matrice de Ĥk comme la somme d’une matrice diagonale
correspondant au terme d’énergie cinétique et de la matrice de V̂ tabulée ci-dessus.

• Diagonaliser Ĥk et conserver les premières valeurs propres En,k (ne pas utiliser les plus grandes
valeurs propres qui ne sont pas exactes en raison de la troncation de la matrice).

• Représenter En,k en fonction de k.

D.9 Déplacement du niveau fondamental

Le niveau fondamental sera toujours décalé vers le bas. En effet, le déplacement au premier
ordre δE(1) = ⟨0|Ŵ |0⟩ est nul. Il faut donc aller au second ordre de la méthode des perturbations.
On obtient dans ce cas

δE
(2)
0 =

∑
m̸=0

|⟨m|Ŵ |0⟩|2

E0 − Em
< 0

car E0 < Em pour m ̸= 0. Le niveau fondamental est donc décalé vers le bas.
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D.10 Méthode variationnelle appliquée à l’oscillateur harmonique

1. Le carré de la norme de la fonction d’essai s’écrit

⟨φa|φa⟩ =
∫ +∞

−∞

1

(x2 + a2)2
dx = I2 =

π

2a3
.

Par ailleurs,

⟨φa|x̂2|φa⟩ =
∫ +∞

−∞

x2

(x2 + a2)2
dx

=

∫ +∞

−∞

x2 + a2

(x2 + a2)2
dx−

∫ +∞

−∞

a2

(x2 + a2)2
dx

= I1 − a2I2 =
π

a
− π

2a
=

π

2a

Remarquons au passage que ⟨x2⟩ = (π/(2a))/(π/(2a3)) = a2, soit ∆x = a. Enfin, ⟨φa|p̂2x|φa⟩ =
||p̂x|φa⟩||2, or

p̂xφa(x) =
ℏ
i

d

dx

1

x2 + a2
=

ℏ
i

−2x
(x2 + a2)2

et

||p̂x|φa⟩||2 = ℏ2
∫ +∞

−∞

4x2

(x2 + a2)4
dx

= 4ℏ2
(∫ +∞

−∞

x2 + a2

(x2 + a2)4
−
∫ +∞

−∞

a2

(x2 + a2)4

)
dx

= 4ℏ2(I3 − a2I4) =
πℏ2

4a5

On peut finalement en déduire

⟨φa|Ĥ|φa⟩ =
⟨φa|p̂2x|φa⟩

2m
+

1

2
mω2⟨φa|x̂2|φa⟩ =

πℏ2

8ma5
+
πmω2

4a

ou encore, après division par ⟨φa|φa⟩,

Eℓ(a) =
ℏ2

4ma2
+

1

2
mω2a2 =

1

2

(
ℏ2

2ma2
+mω2a2

)
(D.1)

On pourrait déterminer le minimum en dérivant par rapport à a2, mais il est plus rapide de remar-
quer que la moyenne arithmétique (λ + µ)/2 de deux nombres λ et µ est minorée par la moyenne
géométrique

√
λµ (car (

√
λ−√µ)2 est positif ou nul). On peut remarquer en outre que ce minimum

est atteint lorsque λ = µ. En appliquant cette méthode à la moyenne arithmétique apparaissant
dans l’éq. D.1, on obtient

Eℓ(a) ≥
√

ℏ2
2ma2

mω2a2 =
ℏω√
2

valeur qui sera atteinte pour amin tel que les deux termes de la moyenne soient identiques, soit

ℏ2

2ma2min

= mω2a2min
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ou encore

amin = ∆x =

√
ℏ√
2mω

2. Sachant que J0 = 1, on peut affirmer que la fonction d’essai χa(x) est normée. Par ailleurs, la
relation J1 = a2 nous permet d’écrire ⟨x2⟩ = a2 (soit ici encore ∆x = a). Enfin

p̂xφa(x) =
ℏ
i

−2x
4a2

φa(x) = −
ℏx
2ia2

φa(x)

