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Quelques valeurs numeériques

Grandeur physique Symbole Valeur
Constante de Planck h 6.626 x 10734 J-s
Constante de Planck réduite h 1.055 x 10734 J-s
Vitesse de la lumiére c 2.998 x 10% m/s
Constante de Boltzmann kp 1.381 x 10723 J/K
Charge élémentaire q 1.602 x 10719 C
Masse de 1’électron Me 9.11 x 103! kg
Masse du proton my 1.673 x 10727 kg
Masse du neutron My 1.675 x 10727 kg
Rapport gyromagnétique de 1’électron Ye —2.0023% ;—;’r ~ —28.0 GHz/T
Rapport gyromagnétique du proton Yp 5.59% ;—fr ~ 42.6 MHz/T
Rapport gyromagnétique du neutron Yn —3.83% ;—;’r ~ —29.1 MHz/T
Constante de structure fine o= %i 1/137
Energie d’ionisation de ’hydrogéne Er 13.6 eV
Rayon de Bohr ay 0.053 nm

L’image de couverture représente une illustration numérique de l’effet Aharonov-Bohm (6.4).



Table des matiéres

Avant-Propos

1.1

1.2
1.3
1.4

1.5

2.1

2.2

2.3

1 Principes fondamentaux

Etat quantique d’un systéme . . . . . . ...
1.1.1 Espace des états . . . . . . . . ..
1.1.2  Espace des états pour une particule ponctuelle sans spin & une dimension

1.1.3 Distribution de Dirac . . . . . . . . . . . ..
1.1.4 Produit tensoriel . . . . . . . ...
Mesure . . . . . . e
Evolution temporelle . . . . . . . ..
Commutation des observables . . . . . . . . ... L
1.4.1 Deux observables qui commutent . . . . . . ... ... . ... L.
1.4.2 Ensemble Complet d’Observables qui Commutent . . . . . . . . . ... .. ..
1.4.3 Deux observables qui ne commutent pas . . . . . . . ... ... .. ... ..
1.4.4 Théoréme d’Ehrenfest généralisé . . . . . . ... ... .. ... ... .....
La premiére révolution quantique . . . . . . . . . ... oL

2 Symeétries et physique quantique

Opérateur d’évolution . . . . . . . .. .. L
2.1.1 Définition . . . . . . . .. e
2.1.2 Linéarité . . . . . . . . . e
2.1.3 Composition . . . . . . ..
2.1.4 Evolution temporelle . . . . . . . . ..
2.1.5  Unitarité de 'opérateur d’évolution . . . . . . . .. .. .. ... ... ... ..
2.1.6 Cas d'un systéme isolé . . . . . .. ..
Invariance et commutation . . . . . . .. ...
2.2.1 Groupe de symétrie . . . . .. L
2.2.2 Effet d’une isométrie dans I'espace de Hilbert . . . . . .. ... ... .. ...
2.2.3  Relation de commutation entre Ret H . . . . . . ... ... ... ... ... .
2.2.4 Générateur infinitésimal . . . . . . . .. ..
Parité . . . .
2.3.1 Systémes invariants par parité . . . . . .. ...
2.3.2 Opérateur parité . . . . . . . . . .

11
11
11
12
13
16
16
19
20
21
22
22
23
24



TABLE DES MATIERES

2.3.3 Diagonalisation de 'opérateur parité . . . . . . . . ... ... ... .. 35
2.3.4 Conséquence de I'invariance par parité . . . . . . . . . .. ... ... .. ... 35
2.4 Translations . . . . . . .. 36
2.4.1 Systémes invariants par translation . . . . . . ... ... 0oL 36
2.4.2 Translation dans £2(R) . . . . . . . .. ... 36
2.4.3 Translation dans L2(R3) . . . . .. ... ... ... 37
2.4.4  Une nouvelle définition de I'observable impulsion . . . . . .. ... ... ... 38
2.4.5 Diagonalisation de 'opérateur translation dans £2(R3) . . . . .. .. ... .. 39
2.4.6 Conséquence de l'invariance par translation . . . . . .. ... ... ... ... 40
2.5 Théoréme de Bloch . . . . . . . . . . 41
2.5.1 Théoréme de Bloch & une dimension . . . . . ... .. ... ... ....... 41
2.5.2 Recherche des fonctions propres . . . . . . . ... 43
2.5.3 Bandes d’énergie . . . . . . ... 44
2.5.4 Réseau périodique & trois dimensions . . . . . . . ... ... ... 46
Méthodes d’approximation 49
3.1 Meéthode des perturbations . . . . . .. ... L 49
3.1.1 Principe . . . . . . e 49
3.1.2 Cas d'un niveau non dégénéré . . . . . . . ... oo 50
3.1.3 Cas d’'un niveau dégénéré . . . . . . . . ... 53
3.1.4 Domaine de validité . . . . . . . . .. Lo 95
3.1.5  Cas quasi-dégénéré . . . . . . .. 55
3.2 Meéthode variationnelle . . . . . . . . ... oL 56
3.2.1 Majoration de ’énergie du niveau fondamental . . . . . ... ... ... ... 56
3.2.2 La méthode variationelle . . . . . . . . . .. ... o7
3.2.3 Exemple . . . . .. 58
3.2.4 Meéthode variationnelle linéaire . . . . . . . . .. .. ... oL 59
Le moment cinétique 61
4.1 Rotations et moment cinétique . . . . . . .. ..o 61
4.1.1 Définition du moment cinétique . . . . . . . ... ... 61
4.1.2 Relations de commutation entre les observables jx, jy et jz .......... 62
4.1.3 Lobservable J2 . . . . . 62
4.1.4 Cas d’un systéme invariant par rotation . . . . . . . ... ... ... 63
4.2 Théorie générale du moment cinétique . . . . . . .. ... Lo 63
4.2.1 Introduction des parameétres jetm . . . . . . ... oL Lo 63
4.2.2 Les opérateurs j+ et J_ 64
4.2.3  Action des opérateurs Jy et J_ . . .. ... 64
4.2.4 Valeurs autorisées pour jet m . . . . . ... 65
4.2.5 Base standard des observables J2 et jz ...................... 66
4.3 Cas d'une particule de spin 1/2 . . . . . . ... Lo 66
4.4 Moment cinétique orbital . . . . ... 68



TABLE DES MATIERES 5

4.4.1 Définition du moment cinétique orbital . . . . . . . . ... L. 68

4.4.2 Expression des opérateurs différentiels en coordonnées sphériques . . . . . . . 68

4.4.3 Recherche des fonctions propres communes de L2et L. ... ......... 70

4.4.4 Propriétés des harmoniques sphériques . . . . . . . . . ... 72

4.5 Rotation d’'une molécule diatomique . . . . . . . .. ..o oL 76
4.5.1 Modéle du rotateur rigide . . . . . . . . ... 76

4.5.2  Traitement classique . . . . . . . ... 7

4.5.3 Traitement quantique . . . . . . ... L Lo o 78

5 L’atome d’hydrogéne 81
5.1 Lemodélede Bohr . . . . . . . . .. 81
5.2 Mouvement dans un potentiel central . . . . . . .. ... 83
5.3 Cas du potentiel coulombien . . . . . . . . .. .. 86
5.4 Représentation des orbitales atomiques . . . . . . . .. ..o 88
5.5 Evolution temporelle . . . . . . . ..o 90

6 Particule chargée dans un champ magnétique 91
6.1 Le potentiel vecteur . . . . . . . .. 92
6.1.1 Potentiels . . . . . . . . 92

6.1.2 Choixdejauge . . . . . . . . . . 93

6.1.3 Jauge de Landau et jauge symétrique . . . . . . . . ... ... 93

6.2 Hamiltonien en présence d'un champ magnétique . . . . . . .. ... ... ... ... 95
6.2.1 Impulsion et quantité de mouvement . . . . . . . . . ... ... ... ... .. 95

6.2.2 Forcede Lorentz . . . . . . . . . .. 97

6.2.3 Moment magnétique orbital . . . . . . ... Lo oL 98

6.3 Invariance de jauge . . . . . . . . Lo 99
6.4 L’effet Aharonov-Bohm . . . . . . . . ... oo 101
6.4.1 Principe de I'expérience . . . . . . . . . .. L o 101

6.4.2 Interprétation . . . . . . . . ... L 102

7 De l’addition de deux spins 1/2 aux horloges atomiques 105
7.1 Addition de deux spins 1/2 . . . . . ..o 106
7.2 Addition de deux moments cinétiques quelconques . . . . . . .. .. ... L. 109
7.3 Imteraction spin-orbite . . . . . . . .. 110
7.4 Structure hyperfine de I'hydrogéne . . . . . . . .. .. ..o oL 112
7.5 Horloges atomiques . . . . . . . . . L e 115

8 Particules indiscernables 117
8.1 Echange de deux particules . . . . . . . . ... oo 118
8.1.1 Opérateur d’échange . . . . . . . . . . ... 118

8.1.2 Opérateurs de symétrisation et d’antisymétrisation . . . . . . . . . .. .. .. 119

8.1.3 Invariance de 'hamiltonien . . . . . . .. .. .. .. Lo 120

8.2 Postulat de symétrisation . . . . .. ..o 120



6 TABLE DES MATIERES
8.2.1 Enoncé dupostulat . . . . . . . ... 120

8.2.2 Cas des particules composites . . . . . . ... oL 121

8.3 Cas de 2 particules indépendantes . . . . . . . . . .. ... ... ... 123
8.3.1 Hamiltonien d’un systéme de deux particules indépendantes . . . . . . . . .. 123

8.3.2 Systéme de deux bosons . . . . . ... Lo 123

8.3.3 Systéme de deux fermions . . . . . . . ... 124

8.4 Cas de N particules indépendantes . . . . . . . .. . ... .. ... ... ... ..., 126
8.4.1 Hamiltonien d’un systéme de N particules indépendantes . . . . . .. .. .. 126

8.4.2 Systéme de N bosons . . . . . . . . ... 127

8.4.3 Systéme de N fermions . . . . . . .. ... o 128

8.4.4  Structure électronique d’un solide cristallin . . . . . . ... ... .. L. 130

8.5 Structure électronique des atomes . . . . . .. ... Lo 132

9 Etats non stationnaires 135
9.1 Résolution directe de I’équation de Schrédinger . . . . . . . .. ... 135
9.2 Méthode des perturbations dépendant du temps . . . . . . . . . ... ... ... ... 136
9.3 Résultat au premier ordre . . . . . . . ... 137
9.4 Cas d’une perturbation constante . . . . . . . . ... .. L L 138
9.5 Cas d’une perturbation sinusoidale . . . . . . . . .. . ... ... ... ... ... 141
9.6 Transition d’un état discret vers un continuum . . . ... .. ... ... ... ... 143
9.6.1 Notion de densité d’états . . . . . . . . .. ... 143

9.6.2 Reégled'orde Fermi . .. .. ... ... ... 144

9.6.3 Emission spontanée . . . . . . . ... 146

10 La seconde révolution quantique 149
10.1 Circuits quantiques supraconducteurs . . . . . . . . . . . . . ... ... 150
10.2 Photons individuels . . . . . . . . . .. 151
10.3 Simulateurs quantiques . . . . . . .. L oL Lo 152

A Rappels mathématiques 155
A.1 Fonction d’opérateur . . . . . . . .. L 155
A.2 Exponentielle d’opérateur . . . . . . . ... 156
A.3 Equation différentielle linéaire du 1" ordre a coefficients constants . . . . . . .. .. 156
A4 Intégrales de fonctions exponentielles . . . . . . . .. ... 157
A.5 Intégrales de fonctions gaussiennes . . . . . . .. ... 157
A.6 Intégrales de fonctions lorentziennes . . . . . . . . . . . ... ... L. 159
A.7 Intégrale de la fonction sinus cardinal . . . . . . .. ... ... 159

B Quelques démonstrations techniques 161
B.1 Unitarité de l'opérateur d’évolution . . . . . . . . . . ... ... ... ... 161
B.2 Développement en série entiére de 'opérateur d’évolution . . . . . . . ... ... .. 161
B.3 Unitarité de l'opérateur représentant l'effet d'une isométrie . . . . .. ... ... .. 162
B.4 Vitesse d'un électron dans un cristal . . . . . . .. ..o 163



TABLE DES MATIERES

B.5

B.6
B.7
B.8
B.9

Méthode variationnelle linéaire . . . . . . . . . . . . . .. ... ... ...
B.5.1 Minimisation dans un sous-espace vectoriel . . . .. . .. ... ... ... ..
B.5.2 Majoration des valeurs propres exactes . . . . . . . . . .. ... ...
Relations de commutation entre les composantes de J o
Dimension des espaces propres communs de JZ et J, . . . ... ...
Opérateurs différentiels associés au moment cinétique orbital . . . . . . . . ... ...

Le probléme a deux corps . . . . . . . ...