et
⟨p2x⟩ = ||p̂x|φa⟩||2 =

ℏ2

4a4
⟨x2⟩ = ℏ2

4a2

On en déduit
Eg(a) =

ℏ2

8ma2
+

1

2
mω2a2

Comme plus haut, cette grandeur est minimisée par la moyenne géométrique, soit

Eg(a) ≥
√

ℏ2
4ma2

mω2a2 =
1

2
ℏω

A nouveau, le minimum sera atteint lorsque les deux termes contribuant à la moyenne seront
identique, soit ℏ2/(4ma2) = mω2a2, c’est à dire

amin = ∆x =

√
ℏ

2mω

3. Même sans avoir connaissance du résultat exact, on peut affirmer que les fonctions gaussiennes
donnent un meilleur résultat car le minimum obtenu est plus petit que celui obtenu avec des lo-
rentziennes. En effet, la méthode variationnelle donnant une borne supérieure de la valeur exacte,
plus le résultat obtenu est petit et plus il sera proche du résultat exact. De plus, sachant que la
fonction d’onde associée à l’état fondamental de l’oscillateur est une gaussienne, le second ensemble
de fonctions d’essai contient la fonction exacte, de sorte que le minimum obtenu est égal à la valeur
exacte de l’énergie du niveau fondamental, soit ℏω/2.

D.11 Méthode variationnelle appliquée à l’atome d’hydrogène

1. Le carré de la norme de la fonction d’essai s’écrit

⟨φa|φa⟩ =
y
|φa(r⃗)|2d3r =

1

πa3

∫ +∞

0
exp

(
−2r

a

)
4πr2dr =

4

a3
I2

(a
2

)
= 1.

2. On obtient

⟨φa|
1

r̂
|φa⟩ =

∫ +∞

−∞

1

r
|φa(r⃗)|2d3r =

1

πa3

∫ +∞

0
exp

(
−2r

a

)
4πrdr =

4

a3
I1

(a
2

)
=

1

a
.
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3. On a
p̂xψ(r⃗) =

ℏ
i

∂

∂x
f(r) =

ℏ
i

∂r

∂x

df

dr
=

ℏ
i

x

r
f ′(r).

On en déduit
⟨p2x⟩ = ||p̂x |ψ⟩ ||2 = ℏ2

y x2

r2
|f ′(r)|2d3r

et
⟨p2⟩ = ⟨p2x⟩+ ⟨p2y⟩+ ⟨p2z⟩ = ℏ2

y x2 + y2 + z2

r2
|f ′(r)|2d3r = 4πℏ2

∫ +∞

0
|f ′(r)|2r2dr

4. Compte tenu du choix de la fonction d’essai, on a f ′(r) = −f(r)/a, soit

⟨φa| p̂2 |φa⟩ =
ℏ2

a2

∫ +∞

0
|f(r)|24πr2dr = ℏ2

a2
.

On en déduit
E(a) =

⟨p2⟩
2m
− ⟨e

2

r
⟩ = ℏ2

2ma2
− e2

a
.

5. La fonction E(a) tend vers l’infini lorsque a tend vers zéro (l’énergie cinétique étant alors le
terme dominant) et tend vers 0 par valeurs inférieures lorsque a tend vers l’infini (l’énergie potentielle
étant alors le terme dominant). Entre ces deux limites, la fonction admet un minimum que l’on peut
déterminer en calculant la dérivée

dE

da
= − ℏ2

ma3
+
e2

a2
.

Cette dérivée s’annule pour a = a1 = ℏ2/(me2), ce qui nous donne l’énergie variationnelle

E(a1) =
ℏ2

2m

m2e4

ℏ4
− e2me

2

ℏ2
= −me

4

2ℏ2
.

Cette valeur est l’énergie exacte du niveau fondamental de l’atome d’hydrogène car il se trouve que
la fonction d’onde du niveau fondamental – qui est bien une exponentielle décroissante – appartient
à notre espace des fonctions d’essai.

6. On aurait obtenu un comportement qualitativement similaire, avec une fonction E(a) tendant
vers l’infini pour a→ 0 et équivalente à −e2/a pour a→ +∞. Mais cette fois, le minimum obtenu
aurait été strictement supérieur à la valeur exacte car l’état fondamental de l’atome d’hydrogène
n’est pas une gaussienne mais l’exponentielle trouvée plus haut.