B.10 Détermination des fonctions radiales de 'atome d’hydrogéne . . . . . . . . . . . . ..
B.11 Théoréme de Helmholtz-Hodge . . . . . . . . . . . . .. ... .. ... ... .....
B.12 Calcul de ’hamiltonien de structure hyperfine . . . . . . .. ... ... ... ... ..

B.13 Construction de la base couplée dans le cas général . . . . . . . ... ... ... ...

C.1
C.2
C.3
C4
C.5
C.6
C.7
C.38
C9

Exercices

Base continue . . . . ...
Calcul de quelques commutateurs . . . . . . . .. .. ... Lo Lo
Théoréme du Viriel . . . . . . . . . . .. e
Théoréme d’Ehrenfest . . . . . . . . . . ..
Propagation d’un paquet d’ondes libre . . . . . . . ...
Inégalité de Heisenberg généralisée . . . . . . . . . . . . ... ...
Théoréme de non clonage . . . . . . . . . . . .
Méthode numérique de calcul des bandes d’énergie . . . . . . . . ... ... ... ..

Déplacement du niveau fondamental . . . . . ... ... ... ... ...

C.10 Méthode variationnelle appliquée a l'oscillateur harmonique . . . . . . . .. ... ..

C.11 Méthode variationnelle appliquée a ’atome d’hydrogéne . . . . . . . . ... .. ...

C.12 Moment cinétique orbital . . . . . . . . ...

C.13 Construction des premiéres harmoniques sphériques . . . . . . . . . . . ... ... ..

C.14 Parité des harmoniques sphériques . . . . . . . . . . . ... oL

C.15 Atomes hydrogénoides . . . . . . . . . . . ..

C.16 Reconnaitre une orbitale atomique . . . . . . . . .. ... L.

C.17 Invariance de jauge . . . . . . . . .o
C.18 Niveaux de Landau . . . . . . . . . ... . L

C.19 Evolution d’un systéme & deux niveaux . . . . . . . . . . . . ..

C.20 Désexcitation d'un état couplé & un continuum . . . . . ... ... ... ... ...

D1
D.2
D.3
D.4
D.5
D.6
D.7

Correction des exercices

Base continue . . . . ...
Calcul de quelques commutateurs . . . . . . . . . . . ...
Théoreme du Viriel . . . . . . .. ..
Théoréme d’Ehrenfest . . . . . . . . . ..
Propagation d’un paquet d’ondes libre . . . . . . . ... ... L.
Inégalité de Heisenberg généralisée . . . . . . . . . . . . ... ... L.

Théoréme de non clonage . . . . . . . . . . . L o

165
165
166
167
168
169
171
173
176
178
179

183
183
183
183
184
184
184
185
185
186
186
187
188
188
189
190
190
190
190
191
191



TABLE DES MATIERES

D.8 Méthode numérique de calcul des bandes d’énergie . . . . . .. .. .. ... ... .. 199
D.9 Déplacement du niveau fondamental . . . . . .. .. ..o 200
D.10 Méthode variationnelle appliquée a l'oscillateur harmonique . . . . . . . . .. .. .. 201
D.11 Méthode variationnelle appliquée & I'atome d’hydrogéne . . . . . . . . ... ... .. 202
D.12 Moment cinétique orbital . . . . . . . . ... 203
D.13 Construction des premiéres harmoniques sphériques . . . . . . . . . .. .. ... ... 204
D.14 Parité des harmoniques sphériques . . . . . . . . . . . .. ..o 206
D.15 Atomes hydrogénoides . . . . . . . . . .. 207
D.16 Reconnaitre une orbitale atomique . . . . . . .. ... oo 0oL 207
D.17 Invariance de jauge . . . . . . . . Lo 208
D.18 Niveaux de Landau . . . . . . . . . . .. . 208
D.19 Evolution d’un systéme & deux niveaux . . . . . . . . . . . ... 210

D.20 Désexcitation d’un état couplé a un continuum . . . . . . . ... ... 211



Avant-Propos

L objectif de l’enseignement de physique quantique avancée, dispensé en deuxiéme année du cycle
ingénieur de l’Ecole Polytechnique, est de poursuivre ’apprentissage de la mécanique quantique
entamé en premiére année. En nous appuyant sur les principes fondamentauzr déja acquis, nous
pourrons découvrir de nouvelles méthodes exploitant au mieux les symétries du probléme étudié ou
mettant en ccuvre les approximations appropriées. A l'aide d’un mouveau postulat permettant de
traiter le cas des particules indiscernables, il deviendra alors possible d’aborder des systémes plus
complexes comme les atomes, les molécules et les solides. Quelques technologies quantiques menant
a la seconde révolution quantique seront enfin évoquées. Les éléves souhaitant approfondir cet en-
seignement pourront consulter les excellents ouvrages de Jean-Louis Basdevant et Jean Dalibard [1],
Claude Cohen-Tannoudji, Bernard Diu et Franck Laloé [2] et Michel Le Bellac [3].

Je remercie chaleureusement Jean-Louis Basdevant, Jean Dalibard et Philippe Grangier dont
l’enseignement a [’Ecole Polytechnique et les nombreux conseils qu’ils m’ont prodigués ont largement
inspiré ce document. Ce dernier est aussi le fruit d’un travail collectif résultant de nombreuses
années d’enseignement et d’optimisations successives, auzrquelles ont notamment participé tous les
professeurs de petites classes. Je tiens a citer ici toutes celles et tous ceux avec qui j’ai eu le privilége
de collaborer depuis que j’ai succédé a Jean Dalibard en 2011, & savoir Adel Bilal, Giulio Biroli,
Jacqueline Bloch, Guillaume Bossard, Landry Bretheau, Fabian Cadiz, Frédéric Chevy, Mazime
Dahan, Emilian Dudas, Jérome Faure, Riad Haidar, Karyn Le Hur, Danijela Markovié, Mathis
Plapp, Luca Perfetti, Jean-Damien Pillet, Marco Schiro, Laurent Sanchez-Palencia, Marie-Claire
Schanne-Klein, Pascale Senellart, Massimo Vergassola et Jean-Eric Wegrowe. Leurs mombreuses
remarques sur les cours magistraur ainsi que leurs suggestions d’exercices ont grandement contribué
a la production de ce texte. Je remercie de plus Jean-Damien Pillet, Pascale Senellart et Marie-
Claire Schanne-Klein pour leur lecture attentive de la toute premiére version de ce document et
pour leurs remarques nombreuses et fort pertinentes en vue de son amélioration.

Je n'oublie pas les éléves, et notamment les kessiers chargés de l’enseignement, dont les nom-
breuses propositions ont largement contribué a l’évolution du cours. Il reste bien entendu beaucoup
a faire, aussi toute nouvelle remarque ou suggestion de la part des éléves sera vivement appréciée.
Je remercie en particulier Louis Hennecart, X2017, Jacques Ding et Aurélien Legoupil, X2019, et
Maxime Puech, X2023, qui m’ont signalé quelques erreurs figurant dans des versions antérieures de

ce document.
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Chapitre 1
Principes fondamentaux

Ce premier chapitre constitue un rappel succinct des principes fondamentaux de la physique
quantique tels qu'ils ont été introduits au chapitre 5 du cours de mécanique quantique (PHY3X061).
Il sera utile de relire au préalable ce dernier chapitre, de méme que le chapitre 8 du cours PHY3X061
introduisant les notions de produit tensoriel et d’intrication. Quelques notions nouvelles sont toute-
fois introduites ici, notamment 'utilisation des distributions de Dirac pour décrire les bases continues
(1.1.3), ainsi que les conséquences de la commutation — ou non-commutation — entre deux obser-
vables. On évoquera enfin la premiére révolution quantique, la seconde révolution quantique faisant

quant a elle I'objet du chapitre 10.

1.1 Etat quantique d’un systéme

1.1.1 Espace des états

Rappelons tout d’abord le premier principe de la physique quantique :

Principe 1 : Espace des états
A chaque systéme physique est associé un espace de Hilbert approprié g, létat
physique du systéme étant défini par un vecteur normé — appelé ket et noté [¢) —

appartenant a cet espace.

Nous nous limiterons dans ce cours au cas d'un espace de Hilbert séparable, ce qui signifie
qu’il admet au moins un ensemble dénombrable (éventuellement infini) de kets |¢,) (avec n € N)
constituant une base orthonormée de ’espace. A 'aide d’une telle base, que 'on appellera base

hilbertienne, tout état ) € £y pourra donc s’écrire selon 1'expression

o

|77Z}> = ch‘d}n) = C'l ) (1'1)

ou les ¢, sont des coefficients complexes. La base {|¢y)} étant orthonormée, chaque coefficient
¢n peut étre déterminé comme le produit scalaire hermitien de |1)) avec le vecteur de base cor-

respondant, soit ¢, = (¥,|¢). En outre, le produit scalaire hermitien entre le ket [¢)) et le ket

11



12 CHAPITRE 1. PRINCIPES FONDAMENTAUX

[y =37, ch|n) s'écrit

o

W) =(Gei )| 4 | =D e (1.2)

La notation de Dirac employée ci-dessus consiste & introduire le bra (1|, conjugué hermitien du
ket [1), et que l'on peut interpréter comme le vecteur ligne (¢ ¢j ---). Cette notation permet de
faire un usage trés naturel de 'associativité du produit de matrices (carrées ou non). Par exemple,

I’éq. 1.1 peut encore s’écrire

) = (nlth)[thn) Z\wn Y (nlth) = (an w)w (1.3)

n

ce qui permet d’écrire 'opérateur identité sous la forme ci-dessous, appelée relation de fermeture
I=>"|tbn)(thnl, (1.4)
n

ou lopérateur |1),) (1), est le projecteur sur 1'état |i)y,).

1.1.2 Espace des états pour une particule ponctuelle sans spin a une dimension

L’espace de Hilbert approprié pour décrire le mouvement & une dimension d’une particule ponc-
tuelle sans spin est I'espace noté £2(R) des fonctions de R vers C dont le carré est sommable. Cet
espace est naturellement de dimension infinie. Le ket |¢) correspond alors & une fonction d’onde qui
a la coordonnée z de la particule associe la grandeur complexe 1 (z), dont le module élevé au carré,
|9()|?, représente la densité de probabilité de présence. Le produit scalaire hermitien est dans ce

cas défini par l'intégrale
+00

(Ply) = V" (2)¢ (x)d. (1.5)

La condition de normalisation de notre état s’écrit alors (Y[ip) = [~ 0 (z)|2dz = 1. Considé-
rons une base hilbertienne {|1,)} de £L2(R), par exemple les fonctions propres de I’hamiltonien de

loscillateur harmonique. Traduite en termes de fonctions d’onde, I’éq. 1.1 devient
= Z cnn () (1.6)
n

avec
—+00

Cn = (Pnltp) = Un (@) () da. (1.7)

Introduisons maintenant la transformée de Fourier

1 — Py T
s@(pz)z\/% z)e P/l (1.8)

Nous pouvons alors exprimer la fonction d’onde ¢ (x) a laide de la transformée de Fourier inverse

Y(x) = o(pz)e szx/hdp (1.9)

Al



1.1. ETAT QUANTIQUE D’UN SYSTEME 13

Cette derniére équation peut encore s’écrire

+0o0 eipxz/h
Y(x) = / @(Pw)mdpm (1.10)

qui présente une structure similaire a celle de 1’éq. 1.6, a savoir une décomposition de ¥ (x) sur une
base, sauf qu’il s’agit ici non pas d’une base dénombrable mais d’une base continue. En effet, si on

appelle |p;) la fonction qui & x associe eipﬂ/h/\/ 27h, alors I’éq. 1.10 peut s’écrire
+oo
W)= [ ewlpa)dn, (1.11)
—00

ce qui correspond bien a la décomposition du ket |¢) sur la base continue {|p,)}, 'ensemble continu
des valeurs ¢(p,) jouant ici le role des coefficients ¢,,. De plus, le coefficient ¢(p,) s’exprime lui aussi

comme un produit scalaire hermitien puisqu’on peut reformuler ’éq. 1.8 sous la forme

+oo e—ipxm/h

©0(pe) = » ﬁﬁ/f@)d?ﬂ = (pz|¥). (1.12)

Rappelons que les vecteurs de base {|p,)} sont les vecteurs propres de 'opérateur impulsion

hd
Py = ——— 1.13
p i dxr ( )
puisque
B od eipzm/h ﬁsz eipza:/h eipzx/h
T = T = Pz (1.14)
idr \/orh i h \2rh V2rh
soit
Pz|Pz) = pz|pz)- (1.15)

Enfin, la grandeur |o(p,)|? représente la densité de probabilité associée a 'impulsion. Il faut toutefois
souligner une difficulté de taille, & savoir que les vecteurs propres |p,) n’appartiennent pas a ’espace
de Hilbert. En effet, le module de la fonction d’onde correspondante est constant et celle-ci ne saurait
donc étre de carré sommable. Comme on peut le vérifier avec I'exercice C.1, cette propriété est une

conséquence inéluctable de la nature continue du spectre de 'opérateur p,..