D.12 Moment cinétique orbital

1. Dans le cas d’un angle α petit, on a au premier ordre
x′ = x cosα+ y sinα ≈ x+ αy
y′ = −x sinα+ y cosα ≈ −αx+ y
z′ = z
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On en déduit [
R̂z,αψ

]
(x, y, z) = ψ(x′, y′, z′) ≈ ψ(x+ αy,−αx+ y, z)

= ψ(x, y, z) + αy
∂ψ

∂x
− αx∂ψ

∂y

= ψ +
iα

ℏ
yp̂xψ −

iα

ℏ
xp̂yψ

=

(
Î − iα

ℏ
L̂z

)
ψ(x, y, z)

Comme la relation est vérifiée pour tout état ψ, on en déduit

R̂z,α = Î − iα

ℏ
L̂z

2. On remarque que ŷ et p̂y commutent avec L̂y. Donc

[L̂x, L̂y] = [ŷp̂z − ẑp̂y, L̂y] = ŷ[p̂z, L̂y]− [ẑ, L̂y]p̂y

[p̂z, L̂y] = [p̂z, ẑp̂x − x̂p̂z] = [p̂z, ẑ]p̂x = −iℏp̂x
[ẑ, L̂y] = [ẑ, ẑp̂x − x̂p̂z] = −x̂[ẑ, p̂z] = −iℏx̂

d’où
[L̂x, L̂y] = −iℏŷp̂x + iℏx̂p̂y = iℏL̂z

Les deux autres relations de commutation se déduisent par permutation circulaire. On obtient bien
les relations attendues pour un moment cinétique.

D.13 Construction des premières harmoniques sphériques

1. On sait d’après le cours que Yℓ,−ℓ(θ, φ) est solution de l’équation L̂−Yℓ,−ℓ = 0, soit

ℏe−iφ
(
− ∂

∂θ
+ i cot θ

∂

∂φ

)
Fℓ,−ℓ(θ)e

−iℓφ = ℏe−iφ
(
− ∂

∂θ
+ i(−iℓ) cot θ

)
Fℓ,−ℓ(θ)e

−iℓφ = 0

On a donc
dFℓ,−ℓ
dθ

= ℓ
cos θ

sin θ
Fℓ,−ℓ(θ)

soit
dFℓ,−ℓ
Fℓ,−ℓ

= ℓ
cos θ

sin θ
dθ

qui s’intègre selon
lnFℓ,−ℓ(θ) = ℓ ln sin θ +Cste = ln sinℓ θ +Cste

ou encore
Fℓ,−ℓ(θ) = cℓ sin

ℓ θ.
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2.

⟨Yℓ,−ℓ|Yℓ,−ℓ⟩ =
∫ π

0

∫ 2π

0
|cℓ|2 sin2ℓ+1 θdθdφ = 2π|cℓ|2

∫ π

0
sin2ℓ+1 θdθ = 2π|cℓ|2Iℓ = 4π

(2ℓℓ!)2

(2ℓ+ 1)!
|cℓ|2

d’où par exemple

cℓ =
1

2ℓℓ!

√
(2ℓ+ 1)!

4π

Remarquons que ce coefficient de normalisation est défini à un facteur de phase près. Si ce nombre
est toujours choisi réel, on rencontre parfois un préfacteur (−1)ℓ qui n’a pas d’importance tant que
les conventions choisies sont cohérentes.

On donne ici pour mémoire le calcul de l’intégrale Iℓ.

Iℓ =

∫ π

0

sin2ℓ+1 θdθ =

∫ π

0

sin2ℓ θ sin θdθ =
[
− sin2ℓ θ cos θ

]π
0
+ 2ℓ

∫ π

0

sin2ℓ−1 θcosθcosθdθ

Soit, en remplaçant cos2 θ par 1− sin2 θ,

Iℓ = 2ℓ

∫ π

0

sin2ℓ−1 θdθ − 2ℓ

∫ π

0

sin2ℓ+1 θdθ = 2ℓIℓ−1 − 2ℓIℓ

D’où la relation de récurrence

Iℓ =
2ℓ

2ℓ+ 1
Iℓ−1 =

(2ℓ)2

(2ℓ+ 1)(2ℓ)
Iℓ−1

On en déduit

Iℓ =
(2ℓℓ!)2

(2ℓ+ 1)!
I0 = 2

(2ℓℓ!)2

(2ℓ+ 1)!
.