1.1.3 Distribution de Dirac

Compte tenu de la symétrie entre transformée de Fourier et transformée de Fourier inverse, il est
clair que les fonctions 1 (x) et ¢(p,) sont deux maniéres parfaitement équivalentes de représenter
I'information contenue dans le ket [¢). Si la fonction ¢(p;) = (pz|t)) peut s’interpréter comme la
décomposition du ket 1)) dans la base continue {|p,)}, la symétrie entre les deux représentations
nous incite a chercher une décomposition similaire pour la fonction d’onde ¥ (x). Pour y parvenir,
introduisons pour € > 0 la fonction représentée Fig. 1.1 qui a 2’ associe 69(56) (z) = 6©)(2/ — z), par
définition égale a 1 /¢ pour |2’ — x| < €/2 et nulle & Pextérieur de cet intervalle (la fonction §(¢) étant
quant a elle une fonction paire centrée sur 'origine). La fonction (5&6), dont l'intégrale est égale a

1, permet de calculer la valeur moyenne prise par toute fonction dans un petit voisinage autour du
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(@) 4o(z) (b) Adx (")
€
4»5(6) aj/
€

FIGURE 1.1 — Représentation de la fonction qui a =’ associe (a) 6 (x') et (b)
5 (2/) = 6 (2' — ). Les fleches verticales correspondent a la représentation
schématique de la limite de ces fonctions lorsque € tend vers 0.

A

l X
€

WE% ~—

point x & I'aide du produit scalaire hermitien

+o00 400 1 [zt+e/2

6 = [ a0 = [ T8O s =3 [ Tuead (10
—00 —00 € IE—E/2

La Fig. 1.2 représente cette moyenne glissante, qui est proche de 1(z) dés lors que € est suffisamment

petit. On peut en effet observer sur la figure que la fonction initiale est assez bien reproduite, méme

si ses variations les plus rapides sont lissées sous l'effet du produit de convolution.

FIGURE 1.2 — Représentation de la fonction ¢ (z) (en bleu) et de <(5§6)|¢> (en
rouge) en fonction de x.

On peut montrer que lorsque la grandeur e tend vers zéro, cette moyenne glissante sur un
intervalle de plus en plus petit va converger vers la valeur exacte de la fonction ¥ (z), ce que 'on

peut écrire sous la forme

lim (54 [4) = w(x). (1.17)

On peut ainsi introduire le bra (d.| défini de la maniére suivante

(6,] = lim (619, (1.18)

e—0

tel que pour tout état [¢), on ait la relation

(0z|¥) = ¥(z). (1.19)

Ce bra correspond a ce qu’on appelle en mathématiques la distribution de Dirac (voir le cours
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FMA42032). Considérons maintenant le ket |0;) correspondant. La fonction associée a ce ket s’écrit
a priort

62(2') = lim 69 (2). (1.20)

e—0
Le probléme est que cette fonction n’en est pas une. En effet, la grandeur d,(2’) est nulle dans tout
Pespace, sauf en 2’ = z ou elle prend une valeur infinie (c’est & dire qu’elle n’est pas définie au seul
point ou elle est non nulle). Un usage largement répandu en physique consiste néanmoins a faire
comme si la distribution de Dirac était une fonction comme une autre. Ainsi, on écrira 1’éq. 1.19

sous la forme d’une simple intégrale

+o00 +o0
Y(x) = /_ 8e(2)p(2))dx' = /_ 52 — x)p(2))da’ (1.21)
6(z) = lim 59 (z) (1.22)

est la fonction de Dirac centrée sur l'origine. Cette fonction de Dirac peut encore étre définie de

maniére unique par la relation

w0 = [ s, (1.2

—0o0
valable pour toute fonction v (z). Dans toute la suite, le bra (0| et le ket |d;) seront notés respec-

tivement (z| et |x), ce qui nous permettra de reformuler 1’éq. 1.19 de fagon plus intuitive

P(x) = (z[¥). (1.24)

L’équation ci-dessus est ainsi parfaitement analogue & la formulation correspondante pour la trans-
formée de Fourier ¢(p,) = (pz|1). L’analogie va plus loin car on peut remarquer que x'd,(z') =
xd;(x'), puisque d,(x’) est nul pour 2’ # x. Cette équation montre que la fonction de Dirac
x' +— 0,(x') est une fonction propre de l'opérateur position puisque son produit par la fonction

z' — 2’ revient simplement a la multiplier par la constante z. En d’autres termes, on a
T|z) = x|x). (1.25)

Calculons la transformée de Fourier de la distribution de Dirac, (p;|z). Nous pouvons soit faire le

calcul explicitement

1 +o0 I efipzz/h
(pg|z) = \/ﬁ/ §(a) — z)e Py = T (1.26)

soit remarquer que la quantité recherchée est le complexe conjugué d’une quantité déja connue

ipzx/h * —ipgx/h
€ > _— (1.27)

(pel) = ((2]p2))" = (\/ﬁ Nk

les deux méthodes donnant bien entendu le méme résultat. Sila transformée de Fourier de la fonction

de Dirac est la fonction e~ P=z/h /V2mh, on peut en déduire d’aprés 1'éq. 1.9 que la transformée de
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Fourier inverse de cette derniére fonction redonne la fonction de Dirac, soit

e—ipgc:v/h

1 oo _—
dx(z") = / PNy, 1.28
R AN B (1:2%)
ou encore
L[ e
6(x) = 27771/ e/ dp,,, (1.29)

qui est une autre fagon de définir la fonction de Dirac. Enfin, la fonction de Dirac permet d’écrire

le produit scalaire entre deux éléments d’une base continue (voir exercice C.1). On écrit ainsi
(z|2) = 6p(z) = 6(x — 2') = 6(2’ — 2) (1.30)
qui est la définition méme du ket |z}, et
(palply) = (pe — Ply) = (P, — Pa)- (1.31)

La fonction de Dirac nous permet ainsi de disposer d’une notation mettant clairement en évidence

la symétrie parfaite entre position et impulsion, comme résumé dans le tableau ci-dessous.

Position Impulsion
Y(x) = (z]¢) p(pz) = (p2|t))
tlx) = x|x) Pz|pe) = Polpz)
ip(x) = wip(x) Pe(Pa) = Patp(Pr)

o (a) = (i) d | ip(p,) = ihdi/dp,
(ala') = 3w~ )| paler) = 60 — 12)
=iz | 1= lpe)peld:

1.1.4 Produit tensoriel

L’espace de Hilbert approprié s’écrit souvent sous la forme d’un produit tensoriel d’autres es-
paces, notamment lorsque le systéme considéré est un systéme composite constitué de deux sous-

systémes ou plus (voir section 8.2 du cours PHY3X061).

1.2 Mesure

Le second principe de la physique quantique porte sur le probléme de la mesure. L’encadré
ci-dessous énonce ce principe dans le cas d’'une observable de spectre discret, les valeurs propres

pouvant étre éventuellement dégénérées.
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Principe 2 : Mesure

(1) A toute grandeur physique A on associe un opérateur auto-adjoint A appelé

observable et agissant dans I’espace de Hilbert.

(ii) Une mesure de la grandeur physique A ne peut donner comme résultat que I'une

des valeurs propres a,, de ’observable A.

(iii) Pour un systéme se trouvant dans I’état [¢)) juste avant la mesure, la probabilité

de mesurer la valeur a,, s’écrit

Plan) = (W|Palty) = || Bal)|? (1.32)

ou P, est le projecteur sur le sous-espace propre associé a la valeur propre a,.

(iv) Si la mesure de A donne le résultat a,, alors juste aprés la mesure le systéme

est dans I'état

y_ _Pald) 1.33
Y= 1Bl 0

Le théoréme spectral stipule que les vecteurs propres d'un opérateur auto-adjoint forment une
base de ’espace de Hilbert. Si ce théoréme ne pose pas de difficulté dans un espace de Hilbert
de dimension finie, son application est parfois plus délicate en dimension infinie. En effet, comme
nous 'avons vu plus haut, dans le cas d’un spectre continu les vecteurs de base n’appartiennent
pas a l'espace, qu’ils peuvent pourtant engendrer dans sa totalité. Dans un premier temps, nous
allons supposer que le spectre de ’observable A est discret et nous appelons {a,} I'ensemble de ses
valeurs propres. Pour prendre en compte explicitement la possibilité de valeurs propres dégénérées,
appelons |1y, ) les vecteurs propres associés aux valeurs propres a,, ot l'indice r peut prendre
gn valeurs différentes, g, étant la dégénérescence de la valeur propre a,. L’ensemble des vecteurs

propres {|¢n )} constituant une base orthonormée de I'espace de Hilbert, tout état |¢)) pourra

s’écrire
‘w> = ch,rW}n,r), (1.34)
n,r
ol ¢nr = (Y, ]¥h). La matrice de I'observable A étant diagonale dans la base {|ib,,)}, on peut
écrire
A = Zan |¢n,r> <1/}n,r‘ ) (135)
n,r
ou encore
A=>"a,P,, (1.36)
n
ou

P, = Z W}n,r> <wn,r| (1.37)

est le projecteur sur le sous-espace propre associé a la valeur propre a,. Avec ces notations, la
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relation de fermeture (eq. 1.4) peut s’écrire

I= Z |¢n,r> <7/}n,r| = an (1-38)

Le point (i) du principe de la mesure permet d’affirmer que toute valeur propre a de ’observable
A est bien réelle (et donc, d’apres (ii), qu’il en va de méme pour tout résultat de mesure). En effet,

pour un vecteur propre [¢) associé a la valeur propre a, on peut écrire
a = (Y|Aly) = (Y|AT]g)* = (W|A[)* = a*. (1.39)

Le point (ii), en association avec (iii) et (iv), permet d’assurer la reproductibilité de mesures
successives. En effet, si on a obtenu le résultat a,, alors le systéme est d’aprés (iv) projeté dans
létat |¢') donné par 1'éq. 1.33. Si on mesure immédiatement aprés la méme grandeur, on a alors

d’aprés (iii)

e BRI
Plan) = [[Pald)I" = B 1 (1.40)

car P? = P, (puisque P, est un projecteur). On est donc bien certain de retrouver le méme résultat
si la seconde mesure suit immédiatement la premiére (i.e. sans que le systéme n’ait le temps d’évoluer

entre les deux mesures).

La valeur moyenne (A) de la grandeur physique peut étre évaluée a 'aide du point (iii) du

principe de la mesure :

(A) =Y Plan)an =D an (| Ba|v)) = (¢ <Z anlf’n) ¥) (1.41)

soit

(4) = (Wl AJy). (1.42)

On peut remarquer que le projecteur P, est un opérateur auto-adjoint qui a, d’aprés I’éq. 1.37,
une structure trés similaire a celle de I'observable A (éq. 1.35). P, peut en effet étre représenté dans
la base propre de A comme une matrice diagonale, les éléments diagonaux de A ayant été remplacés
par 0 lorsqu’ils sont différents de a,, et par 1 lorsqu’ils sont égaux & a,. Ainsi, b, peut étre considéré
comme une observable binaire répondant & la question "la mesure de A a-t-elle donné le résultat
an ?". Il n’est donc pas surprenant que la probabilité de mesurer a,, soit égale a la valeur moyenne
de l'observable P, dans l'état [¢) (eq. 1.32).

Concernant le point (iv), on peut remarquer que l’expression postulée permet d’assurer que
létat 1)) aprés la mesure appartient bien au sous-espace propre (ce qui est indispensable pour que
la mesure soit reproductible) tout en perturbant le moins possible le systéme par rapport a son état
initial [¢). En effet, Popération de projection |¢)) — P, |4} se contente d’annuler tous les coefficients
qui doivent disparaitre (¢, , pour n’ # n) tout en laissant inchangés les coefficients que I'on peut

conserver (cp, ).

Dans le cas ou la valeur propre a, n’est pas dégénérée, le vecteur propre associé peut s’écrire
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simplement [1/,,) et le projecteur devient alors P, = |tn) (¥n|. On a ainsi

Plan) = (W] ([n) (Wul) 1) = | (¢nlt) |” (1.43)

ce qui nous permet de formuler plus simplement les deux derniers points du principe de la mesure.

Principe 2 : Mesure (cas d’une valeur propre non dégénérée)

(iii) Pour un systéme placé dans 'état [¢)) juste avant la mesure, la probabilité de

mesurer la valeur a, s’écrit P(an) = | (¢n]th) |2, olt |tb,) est le vecteur propre

associé a la valeur propre a,.

(iv) Si la mesure de A donne le résultat a,, alors juste aprés la mesure le systéme
est dans 'état |iy,).

Pour l'état du systéme aprés la mesure (iv), on s’autorise ici & ne pas conserver le facteur de
phase (¢¥n|1) /| (¥n|¥h) | qui devrait normalement apparaitre devant [i,) suite a I'application du
projecteur P, = |tn) (n| (éq. 1.33). Cette simplification est sans conséquence puisque, d’aprés le
principe de la mesure dans sa version la plus générale, aucune mesure physique n’est sensible & un

facteur de phase global. En effet, en remplagant |+)) par € [1)), on obtient de maniére générale
(Wl e Pue [) = (¢] P [), (1.44)

si bien que 'application de ’éq. 1.33 donne la méme probabilité de mesure, avec ou sans facteur de
phase. Aucune mesure physique () ne pourra ainsi faire la distinction entre les états 1)) et e? 1)),

qui sont donc également légitimes pour représenter I'état du systéme.

1.3 Evolution temporelle

Principe 3 : Evolution temporelle

L’évolution de l'état |¢(t)) du systéme est gouvernée par I’équation de Schrodinger

n T _ g4y (1.45)

ot H(t) est Phamiltonien du systéme.

On rappelle que dans le cas d’un systéme isolé, 'hamiltonien H ne dépend pas du temps et il

devient fructueux de déterminer ses états propres {|n)} définis par
H|n) = E,|n) = hw,|n). (1.46)
Pour une condition initiale

[9(t0)) = enlto) ), (1.47)

n

() Bien entendu, cette remarque ne porte que sur un facteur de phase affectant la totalité du systéme. Un déphasage
n’affectant qu’une partie du systéme pourra étre mesuré en faisant interférer le terme considéré avec un chemin de
référence non déphasé.
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avec cp(to) = (n|(to)), la solution générale de I’équation de Schrodinger s’écrit

5(0) = e e ) = Sexp (i) ol (1.43)

n

La valeur moyenne d’une quantité physique s’écrit alors

(A) = (Y1) Al (2)) (1.49)
= (mletm=o)er (tg) A= n(=10)e, (1) |n) (1.50)
= ¢ (to)en(to)e 1) (m| A |n) (1.51)
ou B B

(1.52)

Wnm = Wnp — Wy =

h
L’évolution temporelle d’une grandeur physique, quelle qu’elle soit, est donc une superposition de
fonction périodiques associées aux fréquences wy,,/(27). En particulier, dans le cas d’un systéme a

deux niveaux, ’évolution temporelle de n’importe quelle grandeur physique sera toujours sinusoi-

dale.

Rappelons enfin que dans le cas particulier ot I’état initial est un état propre de 'hamiltonien,
i.e. H (o)) = E[1(to)), alors le ket

W (t)) = e B0 Ry (1)) (1.53)

est 'unique solution de I’équation de Schrodinger. L’évolution temporelle se résume alors & un facteur
de phase global, dont nous avons vu plus haut qu’il n’avait pas d’effet sur les valeurs moyennes des
grandeurs physiques. La valeur moyenne (A) est alors indépendante du temps, conformément a
I’éq. 1.51 lorsqu’un seul coefficient ¢, (to) est non nul. Pour cette raison, un tel état est appelé état

stationnaire.

1.4 Commutation des observables

De maniére générale, les opérateurs intervenant en physique quantique (par exemple la position
et 'impulsion d’une particule, ou encore deux composantes cartésiennes du moment cinétique) ne

commutent pas nécessairement entre eux. On caractérise cette propriété a l'aide du commutateur

A A A A

[A,B] = AB — BA. (1.54)

Rappelons que le calcul d’'un commutateur se trouvera simplifié en exploitant sa bilinéarité — qui

pourra souvent éviter un développement fastidieux. On donne également les identités bien utiles
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1.4.1 Deux observables qui commutent

Dans le cas ot deux opérateurs commutent ([fl, E] = 0), on peut affirmer que tout sous-espace
propre de A est stable sous l'action de B. En effet, soit 1)) € &,, ou &, est le sous-espace propre de

A associé a la valeur propre a. On a alors A|y)) = alt)) et on peut écrire
AB|¢) = BAJY) = Baly) = a (Blv)) (1.57)

ce qui signifie que 3]1@ € &,. L’espace &, est donc bien stable sous l'action de l'opérateur B.

On peut en déduire une propriété trés importante : il existe une base propre commune aux
deux observables A et B. En effet, comme &, est stable par B, on peut se placer a l'intérieur de
cet espace et y diagonaliser la restriction de B pour construire une base propre de &, pour les
restrictions de A (qui dans cet espace est proportionnelle a l'identité) et de B. En répétant cette
opération pour chaque sous-espace propre de A, on construit ainsi une base propre commune a ces
deux observables pour ’ensemble de ’espace. En appelant a,, et b, les valeurs propres de Aet B ,

on peut noter la base propre commune {|¢y, np)}, avec

A|¢m,n,p> = am|¢m7n,p> (1.58)
B|¢m,n,p> = bn‘wm,n,p> (159)

L’indice p est nécessaire car les espaces propres communs & Aet B pour un couple donné de valeurs
propres (am,by) peuvent a priori étre de dimension supérieure a 1.

On dit de deux observables qui commutent entre elles qu’elles sont compatibles, ce qui signifie
qu’il est possible d’avoir simultanément connaissance des valeurs prises par les deux grandeurs

physiques associées. En effet, supposons que le systéme soit dans I’état initial

) = Z Cm,n,p

m,n,p

Vmnp) - (1.60)

Mesurons dans un premier temps la grandeur A et supposons que l'on obtienne le résultat a,,. A
I'issue de cette mesure, le postulat de la mesure stipule que le systéme est projeté dans le sous-espace

propre associé a la valeur propre a,,, de sorte que 1’état aprés la mesure est proportionnel &
') = Z Cmnp [Vmnp) - (1.61)
n?p

Si 'on mesure maintenant la grandeur B et que ’on obtient le résultat b,, on va projeter le vecteur
|1)") dans le sous-espace propre associé a la valeur propre by, ce qui — aprés normalisation — nous

donne 1'état

|¢//> — Zp Cmvnzp |’l/)m7nvp>
Zp |Cm7n7p’2

Pour un méme couple (a,, by,) de valeurs mesurés, I’état obtenu aurait évidemment été le méme si on

(1.62)

avait mesuré les deux grandeurs physiques dans 1’ordre inverse. Par abus de langage, on pourra donc
dire que l'on a mesuré les deux grandeurs simultanément. L’état |¢”) est un état propre commun

aux deux observables, ce qui signifie qu'une nouvelle mesure de A et B effectuée immédiatement
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aprés donnerait avec certitude les mémes valeurs a,, et b,. Comme annoncé plus haut, on a donc
bien une connaissance simultanée des deux grandeurs. Comme on le verra plus loin, la situation

sera tres différente pour deux observables qui ne commutent pas.

1.4.2 Ensemble Complet d’Observables qui Commutent

Un ensemble {A, B , C ,- -+ } d’observables est appelé Ensemble Complet d’Observables

qui Commutent (ECOC) lorsque les deux propriétés ci-dessous sont vérifiées :
e Les observables de TECOC commutent entre elles deux a deux.

e Leurs espaces propres communs sont de dimension égale a 1.

Compte tenu de la définition méme d’'un ECOC, il existe une et une seule base propre commune
a toutes les observables de 'ECOC. Par exemple, pour un ECOC {A,B,C’} constitué de trois

observables, on pourra écrire

A|¢m,n,p> = ame,n,p) (1.63)
B|¢m,n,p> = bn‘wm,n,p> (1-64)
CAY|@Z’mJL,JD> = cp|Pmmp) (1.65)

ot les vecteurs de base [¢)y, np) sont définis de maniére unique (chacun a une phase prés). La notion
d’ECOC est importante d’un point de vue expérimental car elle nous donne une procédure pour
préparer le systéme dans un état parfaitement déterminé. En effet, a 'issue d’une mesure de toutes
les grandeurs physiques associées aux observables de 'ECOC, compatibles entre elles d’aprés ce
que nous avons vu plus haut, on disposera d'un triplet de nombre (a,, by, ¢p) nous indiquant avec
certitude que le systéme est dans 1'état |ty p). En d’autres termes, pour préparer le systéme dans
un état donné (choisi bien entendu parmi les états propres commun de 'ECOC), il suffit de répéter

la mesure des observables jusqu’a obtenir ’ensemble de valeurs propres souhaitées.

1.4.3 Deux observables qui ne commutent pas

A Tinverse de la situation discutée en 1.4.1, deux observables Aet B qui ne commutent pas sont
associées & des grandeurs physiques incompatibles. En d’autres termes, il ne sera pas possible de
connaitre avec certitude les deux grandeurs physiques associées. En effet, une mesure de A projette
P’état initial [¢)) dans un état [¢)'), état propre de A pour la valeur mesurée a. Une mesure ultérieure
de B va projeter l'état |¢’) dans un état [¢)"), état propre de B pour la valeur mesurée b. Mais
comme [fl, B] # 0, Pétat [¢0”") n’a a priori aucune raison d’étre un état propre de I'observable A.
La mesure de B pourra donc nous faire perdre tout ou partie de 'information dont nous disposions
a l'issue de la mesure de A.

On peut formaliser cette incompatibilité a 1'aide d’une version généralisée de la relation d’incer-

titude de Heisenberg, que 1'on peut écrire

AaAb > S (| [A, B][)|. (1.66)

DN | =
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Cette relation, dont la démonstration fait I’'objet de I'exercice C.6, peut s’interpréter de la maniére
suivante. Préparons le systéme de maniére reproductible un grand nombre N de fois dans I'état |1)
et mesurons N/2 fois la grandeur A, et N/2 fois la grandeur B. On obtient alors deux histogrammes
de valeurs mesurées nous permettant de déterminer les valeurs moyennes (A) et (B) ainsi que les
écarts quadratiques moyens Aa et Ab. A la limite ot N est suffisamment grand, le produit AaAb
sera contraint par 'inégalité donnée par 1’éq. 1.66, que 'on appelle souvent inégalité de Heisenberg
généralisée.

Par exemple, dans le cas des observables position et impulsion, on a le commutateur
[, p] = ikl (1.67)
comme établi & I'exercice C.2. L’éq. 1.66 nous permet alors de retrouver l'inégalité de Heisenberg

AxAp, > g (1.68)

1.4.4 Théoréme d’Ehrenfest généralisé

Intéressons-nous a 1’évolution temporelle de la valeur moyenne (t(t)| A(t) |1(t)) d'un opérateur
A(t) Cette variation au cours du temps peut avoir deux origines. D’une part, méme pour un
opérateur indépendant du temps, la valeur moyenne (A) de cet opérateur peut dépendre du temps
lorsque ’état [¢(t)) du systéme n’est pas un état stationnaire. D’autre part, 'opérateur A(t) peut
lui-méme dépendre explicitement du temps. A titre d’exemple, 'opérateur position Z ne dépend pas
explicitement du temps, méme si la position moyenne (x) d’une particule peut dépendre du temps
par 'intermédiaire de 1’évolution temporelle de I’état du systéme. Mais si nous placgons cette particule
dans un champ électrique oscillant dérivant du potentiel électrique Uz, t), alors 'opérateur énergie
potentielle V' (z,t) = qU(Z,t) est un opérateur qui dépend explicitement du temps. La dérivée par

rapport au temps de la valeur moyenne comprendra ainsi trois termes :

d

2 (WOIA®D) v (1) =

dly(t)) 0A

AW [ (0) + @O A —77 + (0] 5 [¢(1) (1.69)

d (¢ (t)]
dt

ol on écrit par convention la dérivée de 'opérateur par rapport au temps comme une dérivée
partielle, pour souligner le fait que ce n’est pas la seule contribution & la variation de la valeur

moyenne. L’équation de Schrodinger nous permet de calculer la dérivée du ket par rapport au

temps, d [ (t)) /dt = 1/(ih)H (t) |(t)). Par conjugaison, on obtient la dérivée du bra d (¢(t)| /dt =
—1/(ih) (4 (¢)| H(¢). En remplacant dans I'éq. 1.69, on obtient

B~ 2 (@ AW 0) + WOl AR o)) + ) 2 ww)  (170)
ce qui nous permet d’établir le théoréme d’Ehrenfest généralisé :
d . 1 R 0A
5 WOLAR) [(0) = — WO [AR), HO][$()) + (0 (O)] - [0 (t)) - (1.71)
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Dans le cas d’un opérateur A ne dépendant pas explicitement du temps, on écrira simplement

d 1

— WOIA(0) = — WO [AHD)] [0(1)) (1.72)

Ce théoréme permet d’établir facilement plusieurs résultats importants :

e Toute grandeur physique associée & une observable A ne dépendant pas explicitement du
temps et commutant avec I’hamiltonien se conserve. En effet, pour une observable A telle que
[A,H(t)] = 0, I'éq. 1.72 nous donne directement d(A)/dt = 0. Ce résultat important sera

exploité dés le prochain chapitre.

e Pour un systéme isolé, I’énergie se conserve. Il s’agit d’un cas particulier du résultat précédent,
puisque pour un systéme isolé I’hamiltonien ne dépend pas explicitement du temps et commute

évidemment avec lui-méme.

e Pour une particule dont le mouvement unidimensionnel est gouverné par I’hamiltonien H =

p2/(2m) + V(2), on peut montrer (exercice C.4)

dla) _ (o) 17
diﬁ” =— <sz‘;> (1.74)

Ce sont en fait ces deux relations, effectivement dues & Ehrenfest, que 'on appelle théoréme
d’Ehrenfest au sens strict, tandis que le résultat que nous avons appelé théoréme d’Ehrenfest
généralisé est di & Heisenberg. Les deux relations ci-dessus ressemblent beaucoup aux équa-
tions classiques d’Hamilton-Jacobi, sans donner toutefois exactement le méme résultat puisque

la valeur moyenne de la force n’est pas égale a la force appliquée a la position moyenne.