3. On a Y0,0(θ, φ) = F0,0(θ), avec F0,0(θ) = c0sin
0θ = c0. D’après le calcul vu plus haut, on a

c0 = 1/
√
4π, ce que l’on peut redémontrer directement

⟨Y0,0|Y0,0⟩ =
∫ π

0

∫ 2π

0
|c0|2 sin θdθdφ = 4π|c0|2.

On a donc
Y0,0(θ, φ) =

1√
4π

Par ailleurs, On sait que F1,−1 = c1 sin θ avec

c1 =
1

2

√
3!

4π
=

√
3

8π

On en déduit

Y1,−1(θ, φ) =

√
3

8π
e−iφ sin θ

Il suffit ensuite d’appliquer l’opérateur L̂+ à Y1,−1(θ, φ) :

L̂+Y1,−1(θ, φ) = ℏeiφ
(
∂

∂θ
+ i cot θ

∂

∂φ

)√
3

8π
e−iφ sin θ =

√
3

8π
ℏeiφ (cos θ + i cot θ(−i) sin θ) e−iφ
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soit L̂+Y1,−1(θ, φ) =
√

3
2πℏ cos θ. Or L̂+Y1,−1(θ, φ) =

√
1(1 + 1)− (−1)(−1 + 1)ℏY1,0(θ, φ) =

√
2ℏY1,0(θ, φ).

On en déduit

Y1,0(θ, φ) =

√
3

4π
cos θ

Appliquons une dernière fois l’opérateur L̂+ :

L̂+Y1,0(θ, φ) = ℏeiφ
(
∂

∂θ
+ i cot θ

∂

∂φ

)√
3

4π
cos θ =

√
3

4π
ℏeiφ (− sin θ) = −

√
3

4π
ℏeiφ sin θ

Or L̂+Y1,0(θ, φ) =
√
1(1 + 1)− 0(0 + 1)ℏY1,1(θ, φ) =

√
2ℏY1,1(θ, φ). On en déduit

Y1,1(θ, φ) = −
√

3

8π
eiφ sin θ

D.14 Parité des harmoniques sphériques

1. Il suffit d’appliquer le produit d’opérateurs sur une fonction d’onde,

Π̂x̂ψ(r⃗) = Π̂xψ(r⃗) = −xψ(−r⃗) = −x̂Π̂ψ(r⃗)

d’où l’on déduit Π̂x̂ = −x̂Π̂. Ces deux opérateurs anticommutent.

2. On a
Π̂p̂yψ(r⃗) = Π̂

ℏ
i

∂

∂y
ψ(r⃗) =

ℏ
i

∂ψ

∂y
(−r⃗).

Par ailleurs,

p̂yΠ̂ψ(r⃗) =
ℏ
i

∂

∂y
ψ(−r⃗) = −ℏ

i

∂ψ

∂y
(−r⃗).

d’où l’on déduit Π̂p̂y = −p̂yΠ̂. Ces deux opérateurs anticommutent également.

3. On en déduit
Π̂x̂p̂y = −x̂Π̂p̂y = x̂p̂yΠ̂.

Donc [Π̂, x̂p̂y] = 0. On aurait de même [Π̂, ŷp̂x] = 0. Sachant que L̂z = x̂p̂y − ŷp̂x, on en déduit que
[Π̂, L̂z] = 0.

4. Les axes jouant des rôles similaires, on aurait aussi [Π̂, L̂x] = [Π̂, L̂y] = 0. On en déduit
[Π̂, L̂+] = [Π̂, L̂x + iL̂y] = 0.

5. L’opérateur Π̂ commute avec L̂x, L̂y, et L̂z, et donc avec L̂2. Les trois observables Π̂, L̂2, et
L̂z commutent, donc on sait qu’il est possible de construire une base propre commune à ces trois
observables. Comme Π̂ n’a pas d’effet sur la coordonnée radiale r, on peut se placer dans l’espace
des fonctions Y (θ, φ). Or dans cet espace, la base propre commune de L̂2 et L̂z est unique, ce qui
implique que cette base propre est constituée de vecteurs propres de Π̂. La parité des harmoniques
sphériques est donc bien définie.

6. On sait que Yℓ,−ℓ(θ, φ) ∝ e−iℓφ sinℓ θ. Or sin(π − θ) = sin θ et e−iℓ(φ+π) = (−1)ℓe−iℓφ. Donc
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Yℓ,−ℓ(π − θ, φ+ π) = (−1)ℓYℓ,−ℓ(θ, φ). On en déduit la relation demandée.

7. Les opérateurs Π et L̂+ commutent, donc les espaces propres de Π sont stables sous l’action de
L̂+. L’application répétée de l’opérateur L̂+ sur la fonction Yℓ,−ℓ(θ, φ) nous donne donc un vecteur
propre de Π̂ pour la valeur propre (−1)ℓ, ce qui correspond à la relation demandée.

D.15 Atomes hydrogénoïdes

1. Par rapport à l’hydrogène, la charge de l’électron −q est inchangée tandis que celle du noyau
devient +Zq. L’énergie potentielle s’écrit donc

V (r) = − Zq2

4πϵ0r
= −Ze

2

r
.

L’hamiltonien s’écrit alors
Ĥ =

p̂2

2µ
− Ze2

r

2. Les niveaux d’énergie de l’hydrogène sont donnés par la relation

En = −EI
n2

avec
EI =

mee
4

2ℏ2
=

ℏ2

2mea21
=

e2

2a1
≈ 13,6 eV.

Pour un système hydrogénoïde, il suffit de remplacer e2 par Ze2. L’énergie d’ionisation devient alors

EI(Z) = Z2mee
4

2ℏ2
.

Elle est donc multipliée par 4 dans le cas de l’ion He+.

3. Le rayon de Bohr de l’hydrogène s’écrit

a1 =
ℏ2

mee2
≈ 0,053 nm

Si l’on remplace e2 par Ze2, on voit que le rayon de Bohr est divisé par Z : a1(Z) = a1/Z.

D.16 Reconnaître une orbitale atomique

On observe que la phase de la fonction d’onde varie de 0 à 4π lorsque la coordonnée azimutale
φ varie de 0 à 2π. Comme un état propre de L̂z varie en exp(imφ), cela signifie que m = 2. Par
ailleurs, la fonction d’onde s’annule deux fois quand θ varie de 0 à π (ces deux valeurs étant exclues).
Cela signifie que ℓ − |m| = 2, et donc que ℓ = 4. Enfin, la fonction d’onde radiale ne s’annule pas.
On en déduit que le nombre quantique radial n′ = 0 et donc que n = n′ + ℓ+ 1 = 5. Il s’agit donc
d’une représentation de l’état |5, 4, 2⟩.
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D.17 Invariance de jauge

Le fait que χ(r⃗, t) dépende du temps ne change pas le raisonnement concernant le terme associé
à l’énergie cinétique dans l’hamiltonien, de sorte que l’on a toujours(

ˆ⃗p− qA⃗′(ˆ⃗r, t)
)2

2m
ψ′(r⃗, t) = exp

(
i
qχ(r⃗, t)

ℏ

) ( ˆ⃗p− qA⃗(ˆ⃗r, t))2
2m

ψ(r⃗, t).

Par contre, la dépendance en temps de la fonction χ(r⃗, t) affecte l’énergie potentielle selon l’expres-
sion

V ′(r⃗, t) = qϕ′(r⃗, t) = qϕ(r⃗, t)− ∂χ

∂t
= V (r⃗, t)− q∂χ

∂t
.

On peut donc en déduire

Ĥ ′ψ′(r⃗, t) = Ĥ ′ exp

(
i
qχ(r⃗, t)

ℏ

)
ψ(r⃗, t) = exp

(
i
qχ(r⃗, t)

ℏ

)(
Ĥ − q∂χ

∂t

)
ψ(r⃗, t)

D’autre part, le calcul de la dérivée de ψ′(r⃗, t) par rapport au temps fait intervenir la dérivée de la
fonction χ(r⃗, t) par rapport au temps. On obtient ainsi

iℏ
∂ψ′

∂t
= iℏ

∂

∂t
exp

(
i
qχ(r⃗, t)

ℏ

)
ψ(r⃗, t)

= iℏ exp
(
i
qχ(r⃗, t)

ℏ

)(
∂ψ

∂t
+
iq

ℏ
∂χ

∂t
ψ(r⃗, t)

)
= exp

(
i
qχ(r⃗, t)

ℏ

)(
iℏ
∂ψ

∂t
− q∂χ

∂t
ψ(r⃗, t)

)
= exp

(
i
qχ(r⃗, t)

ℏ

)(
Ĥψ(r⃗, t)− q∂χ

∂t
ψ(r⃗, t)

)
= Ĥ ′ψ′(r⃗, t).