1.5 La premiére révolution quantique

L’avénement de la physique quantique a donné lieu & une véritable révolution conceptuelle, re-
mettant en cause une grande part de nos intuitions classiques, comme les notions de trajectoire et de
déterminisme en mécanique classique. Cette remise en cause, rendue incontournable par ’accumula-
tion de faits expérimentaux, a permis une nouvelle compréhension du monde physique, en particulier
a I’échelle nanométrique. La plupart des champs thématiques de la physique s’en sont trouvés bou-
leversés. Ainsi, en physique des hautes énergies, la radioactivité, la fusion thermonucléaire comme
la nucléosynthése primordiale sont des conséquences directes de 'effet tunnel. De méme, la physique
quantique a permis une compréhension intime des atomes et des molécules, associée & une précision
quantitative remarquable au niveau théorique comme au niveau expérimental.

Cette révolution conceptuelle s’est accompagnée d’une révolution technologique, la plupart des
technologies modernes étant de fait issues de la physique quantique. Les moyens importants investis
dans ces nouvelles technologies ont permis un contréle sans précédent de la qualité des matériaux
utilisés, comme par exemple le silicium (pour le développement de I’électronique) ou la silice (pour
le développement des télécommunications par fibre optique). L’augmentation exponentielle de la

densité de transistors dans les circuits intégrés [4] est allée de pair avec I’essor des nanotechnologies.
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Des techniques comme I’épitaxie par jet moléculaire permettent désormais de contréler la croissance
de matériaux semiconducteurs couche atomique par couche atomique, comme illustré Fig. 1.3, ce
qui rend possible la fabrication de systémes & puits ou & boites quantiques optimisés pour des
applications trés diverses. La physique quantique est ainsi devenue un outil indispensable pour la

conception de nouveaux dispositifs électroniques ou opto-électroniques.

FIGURE 1.3 — Structure a puits quantique constituée de [’empilement de deux
matériaux semiconducteurs, GaN et InGaN, observée par microscopie électro-
nique en transmission & balayage (STEM). Image fournie par Gilles Patriarche
(Centre de Nanosciences et Nanotechnologies, CNRS - Université Paris-Saclay).

Pour illustrer ce concept d’ingénierie quantique, considérons ’exemple du laser & cascade quan-
tique [5], dispositif & semiconducteur pouvant émettre de maniére efficace un rayonnement laser
dans le domaine spectral de l'infrarouge. Il s’agit d’un probléme a priori difficile car I’énergie he/\
d’un photon infrarouge est faible en raison de la grande valeur de la longueur d’onde A, de sorte
qu'un laser semiconducteur conventionnel (pour lequel un électron ne produit qu’un seul photon)
aurait un rendement énergétique trop faible. Pour pallier cette difficulté, la structure a puits quan-
tiques représentée Fig. 1.4 permet de recycler un méme électron en lui faisant émettre plusieurs
photons infrarouges. A la maniére de cascades successives, le systéme consiste en un empilement

périodique de deux zones appelées respectivement région active et injecteur. L’émission stimulée

55 nm

injector

active
region
injector

active
region

520 meV

FIGURE 1.4 — Schéma de principe d’un laser a cascade quantique, représen-
tant l’énergie potentielle résultant d’une part de l'alternance de deuz alliages
semiconducteurs (AllnAs et GalnAs) et d’autre part d’un terme linéaire di au

champ électrique E appliqué pour faire circuler un courant électrique dans le
dispositif [6].

a lieu dans la région active, qui consiste en un double puits congu de sorte & maximiser le dipdle
électrique impliqué dans la transition optique. L’injecteur consiste quant & lui en une succession

de puits quantiques de largeurs de plus en plus petites, afin de compenser la pente résultant de
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la présence du champ électrique accélérant 1’électron. On obtient ainsi une quasi-dégénérescence
entre les niveaux des différents puits, ce qui permet d’obtenir une mini-bande (représentée en gris)
grace au couplage par effet tunnel entre les différents puits. Cette mini-bande, similaire aux bandes
d’énergies qui seront étudiées en 2.5.3, assure une conduction efficace de I’électron vers la zone active
suivante, ol un nouveau photon pourra étre émis.

Un laser a cascade quantique constitue une source laser accordable pouvant couvrir ’essentiel du
spectre infrarouge. Les différents systémes démontrés couvrent en effet des longueurs d’onde pouvant

s’étendre de 3.5 & 19 pum [6]. Les nombreuses applications portent notamment sur la spectroscopie

T T T T
2208 2210 2220 2240

Nombre d’onde [cm™] Nombre d’onde [cm-1]

FIGURE 1.5 — Deux extraits (avec des échelles horizontales différentes) du
spectre de transmission du gaz No O, mesuré en balayant la longueur d’onde A
d’un laser a cascade quantique [6]. L’aze horizontal représente le nombre d’onde

1/X.

moléculaire, comme illustré par la Fig. 1.5 qui représente une portion du spectre infrarouge de
la molécule de protoxyde d’azote, NoO. Il s’agit d’'une molécule linéaire, 'atome d’oxygéne étant
situé a 'une des extrémités de la molécule. Le spectre observé peut s’interpréter comme résultant
d’une combinaison d’un mouvement de vibration de la molécule (associé & un mode correspondant
a un nombre d’onde de 2282 cm™!) et du mouvement d’un rotateur rigide comme celui discuté en
4.5 dans le cas d’'une molécule diatomique. Le spectre infrarouge constitue une véritable empreinte
digitale de la molécule considérée, qui pourra étre identifiée & distance par spectroscopie infrarouge.
En résumé, cet exemple illustre comment la physique quantique intervient de maniére essentielle
tant dans la conception du dispositif laser que dans 'interprétation des spectres infrarouges ainsi
mesurés.

On pourrait multiplier les exemples de telles technologies quantiques, en citant notamment les
horloges atomiques (voir 7.5), qui ont rendu possibles des méthodes de géolocalisation aujourd’hui
omniprésentes, ou encore la magnétorésistance géante, phénomeéne quantique & l'origine du déve-
loppement de la spintronique et qui a permis une amélioration spectaculaire de la densité des tétes

de lecture des disques durs [7].



Chapitre 2
Symétries et physique quantique

Dans tous les domaines de la physique, il est trés souvent utile de tirer parti des propriétés de
symétrie, ou d’invariance, du probléme considéré. Par exemple, en mécanique céleste, 'invariance
par rotation du probléme de Kepler nous permet d’affirmer que le moment cinétique se conserve et
donc que les trajectoires des planétes sont planes. La physique quantique pourra elle-aussi bénéficier
de cette approche, qui permettra non seulement de simplifier considérablement la résolution d’un
probléme donné mais aussi de mieux comprendre 'origine profonde des propriétés physiques du

systéeme étudié.

2.1 Opérateur d’évolution

2.1.1 Définition

L’équation de Schrodinger,

dfy(t))
dt

est une équation différentielle linéaire du premier ordre par rapport au temps. Nous savons donc

ih = H({t)[y(1)), (2.1)

que si l'état |¢(tp)) du systéme est connu a l'instant ¢g, il existe une et une seule solution [¢)(t))
a un instant ¢ quelconque. Le fait que [1(t)) soit déterminé de maniére unique a partir de |¢(tg))
nous permet d’introduire un opérateur, noté U (t,to) et appelé opérateur d’évolution, défini par la

relation

[4(t)) = U(t, o) [(t0)).- (2.2)

On a évidemment la relation triviale

Ulto, to) = 1. (2.3)

2.1.2 Linéarité

L’équation de Schrodinger étant une équation différentielle linéaire, 'opérateur d’évolution est
bien entendu un opérateur linéaire. Cette linéarité de 'opérateur d’évolution permet notamment de
retrouver le principe de superposition linéaire : si un état |9 (tg)) évolue vers I'état |11 (t)), et si un

état |12(tg)) évolue vers I'état |1o(t)), alors la superposition linéaire ¢1 |11 (tg)) 4 c2|t2(tg)) évoluera

27
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vers 1’état

Ul(t,to) (c1ltr(to)) + caliha(to))) = crU (¢, to) 1 (to)) + c2U (¢, to) ¥ (o)) (2.4)
= c1[¥1 (1)) + c2|ya(t))- (2.5)

2.1.3 Composition

La composition de deux opérateurs d’évolution portant sur des intervalles de temps consécutifs

[to, t1] et [t1,t2] obéit a la relation
U(tg, t1)U(t1,t0) = Ulta, to). (2.6)

1l suffit pour s’en convaincre de faire agir le membre de gauche de I’équation ci-dessus sur un état

|1(to)) quelconque

Ulta, t1)U(t1, t0) Y (t0)) = Ulta, tr) [1h(t1)) (2.7)
= [¢(t2)) (2.8)
= U(ta2,to)|¥(t0))- (2.9)

Cette relation étant valable pour tout état initial [1/(¢o)), on en déduit la validité de la relation de
composition exprimée par ’éq. 2.6. Une conséquence immeédiate de cette relation et de 1'éq. 2.3 est
naturellement que

Ulto, t1) = U(ty, o)~ (2.10)

2.1.4 Evolution temporelle

En remplacant [¢)(t)) par expression 2.2 dans I’équation de Schrodinger (éq. 2.1), on obtient

oU (t,to)

ih
ot

[ (to)) = H(O)U (. to) 4 (t0)). (2.11)

L’égalité ci-dessus étant valable pour tout état |1(¢o)), elle implique que les deux opérateurs agissant

sur [1(tg)) de part et d’autre de I’égalité sont identiques, ce qui nous donne 1’équation

ihaU(att’tO) = H)U(t,to). (2.12)
ou encore R

OU(t,t)) i -

=~ HOU (¢ to). (2.13)

Cette équation différentielle linéaire du premier ordre, associée & la condition initiale U (to,to) = I
(eq. 2.3), gouverne I’évolution temporelle de 'opérateur d’évolution. Elle ressemble a s’y méprendre

a ’équation de Schrodinger, a ceci prés qu’elle porte sur un opérateur et non sur un vecteur d’état.
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2.1.5 Unitarité de opérateur d’évolution

Comme démontré a 'annexe B.1, 'opérateur d’évolution est un opérateur unitaire. Cela signifie

que son adjoint est son propre inverse, propriété que 1’on caractérise par la relation
Ut (t, t0)U(t, to) = Ut to)UT (L, 1) = I. (2.14)

Une conséquence importante est que ’évolution du vecteur d’état est unitaire. En d’autres termes,

le produit scalaire entre deux vecteurs d’état se conserve au cours du temps :

(W1 (t)|ha(t)) = (W1 (t0)| U (1, t0)U (1, to) 1ha (to)) = (b1 (t0)|1h2(t0))- (2.15)

Cette relation permet notamment de démontrer le théoréme de non clonage (voir exercice C.7). En
particulier, la norme du vecteur d’état est constante, ce qui est heureux puisque celle-ci doit étre

toujours égale a 1 pour un ket décrivant I’état d’un systéme physique.

2.1.6 Cas d’un systéme isolé

Dans le cas d’un systéme isolé, il est possible de calculer I'expression explicite de I'opérateur
d’évolution en s’appuyant sur le fait que I’hamiltonien est alors indépendant du temps. On peut
effectuer le calcul en se plagant dans la base propre {|n)} de 'hamiltonien H. D’apres I'éq. 1.48, on

peut alors écrire

5(0) = X enlto)exp (i3t = 1) ) 1) (2,10

ot ¢, (tg) = (n|1(ty)). En plagant ce dernier coefficient & droite du ket |n) dans I'expression ci-dessus

et en utilisant |n)c,(tg) = |n) (n|(to)) = (In)(n])|¥(to)), on obtient

0(t) = (Zexp (- ) rn><n|> ¥(t0)) (217)

ce qui correspond bien a action d’'un opérateur sur I’état initial |¢)(¢g)), I'opérateur en question
s’écrivant

U(t,to) = Y exp (—z’in(t — t0)> In)(n| (2.18)

n

ou encore, sous forme matricielle,

e—iBo(t—to)/h 0 0
. 0 e—iEl (t—to)/h 0
U(t, to) - 0 0 e*l’EQ(t*tO)/h (219)

Il s’agit 1a de l'expression dans la base propre d’une exponentielle d’opérateur (voir A.2), ce qui

nous permet d’obtenir I’expression plus compacte

Ult,to) = exp (—ig(t - t0)> . (2.20)
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Une seconde méthode, développée a 'annexe B.2, permet d’établir ’expression ci-dessus en vérifiant

que cette derniére convient & l'aide d’un développement en série entiére.