On trouve à nouveau que ψ′(r⃗, t) obéit à l’équation de Schrödinger associée à l’hamiltonien Ĥ ′ dans
la nouvelle jauge.

D.18 Niveaux de Landau

1. L’hamiltonien s’écrit ici

Ĥ =

(
ˆ⃗p− qA⃗

)2
2m

=
p̂2x
2m

+
(p̂y − qBx̂)2

2m
+

p̂2z
2m

.

où l’on a utilisé l’expression du potentiel vecteur A⃗(r⃗) en jauge de Landau (éq. 6.21).

2. Parmi les composantes cartésiennes de l’impulsion, seule p̂x ne commute pas avec l’hamiltonien
en raison de la présence du terme en x̂. On peut donc chercher les fonctions propres sous la forme
de fonctions propres communes de Ĥ, p̂y et p̂z, soit

ψ(x, y, z) = φ(x)eikyyeikzz
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où ky et kz sont des nombres réels quelconques.

3. L’hamiltonien s’écrit alors

Ĥ =

(
ˆ⃗p− qA⃗

)2
2m

=
p̂2x
2m

+
(p̂y − qBx̂)2

2m
+

p̂2z
2m

= Ĥxy + Ĥz

où

Ĥxy =
p̂2x
2m

+
(p̂y − qBx̂)2

2m

gouverne le mouvement dans le plan xy tandis que Ĥz = p̂2z/(2m) correspond à un mouvement
libre selon l’axe z. On remarque que p̂y commute avec Ĥxy (contrairement à p̂x). On peut donc
chercher une base propre commune à p̂y et Ĥxy. La forme générale d’une fonction propre commune
est ψ(x, y) = φ(x) exp(ikyy). L’action de Ĥxy sur cette fonction nous donne

Ĥxyψ(x, y) =

(
p̂2x
2m

+
(p̂y − qBx̂)2

2m

)
φ(x) exp(ikyy) =

(
p̂2x
2m

+
(ℏky − qBx̂)2

2m

)
φ(x) exp(ikyy)

L’équation Ĥxy|ψ⟩ = ϵ|ψ⟩ se ramène donc à(
p̂2x
2m

+
1

2
m

(
qB

m

)2(
x̂− ℏky

qB

)2
)
|φ⟩ = ϵ|φ⟩.

On reconnaît ici l’action de l’hamiltonien d’un oscillateur harmonique à une dimension de fréquence
ωc = qB/m, centré non pas sur l’origine mais en x = ℏky/(qB). Les valeurs propres sont discrètes
et s’écrivent ϵn = (n+ 1/2)ℏωc. En résumé, les valeurs propres de l’hamiltonien Ĥ peuvent s’écrire

En,kz = ϵn +
ℏ2k2z
2m

= (n+ 1/2)ℏωc +
ℏ2k2z
2m

.

Ces niveaux d’énergie s’appellent les niveaux de Landau. Les fonctions propres associées s’écrivent

Ψn,ky ,kz(x, y, z) = φn

(
x− ℏky

qB

)
exp (i(kyy + kzz))

où les fonctions φn(x) sont les fonctions propres de l’oscillateur harmonique.

4. Dans ce cas, le degré de liberté en z est gelé et les niveaux d’énergie sont quantifiés : En =

(n+ 1/2)ℏωc. Ces niveaux d’énergie sont dégénérés compte tenu de la valeur arbitraire du vecteur
d’onde ky. Les fonctions d’onde associées aux niveaux de Landau à 2D s’écrivent

ψn,ky(x, y) = φn

(
x− ℏky

qB

)
eikyy.
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D.19 Evolution d’un système à deux niveaux

1. Dans la base {|f⟩ , |i⟩}, on peut écrire l’hamiltonien sous la forme

Ĥ =
ℏ
2
(ωf + ωi)Î +

ℏ
2

(
ωfi Ω0

Ω0 −ωfi

)
=

ℏ
2
(ωf + ωi)Î +

ℏΩ
2

(
cos θ sin θ
sin θ − cos θ

)
.

Intéressons nous à la matrice orthogonale apparaissant dans l’expression ci-dessus,

M̂ =

(
cos θ sin θ
sin θ − cos θ

)
.

La trace de cette matrice est nulle tandis que son déterminant est égal à −1. Ses valeurs propres
sont donc ±1, ce qui nous permet d’en déduire les valeurs propres de Ĥ,

E± =
ℏ
2
(ωf + ωi)±

ℏΩ
2
.

L’écart entre les deux niveaux est donc E+−E− = ℏΩ. Comme cette quantité est supérieure ou égale
à ℏ|ωfi|, on retrouve la répulsion habituelle entre les deux niveaux sous l’action du couplage Ŵ . On
peut remarquer que M̂ représente la matrice d’une symétrie par rapport à une droite. Comme elle
transforme le vecteur |f⟩ en cos θ |f⟩ + sin θ |i⟩, on peut remarquer que l’axe de symétrie, selon la
bissectrice, fait un angle θ/2 par rapport à |f⟩. On peut alors en déduire les vecteurs propres |±⟩
associés aux valeurs propres ±1 :

|+⟩ = cos
θ

2
|f⟩+ sin

θ

2
|i⟩

|−⟩ = − sin
θ

2
|f⟩+ cos

θ

2
|i⟩

2. Exprimons tout d’abord les états |f⟩ et |i⟩ dans la base propre

|f⟩ = cos
θ

2
|+⟩ − sin

θ

2
|−⟩

|i⟩ = sin
θ

2
|+⟩+ cos

θ

2
|−⟩

Sachant que |ψ(0)⟩ = |i⟩, on peut en déduire

|ψ(t)⟩ = e−iω0t

(
e−iΩt/2 sin

θ

2
|+⟩+ eiΩt/2 cos

θ

2
|−⟩
)

où l’on a posé ω0 = (ωf + ωi)/2. On en déduit

Pi→f (t) = | ⟨f |ψ(t)⟩ |2

=

∣∣∣∣e−iΩt/2 sin θ2 cos
θ

2
− eiΩt/2 cos θ

2
sin

θ

2

∣∣∣∣2
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soit

Pi→f (t) = sin2 θ sin2
Ωt

2

=
Ω2
0

Ω2
sin2

Ωt

2
.

3. En linéarisant l’expression obtenue plus haut, on obtient

Pi→f (t) =
Ω2
0

2Ω2
(1− cosΩt) .

La probabilité de transition oscille donc au cours du temps entre les deux valeurs extrêmes 0 et
Ω2
0/Ω

2. La fréquence angulaire (ou pulsation) de cette oscillation est la quantité Ω (la fréquence
étant en fait Ω/(2π)). L’amplitude de l’oscillation est égale à

Ω2
0

Ω2
=

Ω2
0

ω2
fi +Ω2

0

.

Sa valeur maximale, égale à 1, est atteinte lorsque ωfi = 0, c’est à dire lorsque l’état final a la même
énergie que l’état initial. Dans ce cas, la fréquence angulaire de l’oscillation a pour valeur Ω = Ω0.

4. La résolution du problème est beaucoup plus rapide si on applique la méthode des perturbations
dépendant du temps. En appliquant directement l’éq. 9.23, on obtient

Pi→f (t) =
Ω2
0

ω2
fi

sin2
ωfit

2
.

Ce résultat est très similaire au résultat exact, la grandeur Ω étant simplement remplacée par ωfi
dans l’expression de la probabilité de transition. Cette approximation est bien justifiée dans la limite
où Ω0 ≪ ωfi, auquel cas Ω =

√
ω2
fi +Ω2

0 ≈ ωfi. Quand Ω0 commence à prendre des valeurs non
négligeables devant ωfi, la méthode des perturbations sous-estime la fréquence d’oscillation (ωfi
au lieu de Ω =

√
ω2
fi +Ω2

0) et sur-estime l’amplitude de l’oscillation. A l’extrême, la méthode des
perturbations donne le résultat absurde d’une probabilité supérieure à 1 lorsque Ω0 ≥ ωfi alors que
le calcul exact donne toujours une probabilité maximale inférieure ou égale à 1.