2.2 Invariance et commutation

2.2.1 Groupe de symétrie

Considérons le groupe des isométries de l'espace euclidien & trois dimensions, c’est a dire le
groupe des transformations (rotations, symétries, translations) qui conservent le produit scalaire
euclidien (donc les distances et les angles). A l'intérieur de ce groupe, on peut considérer le sous-
ensemble des isométries laissant invariant le systéme physique considéré. Ce sous-ensemble constitue
lui-méme un groupe, que 'on appelle le groupe d’invariance ou encore le groupe de symétrie du
systéme (méme si ce groupe ne comprend pas que des symétries au sens strict du terme). En
effet, si deux isométries R1 et Ro laissent le systéme invariant, alors la composition de ces deux
transformations, Roo R, laisse également le systéme invariant. De plus, I'identité laisse trivialement

le systéme invariant. On a donc bien un groupe au sens mathématique du terme. Ce groupe peut étre

2
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FIGURE 2.1 — (a) La molécule de benzéne est invariante sous l’action des ro-
tations d’angles multiples de 27 /6 autour d’un aze perpendiculaire au plan de
la molécule. (b) Ce cristal bidimensionnel, défini comme la répétition périodique
du motif grisé, est invariant sous l'action des translations de pas ma + ng, ou

(m,n) € Z2.

discret (fini ou infini) ou continu. A titre d’exemple, I'ensemble des six rotations d’angle n x 27 /6, ou
n € {0,1,2,3,4,5}, constitue un groupe fini laissant la molécule de benzéne inchangée (Fig. 2.1(a)).
Un cristal, qui par définition est construit comme la répétition périodique d’'un méme motif, admet
un groupe de symétrie infini mais discret (i.e. dénombrable), constitué de toutes les translations
dont le pas est un multiple de la période du réseau cristallin (Fig. 2.1(b)). Citons enfin deux exemples
de groupes continus : d’une part, le groupe des translations (de pas quelconque), qui est le groupe
de symétrie approprié pour un systéme homogéne, et d’autre part le groupe des rotations (voir
chapitre 4), qui est le groupe de symétrie approprié pour un systéme totalement invariant par
rotation, comme par exemple un atome. Pour de tels groupes continus, dont on peut montrer qu’ils
sont différentiables par rapport & un paramétre continu (le pas de la translation ou 'angle de la
rotation), on parlera de groupes de Lie.

D’aprés un théoréme di & Emmy Noether et qui dépasse le simple cadre de la physique quan-
tique, a toute invariance du systéme on peut associer une quantité physique conservée. Comme nous
pourrons le voir dans la suite de ce cours, I'invariance par translation donne ainsi lieu a la conser-

vation de 'impulsion, tandis que l'invariance par rotation donne lieu a la conservation du moment
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cinétique (chapitre 4). Il est donc judicieux de commencer ’étude d’un systéme par ’analyse de son

groupe de symétrie afin d’identifier les quantités conservées.

2.2.2 Effet d’une isométrie dans ’espace de Hilbert

Intéressons nous a l'effet dans l'espace de Hilbert d’une isométrie R de I'espace euclidien. Par
exemple, pour la parité (ou symétrie ponctuelle par rapport a 'origine), on aura simplement R =
—7. Pour une translation de pas d@, on aura R7 = ¥+ @. Enfin, dans le cas d’une rotation, R pourra
étre caractérisé par la matrice de rotation 3 x 3 associée. Considérons alors I'opérateur R agissant
dans 'espace de Hilbert permettant de caractériser 'effet de 'isométrie R sur I'état |¢) du systéme.
Ainsi, pour un systéme placé dans ’état [¢)), aprés application de I'isométrie R, le systéme sera
dans létat [¢') = R |1)). Comme le montre "annexe B.3, opérateur R représentant cette isométrie

dans ’espace de Hilbert est alors un opérateur unitaire, soit
RR'=R'R=1. (2.21)

Dans le cas particulier de £2(R3), on sait que le nouvel état |¢)') exprimé dans le nouveau référentiel

a

) A ')
Te
) ) <
X0 o+ a >

FIGURE 2.2 — Représentation d’un paquet d’ondes |[¢) centré en xo et d’un
paquet d’ondes 1)) translaté de la quantité a sous action de 'opérateur trans-
lation T,,. La fonction d’onde 1)'(x) = 1(x — a) est ainsi centrée en xo + a.

géométrique 7/ = R s’exprimera a aide de la méme fonction d’onde que la fonction d’onde initiale
(7) = (FlY). On peut donc écrire ¢/ (') = 1 (7), ou encore

(R R[W) = (714). (2.22)

En remplacant 7 par R~!7 dans I’équation ci-dessus, on en déduit

(ARY) = (R7'7) [¢) = »(R™'7), (2.23)

ce qui est illustré Fig. 2.2 dans le cas de £L2(IR), avec un opérateur R correspondant & une translation
T, de pas a. L’éq. 2.23 étant valable pour tout ket [¢), on en déduit l'action de I'opérateur R sur
le bra (7],

AR = (R17)]. (2.21)

En prenant ’adjoint de cette équation, on obtient R1 7) = |[R~!#) puisque nous avons admis que
I'opérateur R était unitaire. Sachant que 'opérateur R représente 'isométrie R~1, on obtient

aprés échange des roles joués par R et R~ I'expression

R|F) = |R7). (2.25)
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Le ket |7) représentant une fonction de Dirac centrée au point 7, il n’est en effet pas surprenant que

R |7) soit une fonction de Dirac centrée au point Rf7.

2.2.3 Relation de commutation entre R et H

On peut montrer de maniére générale que pour tout systéme physique invariant par une isométrie
R, alors I’hamiltonien H (t) commute avec 'opérateur R représentant cette isométrie dans I'espace
de Hilbert. Pour nous en convaincre, plagons notre systéme a l'instant initial ¢y dans un état |1 (¢))

arbitraire, comme représenté Fig. 2.3 dans le cas d'un paquet d’ondes & une dimension. A un instant

i) ¥/ (to))
t=to T,

\ £S5

l.X{\\QV
*.\'\\QV

S t) 2 ()
t=1 I T,
Ny,

FIGURE 2.3 — FEvolution temporelle dans un systéme invariant par translation
de deuz paquets d’ondes |(t)) et [/ (t)) initialement translatés ['un par rapport
a lautre d’une quantité a.

ultérieur t1, le systéme aura évolué vers Uétat |1(t1)) = U(ty,t0)|¥(to)). Supposons maintenant
que le systéme soit placé dans un autre état initial |¢(to)) = R|t(to)), obtenu sous l'action de
l'opérateur R. Comme l'illustre la Fig. 2.3 dans le cas d’un systéme invariant par translation, le
paquet d’ondes initialement translaté évoluera exactement de la méme maniére qu’en 'absence de
translation. L’état final [¢)'(¢1)) pourra donc étre obtenu a l'aide d’une simple translation a partir
de l'état final |¢(¢1)) que l'on aurait obtenu sans translation préalable. De maniére générale, on

pourra donc écrire que

[4/(t1)) = Rlep(t1)) = RU(t1, t0) |4 (to)) - (2.26)

Mais, comme 'illustre la Fig. 2.3 , il est tout aussi légitime ) d’écrire état [0/ (1)) en faisant agir

Popérateur d’évolution sur 1'état initial translaté [¢'(tg)), ce qui nous donne

1Y/ (t1)) = Ult1, to) [ (to)) = Ult1, to) RI¥ (o). (2.27)

De ’égalité entre les éq. 2.26 et 2.27, valable pour tout état initial |¢)(tp)), on peut déduire la relation

A A

RU(t1,t0) = U(t1, to)R (2.28)

ou encore

[R,U(t1,t0)] = 0. (2.29)

(DRemarquons que la démarche proposée ici par souci de simplicité est un peu trop restrictive. On pourrait tout
a fait imaginer que les deux chemins aboutissent & des états mathématiques différant par un facteur de phase, qui
décriraient bien le méme état physique. Une telle situation correspond par exemple au cas d’'une particule chargée se
déplagant dans un champ électrique uniforme.
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En dérivant cette derniére expression par rapport a ti, et en utilisant 1’éq. 2.13, on en déduit la

relation annoncée, a savoir la commutation des opérateurs R et H (t) :
(R, H(t)] = 0. (2.30)

Une conséquence immeédiate de ce résultat est que la grandeur R se conserve au cours du temps.
On peut s’en convaincre a ’aide du théoréme d’Ehrenfest généralisé (éq. 1.72), ou bien en calculant

directement la valeur moyenne (R)(t) :

(WA)IR[Y(1) = ((to)|UT (¢, t0) RU(t, t0)|1h(t0)) (2:31)
= (Y (t0)|U (¢, o) U (t, to) R|¥ (o)) (2.32)
= (¢(to)|R|3) (to))- (2.33)

On s’approche donc du théoréme de Noether, sans y étre tout & fait car 'opérateur unitaire R

n’étant pas a prior: auto-adjoint, il ne correspond pas directement a une quantité observable.
Lorsque 'hamiltonien est indépendant du temps, la recherche de ses états propres sera en outre

simplifié par le fait que 1'éq. 2.30 nous permet d’affirmer que les opérateurs R et H peuvent étre

diagonalisés dans une méme base ). On en verra un exemple avec le théoréme de Bloch (2.5.1).

2.2.4 Générateur infinitésimal

Considérons ici le cas d’un groupe de symétrie continu. On peut alors caractériser les éléments de
ce groupe a ’aide d’une fonction continue, notée R, dépendant d’un parameétre a (constitué d’un ou
éventuellement plusieurs nombres réels). L'effet de I'isométrie dans l'espace de Hilbert sera noté R,.
Dans le cas d’un groupe de Lie, on pourra différencier cet opérateur par rapport a a, et considérer la
transformation associée & une variation infinitésimale da du paramétre a. Par définition, on appelle

générateur infinitésimal 'opérateur G deéfini par la relation

Rgo =1 — %Gda. (2.34)
Remarquons que 'adjoint de cet opérateur s’écrit

R =1+ %GTda (2.35)

Pour satisfaire 'unitarité de I’'opérateur Rua (eq. 2.21), il est donc nécessaire et suffisant que G =G,
Le générateur infinitésimal G est ainsi un opérateur auto-adjoint auquel on pourra associer une
grandeur physique observable. A 'aide de 1’éq. 2.34, on peut exprimer cette observable sous la

forme

OR,
da

G =ih—2(a=0). (2.36)

(i) Cette propriété, bien connue pour deux observables, est également vérifiée dans le cas ot I'un des opérateurs est
unitaire. En effet, en introduisant les observables A = (R + R')/2 et B = (R — R")/(2i), on montre aisément que
H , A et B commutent entre elles et donc que H , A et B sont codiagonalisables. Les opérateurs Het R=A+iB
peuvent donc étre diagonalisés dans une méme base.
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Le systéme physique étant supposé invariant sous ’action du groupe continu considéré, on en déduit

[Rda, I:I] = 0, ce qui — compte tenu de I’éq. 2.34 — se raméne & la condition
(G, H] = 0. (2.37)

La grandeur physique G associée & 1’observable G est donc une constante du mouvement : c’est la

version quantique du théoréme de Noether.

2.3 Parité

2.3.1 Systémes invariants par parité

Commencons notre étude des groupes de symétrie par une invariance trés simple, a savoir la
parité. On pourra par exemple s’intéresser & un probléme & une dimension associé & un potentiel
décrit par une fonction V(x) paire, soit V(—z) = V(x), comme représenté Fig. 2.4(a). Un autre
exemple de systéme invariant par parité est la molécule représentée Fig. 2.4(b), qui est invariante
sous l'action d’une symétrie par rapport au plan x = 0, consistant a changer x en —z tout en gardant
les coordonnées y et z inchangées. Un troisiéme exemple d’opération de type parité est 'inversion,
ou symétrie par rapport a un point, consistant a changer ¥ et —r. A titre d’exemple, la molécule de
benzéne représentée Fig. 2.4(c) admet une telle invariance (parmi d’autres). On dit d’une molécule
admettant un centre d’inversion qu’elle est centro-symétrique. Le groupe de symétrie associé a un
systéme invariant par parité est un groupe fini constitué de seulement deux éléments, I'opération

de parité elle-méme et I'identité.

MV(:U) ).E) T)
A ~ L ’*?” I ) )
\/\/ - 99, ) )
% ?

(@) (b) (€)

FIGURE 2.4 — (a) Exemple de puits de potentiel symétrique (ou pair). (b) Mo-
lécule de paranitroaniline Cs HyNHoNOs. (c) Molécule de benzéne CgHg.

2.3.2 Opérateur parité

Dans le cas du mouvement d’une particule ponctuelle & une dimension, considérons 1’opération
de parité changeant = en —z. L’opérateur associé dans £?(R), noté II, et appelé opérateur parité,

sera défini par son action sur une fonction d’onde 9 (x) selon I’expression
(114 (2) = v(=a). (2:38)

L’opérateur I, a donc pour effet de retourner la fonction d’onde. On peut encore écrire I’expression

ci-dessus sous la forme

(| 1L |9) = (—al9) (2.39)
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ce qui permet d’en déduire (x| I, = (—x|. L’opérateur parité étant unitaire, et 'opération x — —x

étant sa propre inverse, on en déduit une autre définition de 'opérateur parité
g |z) = |-2), (2.40)

ol nous reconnaissons 'application de 1’éq. 2.25 au cas de 'opérateur parité, expression que nous
aurions aussi pu prendre comme point de départ.

Dans £2(R3), on peut distinguer la symétrie miroir I1, correspondant & la symétrie par rapport
au plan x = 0,

() (,9.2) = ¥(=a.y.2) (2.41)

A~ A~ A~

et Dinversion définie par II = I, 11,11, ou encore par la relation
(M) (7) = v(=7) (2.42)
Nous pouvons encore écrire I'action de ces opérateurs sur les fonctions de Dirac, ce qui nous donne
I |z, y,2) = |-z, 2) (2.43)

et
) = |-). (2.44)

2.3.3 Diagonalisation de 'opérateur parité

On peut facilement trouver dans £2(IR) les valeurs propres de I'opérateur parité I, en remar-

quant que

(120) (@) = (Maw) (=) = ¥(a), (2.45)

soit ﬂ§ = I. Les valeurs propres de 'opérateur I1, sont donc les racines carrés de l'unité, soit 1.
Les états propres associés a la valeur propre +1, appelés états symétriques ou pairs, obéissent a la

relation

Ys(—x) = Pg(x), (2.46)

tandis que les états propres associés a la valeur propre —1, appelés états antisymétriques ou impairs,
obéissent a la relation

Ya(—x) = —a(x). (2.47)

On pourrait procéder de méme dans L£2(R3) pour trouver des fonctions propres symétriques et

antisymétriques.

2.3.4 Conséquence de l’invariance par parité

Pour un systéme invariant par parité, la relation de commutation [ﬂx,fl ] = 0 nous permet
d’affirmer que I, et H peuvent étre diagonalisés dans une méme base. On peut donc chercher les
états propres du systéme sous la forme d’états pairs ou impairs, démarche qui s’avére trés utile pour

rechercher les états propres associés a un puits de potentiel symétrique. De méme, les états propres
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d’une molécule invariante par parité comme celle représentée Fig. 2.4 pourront étre cherchés sous

la forme d’états symétriques ou antisymétriques.

2.4 Translations

2.4.1 Systémes invariants par translation

Par systéme invariant par translation, on entend un systéme invariant par toute translation,
quelle que soit la direction ot 'amplitude de la translation considérée. Un tel systéme est donc

nécessairement homogéne puisque tous les points de ’espace jouent alors le méme role.

2.4.2 Translation dans £*(R)

Considérons pour un probléme & une dimension la translation x — z + a. D’aprés 1'éq. 2.25,

l'opérateur associé dans ’espace de Hilbert obéit a la relation
Tolz) = |z + a) (2.48)

a savoir que T, transforme une fonction de Dirac initialement centrée au point x en une fonction
de Dirac centrée au point z + a. L’opérateur T, étant unitaire, son adjoint Tg n’est autre que la

translation inverse Ta_ 1= 17_,. On en déduit
Tf fe) = T, fo) = Toa f2) = |o — a) (2.49)

ce qui nous donne pour le bra correspondant

(x| T, = (x —al. (2.50)

On en déduit
(@ Tu [) = (& — aly) = (= - a) (2.51)
(Tu) (@) = (e — ), (2.52)

ce qui revient bien & décaler la fonction d’onde d’une quantité +a, comme représenté Fig. 2.2.

Remarquons en outre que le groupe des translations est de nature additive, ce qui signifie
Tory =TTy, = TyT,. (2.53)
En effet, pour tout état |z), on peut écrire

Torolz) = |2+ (a + b)) = |(x 4+ a) + b) = Ty|z + a) = TyT,|z). (2.54)
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On aurait pu montrer de méme que Ta+b =1T1,T;. En procédant comme en 2.2.4, on peut considérer
la translation infinitésimale Ty,. On a alors (z|Tye|v) = ¢(z — da) = ¥(x) — (8 /dx)da, soit

(@|Taalp) = (1 - ;daiz;w> ¥(z) (2.55)

= (| <f — ;ﬁxda> ). (2.56)

Cette derniére relation étant vérifiée pour tout état |1), on peut en déduire
. A
Tgo =1 — ﬁﬁxda. (2.57)

L’impulsion p, est donc le générateur infinitésimal du groupe des translations. En utilisant I'addi-

tivité établie plus haut, on peut alors écrire

Tutda = TaaTa (2.58)
— (j_ %ﬁwda Tu (2.59)
=T, — %}Tada. (2.60)
On en déduit . .
Torto Lo _ Sy, 2.61)
ou encore R .
Cg;“ = —%ﬁxTa (2.62)

Cette équation est parfaitement analogue a 1’éq. 2.13 qui portait sur 'opérateur d’évolution. On peut
donc en conclure que la solution sera similaire, & savoir une exponentielle d’opérateur (exactement
comme si on avait affaire a une équation différentielle du premier ordre & coefficient constant portant

sur une fonction scalaire). On peut donc écrire

T, = exp (_zp;;a> , (2.63)

ce qui nous donne une expression explicite de 'opérateur translation & partir du générateur infini-

tésimal p,.

2.4.3 Translation dans £*(R?)

Il est facile de généraliser la démarche précédente au cas d’un espace géométrique a trois dimen-

sion. Dans ce cas, on peut en effet décomposer une translation selon le vecteur

Gy
a=| ay (2.64)
ay
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comme la composition de trois translations selon les axes x, y et z, soit

Ta = exp <—szhaz> exp <_%hay> exp <_Zp%ax> . (2.65)

En remplagant le produit des exponentielles par I'exponentielle de la somme (eq. A.14), en vertu

du fait que les opérateurs p;, p, et p. commutent entre eux, on obtient

(2.66)

Ta — exp (_i (ﬁxax +]3yay +ﬁzaz)> '

h

On peut donc en déduire

T- = exp (— th' a) (2.67)

Enfin, en développant au plus bas ordre 1'éq. 2.66 dans le cas d’une translation infinitésimale, on

obtient

Tog=1— ﬁpzdax — %pyday — %pzdaz- (2.68)

En comparant avec 1’éq. 2.34 étendue au cas tridimensionnel, on peut en déduire que les observables

Dz, Dy et P, sont les générateurs infinitésimaux du groupe des translations.

2.4.4 Une nouvelle définition de I’observable impulsion

Partant de Pexpression p' = (%/i)V, nous avons donc établi que, dans £2(R3), les composantes
cartésiennes de l'opérateur impulsion constituaient les générateurs infinitésimaux du groupe des
translations. Mais nous pouvons renverser cette démarche, et définir directement I'opérateur im-
pulsion comme le générateur infinitésimal du groupe des translations. L’avantage de cette nouvelle

approche est qu’elle est plus générale et qu’elle peut donc s’appliquer & tout systéme physique.

Définition : Pour tout systéme physique, on appelle observable impulsion ﬁ I’en-
semble des trois opérateurs (ps, py, -) définis comme les générateurs infinitésimaux du
groupe des translations, de sorte qu'une translation infinitésimale da@ = (da,, day, da)
du systéme soit représentée dans ’espace de Hilbert par I'opérateur

. ; i

2 1 .
Tus = I — <podag -

. i
- hpyday — —p.da. (2.69)

h
La translation 75 de pas fini @ est alors donnée par I'éq. 2.67.

Comme le groupe des translations est un groupe commutatif, on en déduit que les observables
Dz, Dy et p. commutent entre elles. Dans le cas particulier ou 'espace de Hilbert est L2(R3), on
peut chercher I'expression explicite de 'opérateur impulsion & partir de cette nouvelle définition en
utilisant ’expression d’une translation infinitésimale

. S i F -
(1 Taa |0) = (7 — da) = ¥(F) = V- dd = (7) - =V -dd (2.70)

En identifiant les termes de cette équation avec ceux de 1’éq. 2.69, on retrouve a ’aide de notre
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nouvelle définition 1’expression bien connue de I'opérateur impulsion dans £2(R3), soit

h o

A A i Ox

p==V=|4g (2.71)
h o
i 0z

Mais la définition donnée par I’éq. 2.69 présente ’avantage d’étre plus générale que cette derniére
équation, qui est limitée au cas de £2(R3). Par exemple, dans le cas d'un systéme constitué¢ d'un
ensemble de N particules associé a I'espace produit tensoriel £ = & ® &2 ® -+ - ® En, Vopérateur

translation s’écrit sous la forme

T=TY TP g ..M (2.72)
= I— — P . a I_ - a “ e I_ 0 . a 2.
( Pl da> < P2 da> ( PN da,) (2.73)
i o -
:I—h;ﬁj-d& (2.74)

ol ﬁ’j est I’observable impulsion de la particule j (on entend par 1a soit 'opérateur agissant dans
&; soit son extension évidente dans €x). En identifiant avec I’éq. 2.69, on obtient ’expression de

I'opérateur impulsion du systéme global :

ey

Jj=1

1>

. (2.75)

S

On retrouve ainsi que I'impulsion du systéme global est la somme des impulsions de ses constituants,

ici les N particules considérées.

2.4.5 Diagonalisation de I'opérateur translation dans £*(R?)

Sachant que les opérateurs p,, p, et p, commutent entre eux, cherchons une base propre com-
mune 4 ces trois opérateurs dans £2(R?). Appelons p,, py et p. les valeurs propres correspondantes,
la présence éventuelle du chapeau nous permettant de faire la distinction entre les opérateurs p;, p,
et p., et les scalaires p;, p, et p, correspondant aux valeurs propres considérées. Un vecteur propre

commun 1)) obéira aux relations

ﬁw‘qb) = pr), (2.76)
Pylv)) = pylt), (2.77)
ﬁz‘w> = pzhp) (2.78)

Pour déterminer le vecteur propre commun |[i), commengons par rechercher les fonctions propres
de 'opérateur p,. L’éq. 2.76 s’écrit

h Oy
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Il s’agit d’une équation différentielle linéaire du premier ordre, dont la solution est unique si nous

connaissons la condition initiale ¢(0,y, z) en x = 0,

1P T
Bl = 00,52 exp (127, (2.80)
La fonction (0, y, z) étant fonction propre de I'opérateur p, pour la valeur propre p,, on obtient
de méme .
_ ipyy
@ZJ(O,y,Z) - 111(0,0,2) exp (h) . (28]‘)

Enfin, la fonction (0,0, z) étant fonction propre de 'opérateur p, pour la valeur propre p,, on
obtient

(0,0, 2) = 1(0,0,0) exp <ipgz) . (2.82)

A une constante multiplicative prés, la fonction propre est donc déterminée de maniére unique par

la donnée des trois valeurs propres, soit

(o) = 6(0,0,0) exp (1P EII L)) (289
ou encore L
P (F) ox exp (th' T) : (2.84)

En d’autres termes, les opérateurs p,, py, et p, constituent un ECOC. La base propre commune
a ces trois opérateurs n’est autre que la base continue {|pg,py,p.)} déja rencontrée au chapitre

précédent. Cette base propre est a 1’évidence une base propre de I'opérateur translation, avec

o o

. - a
Ts|pes vy, p2) = €xp (—h> D, Dy D2)- (2.85)

On peut remarquer que les valeurs propres sont des nombres complexes de module égal & 1, ce qui

n’est bien entendu pas surprenant pour un opérateur unitaire.