D.20 Désexcitation d’un état couplé à un continuum

1. Compte tenu de l’expression générale établie en cours

γ̇k(t) = −
i

ℏ
∑
n

γn(t)e
iωknt⟨k|Ŵ |n⟩

on obtient immédiatement
γ̇i(t) = −

i

ℏ
∑
f

γf (t)e
−iωfit⟨i|Ŵ |f⟩
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Par ailleurs, on sait qu’un état |f⟩ donné n’est couplé qu’au seul état |i⟩, donc

γ̇f (t) = −
i

ℏ
γi(t)e

iωfit⟨f |Ŵ |i⟩

2. En intégrant l’équation exprimant γ̇f (t), on obtient

γf (t) = −
i

ℏ

∫ t

0
γi(t

′)eiωfit
′⟨f |Ŵ |i⟩dt′

d’où l’on déduit

γ̇i(t) = −
i

ℏ
∑
f

−i
ℏ

∫ t

0
γi(t

′)eiωfit
′
dt′⟨f |Ŵ |i⟩e−iωfit⟨i|Ŵ |f⟩

= − 1

ℏ2

∫ t

0
γi(t

′)
∑
f

∣∣∣⟨f |Ŵ |i⟩∣∣∣2 eiωfi(t
′−t)dt′

= − 1

ℏ2

∫ t

0
γi(t

′)

∫
|Wfi(Ef )|2 ρ(Ef )eiωfi(t

′−t)dEfdt
′

= − 1

ℏ2

∫ t

0
γi(t

′)

∫ +∞

−∞
g(ω)eiω(t

′−t)ℏdωdt′

soit

γ̇i(t) = −
√
2π

ℏ

∫ t

0
γi(t

′)g(t− t′)dt′

3. Comme g(ω) est réelle et paire, on peut en conclure que g(t) est également réelle et paire. Par
ailleurs, le fait que la fonction g(ω) soit supposée large suggère que la fonction g(t) sera très étroite.
En principe, on peut simplement affirmer que les produits ∆ω et ∆t sont reliés par la relation
∆ω∆t ≥ 1/2, mais comme les fonctions g(ω) et g(t) sont réelles, et à condition qu’elles soient
suffisamment proches d’une gaussienne, on pourra supposer ∆ω∆t ∼ 1.

4. D’après les hypothèses, la fonction g(t′) est beaucoup plus étroite que l’échelle caractéristique
de variation de γi(t′). On peut donc négliger la variation de γi(t′) pour les valeurs de t′ pour lesquelles
g(t − t′) prend des valeurs non négligeables et remplacer dans l’intégrale le produit γi(t′)g(t − t′)
par γi(t)g(t− t′). On obtient alors

γ̇i(t) = −
√
2π

ℏ
γi(t)

∫ t

0
g(t− t′)dt′ = −

√
2π

ℏ
γi(t)

∫ t

0
g(t′)dt′ = −

√
2π

ℏ
γi(t)

∫ +∞

0
g(t′)dt′

où l’on a effectué un changement de variable dans l’intégrale puis utilisé le fait que pour des valeurs
suffisamment grande de t l’intégrale pouvait être prolongée jusqu’à l’infini car l’intégrale de g(t′)
pour t′ > t est négligeable. Par ailleurs∫ +∞

0
g(t)dt =

1

2

∫ +∞

−∞
g(t)dt =

1

2

√
2πg(ω = 0)
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où l’on a utilisé la parité de g(t) puis l’expression de la transformée de Fourier inverse

g(ω) =
1√
2π

∫ +∞

−∞
g(t) exp(iωt)dt

pour ω = 0. Enfin, sachant que g(ω = 0) = |Wfi|2ρ(Ef = Ei), on obtient

γ̇i(t) = −
2π

ℏ
1

2
|Wfi|2ρ(Ef = Ei)γi(t) = −

Γ

2
γi(t)

5. On en déduit donc γi(t) = γi(0) exp(−Γt/2) et

Pi(t) = |γi(t)|2 = exp(−Γt).

On obtient donc un déclin exponentiel, qui redonne bien 1−Γt en régime perturbatif (i.e. aux temps
courts).
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