2.4.6 Conséquence de l'invariance par translation

Pour un systéme invariant par translation, nous savons que ’hamiltonien commute avec 1'opé-
rateur translation Tz pour toute valeur du vecteur @. En considérant le cas de translations infinité-
simales selon les axes x, y et z, on peut en conclure que ’hamiltonien commute avec les générateurs

infinitésimaux pz, py et p., conformément & 1'éq. 2.37. On peut donc écrire
(H,p.] = [H,py] = [H,p.] =0. (2.86)

On en déduit deux conséquences importantes. D’une part, il sera possible de diagonaliser les opé-
rateurs H , Pz, Dy €t P, dans une méme base, ce qui simplifiera la recherche des états propres de
I’hamiltonien. D’autre part, en raison du théoréme d’Ehrenfest généralisé, 'impulsion d’un systéme
invariant par translation est une constante du mouvement, en conformité avec le théoréeme de Noe-

ther. Ce résultat s’appliquera par exemple a 'impulsion totale d’une assemblée de N particules



2.5. THEOREME DE BLOCH 41

interagissant entre elles, comme un atome.

Dans le cas de £L2(R3), 'ensemble {py, py, -} constitue déja un ECOC, associé a la base propre
unique {|pz, py,pz)}. Cette base est donc nécessairement la base propre commune aux opérateurs
H , Pz, Dy et p.. Ce résultat n’est pas surprenant car, dans le cas du mouvement d’une particule sans
spin de masse m, 'hamiltonien agissant dans £2(R3) s'écrit H = p%/(2mg) + V(7), oit my est la
masse de la particule. Mais si le systéme est invariant par toute translation, alors le potentiel V(7)
est nécessairement indépendant de 7 et peut donc étre pris égal & zéro grace & un choix judicieux de
I'origine des énergies. L’hamiltonien se réduit donc au seul terme d’énergie cinétique H= p?/(2myg).
Comme I'hamiltonien ne s’exprime qu’en fonction de I'impulsion, il n’est pas surprenant que les
vecteurs propres de 'impulsion soient vecteurs propres de I’hamiltonien. On obtient

_ pa oyt

ff’px7py7pz> = T|Pmpyapz>- (2‘87)

On retrouve ici les niveaux d’énergie d’une particule libre.

2.5 Théoréme de Bloch

Considérons maintenant un systéme dont le groupe de symétrie n’est plus un groupe continu mais
un groupe discret, en 'occurrence le groupe des translations de pas mad + nb+ pé, ot (m,n,p) € Z3
et ou les vecteurs a, b et & sont trois vecteurs linéairement indépendants (mais pas nécessairement
orthogonaux). C’est par exemple le cas du cristal représenté Fig. 2.5, associé & une maille élémentaire
constituée ici de deux atomes. L’étude de tels systémes est trés importante car elle nous permettra
d’accéder au monde de la physique du solide, avec & la clé la compréhension des bandes d’énergie
dans les solides et de la nature conductrice ou non de certains matériaux, ce dernier point étant

discuté plus particuliérement au chapitre 8.

7.0%.9° 2° 2° 2° o
b 9

:.Q..é:

FIGURE 2.5 — Un cristal correspond & la reproduction périodique d’un motif
élémentaire (grisé sur la figure), translaté d’une quantité md + nb + pé, ot m,
n et p décrivent ’ensemble des nombres entiers.

2.5.1 Théoréme de Bloch a une dimension

Commencons par étudier un modéle simple de solide cristallin & une dimension spatiale, corres-
pondant par exemple & une chaine linéaire d’atomes identiques avec une période spatiale a corres-
pondant & la distance entre deux atomes voisins. On s’intéresse au mouvement d’un électron dans

un tel systéme, et on écrit ’hamiltonien agissant dans £2(R) a I'aide de l’expression usuelle

R P2
H=-=% T 2.
Smg + V(2), (2.88)
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ou le potentiel V(x) obéit ici a la condition V(z — a) = V(z), valable pour tout z. La Fig. 2.6
représente un exemple de tel potentiel, chaque puits de potentiel étant centré sur I'un des atomes

de la chaine linéaire. Le groupe de symétrie est ici engendré par l'opérateur translation T,. D’apres

FIGURE 2.6 — Potentiel périodique a une dimension de période a.

ce que nous avons vu plus haut, 'invariance du systéme sous ’action de l'opérateur T, nous permet
de conclure que H et T, commutent, ce qui nous autorise a chercher une base propre commune &
ces deux opérateurs. Cherchons donc la forme générale des vecteurs propres de I'opérateur Ty, en

écrivant

Tal) = Al). (2.89)

L’opérateur T, étant un opérateur unitaire, nous savons que ses valeurs propres sont des nombres

complexes de module égal a 1. Posons alors
A = exp(—ikya) (2.90)

ou k, est un nombre réel a priori compris dans U'intervalle [—7/a,m/a[, ce qui permettra a A de
décrire I'ensemble des nombres complexes de module égal & 1. Compte tenu de la forme générale
des valeurs propres de 'opérateur translation, donnée par exemple par I'éq. 2.85, il est tentant
d’interpréter k, comme le vecteur d’onde p,/h de la particule. Cette analogie, souvent utile, n’est pas
compléte car les fonctions propres proportionnelles & exp(ik,;z) que nous avons obtenues plus haut
étaient les vecteurs propres du générateur infinitésimal p,, qui ne commute pas avec I’hamiltonien
considéré ici. A linverse du vecteur d’onde, qui peut prendre n’importe quelle valeur réelle, le
paramétre k; n’est donc défini ici que dans l'intervalle [—7/a, 7/a[. Ainsi, les régles habituelles de
conservation du vecteur d’onde devront s’entendre modulo 27/a. Nous pouvons alors donner une

premiére formulation du théoréme de Bloch.

Théoréme de Bloch (version 1). Les états propres |¢) d’un systéme associé a un
potentiel périodique de période a peuvent étre cherchés sous la forme de fonctions

propres de 'opérateur Ta, soit

T, |9) = e~*= |yp) (2.91)

ou k, est un paramétre assimilé au vecteur d’onde et appartenant a l’intervalle

[—7/a,7/a]. On pourra donc écrire

Y(x — a) = e F%Y(z). (2.92)

Bien que k, ne soit pas exactement le vecteur d’onde et que 1 (z) ne soit pas une onde plane,
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il est néanmoins possible — sans perte de généralité — de chercher cette fonction sous la forme du
produit de I'onde plane exp(ik,x) par une enveloppe a priori arbitraire u(z), soit ¥(z) = e™*=®u(z).

Calculons alors la fonction d’onde translatée
Y(x — a) = Ty (z — ) = e ettty (g — q). (2.93)

On peut en conclure que T, |1)) = e~*#+%|4)) si et seulement si u(x — a) = u(z) pour tout , ce qui
revient a dire que la fonction u(z) est une fonction périodique de période a. Ceci nous conduit a la

seconde formulation du théoréme de Bloch.

Théoréme de Bloch (version 2). Les états propres [¢)) d’un systéme associé a
un potentiel périodique de période a peuvent étre cherchés sous la forme du produit

d’une onde plane par une fonction u(z) périodique de période a, soit
Y(x) = e*eTu(z). (2.94)

ou k, est un paramétre assimilé au vecteur d’onde et appartenant a l'intervalle

[—7/a,7/al.

2.5.2 Recherche des fonctions propres

Cherchons les états propres |¢) de I'hamiltonien, obéissant donc a 'équation H i) = E 1)),
pour une fonction d’onde ¥ (x) donnée par I’éq. 2.94 et pour une valeur donnée du paramétre k.

Calculons tout d’abord I’action de l'opérateur impulsion sur la fonction ¥ (x). On obtient

P () = P u(z) = ; <zk:xe u(z)+e 83:) = e (hky + pz) u(z). (2.95)
De méme,
e () = poe™ (kg + po) u(x) = ™= (kg + pu)” u(x). (2.96)

En remplacant dans I'équation Hv(z) = E1b(x), on obtient donc

, 5.+ hk. )2 A A
elkﬂi(pgc - k) u(z) + V(x)e*=Tu(x) = EerTu(z). (2.97)
2m0
ou encore, aprés simplification,
o + M)’
((p—i—) + V(ac)) u(z) = Bu(z). (2.98)
2m0

On peut écrire cette équation sous la forme

Hia lu) = Eu), (2.99)
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ot Phamiltonien H ko st défini par

~ 2

p = V(%). 2.100
o= P LV (0) (2.100)

Cet hamiltonien agit dans I'espace de Hilbert &, des fonctions périodiques de période a, muni du
produit scalaire hermitien
(ulv) = /a/2 u*(x)v(z)dz. (2.101)
—a/2
Grace au théoréeme de Bloch, et en nous appuyant sur la symétrie du probléme, nous pouvons donc
travailler dans 'espace &,, beaucoup plus petit que I'espace £2(R) initial. La résolution du probléme

s’en trouvera ainsi grandement simplifiée.

2.5.3 Bandes d’énergie

La recherche des fonctions périodiques u(x) solutions de I’éq. 2.98 est similaire & la résolution de
I’équation de Schrodinger indépendante du temps, au décalage prés de I'impulsion d’une quantité
hk,. La fonction u(x) étant périodique, le probléme se raméne a la recherche des fonctions propres
de Hy, dans lintervalle [—a/2,a/2[, avec les deux conditions aux limites u(—a/2) = u(a/2) et
u'(—a/2) = u'(a/2), ou u/(x) représente ici la dérivée de la fonction u(z). En effet, nous savons
que la fonction d’onde et sa dérivée doivent étre continues en tout point ol le potentiel prend des
valeurs finies. Ces deux conditions jouent le méme role que les deux conditions intervenant dans
la recherche des états liés d’'un puits de potentiel, ott on impose & la fonction d’onde de tendre
exponentiellement vers zéro pour x — oo et pour x — —oco. Dans un cas comme dans 'autre, leffet
de ces deux conditions est qu’il n’existe pas de solution physiquement acceptable pour la plupart
des valeurs de E. Seules certaines valeurs bien particuliéres de 1’énergie pourront convenir, ce qui
donne lieu & une quantification des niveaux d’énergie. On trouvera avec l'exercice C.8 une autre
démonstration de ce résultat obtenu ici de maniére qualitative. Cette quantification des valeurs
propres étant établie, appelons E, (k;) la valeur propre obtenue, ot n € N. En effet, cette grandeur
est une fonction continue du paramétre k, puisque I’hamiltonien Hy., est lui-méme une fonction
continue de k,. De méme, les états propres obtenus seront notés |uy, ,). On obtient finalement les

états propres [y, 1, ) de Phamiltonien H, soit

H [tpn1,) = Enlka) [¥n ) » (2.102)
avec
(@|nk,) = €*7 (xlun,, ) (2.103)
et
Hy [tn k) = Bn(ka) [un g, ) (2.104)

On peut donc déduire de ces résultats que lorsque k; décrit Uintervalle [—m/a, w/a[, 'énergie E,, (k)
décrit un intervalle [min(E,, (k;)), max(Ey,(kz))] que 'on appellera une bande d’énergie. Pour des
valeurs de F situées entre les bandes d’énergie obtenues pour les différentes valeurs de n, il ne sera

pas possible de trouver de solution a l'équation H |) = E|¢). On parle alors de bandes d’énergie
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interdites (ou encore de gap en anglais).

I
o) —————
VAVAVAVAY

\VARAVARRVARR VARV .

—7/a 0 /a

—_

(=]

FIGURE 2.7 — Bandes d’énergie pour un potentiel périodique a une dimension,
obtenues a l'aide de la méthode numérique faisant l’objet de ’exercice C.8.

La Fig. 2.7 représente les bandes d’énergie calculées numériquement pour un exemple de potentiel
périodique. On observe effectivement les bandes d’énergie attendues. On peut remarquer que la
largeur de la bande interdite dépend fortement de la valeur de n. Pour n = 0, I'énergie Ey(k;) est
ici quasiment-indépendante de k,. On peut interpréter ce résultat en notant que pour le niveau
fondamental de chaque puits de potentiel, la fonction d’onde tend trés vite vers zéro lorsqu’on
s’éloigne du centre du puits, ce qui limite la probabilité d’effet tunnel et donc le couplage entre
puits voisins. Lorsque n augmente, ’extension spatiale plus grande de la fonction propre du puits
isolé lui permet d’explorer les puits voisins et I'effet tunnel peut alors se manifester, donnant lieu
a une dispersion de la fonction E,(k;). Enfin, pour de grandes valeurs de n, le terme d’énergie
potentielle devient négligeable devant 1’énergie cinétique, de sorte que ’énergie s’écrit simplement

E = p2/(2my), ot p, est 'impulsion. Dans cette limite, la fonction propre peut alors s’écrire

w(x) _ eipzx/h — eikzxei(pz/hfk:z)z _ eikzwei%rnx/a (2105)

oun = |(pga/h+m)/(2m)] et ky = py/h—n27/a € [-7/a,m/a]. Comme la fonction exp(i2mnz/a)
est une fonction périodique de période a, I’éq. 2.105 est bien conforme au théoréme de Bloch. La
fonction E, (k) observée a la Fig. 2.7 pour de grandes valeurs de n correspond alors a la parabole
p2/(2mg) repliée a l'intérieur de l'intervalle [—7/a, 7 /a[, le gap entre bandes successives tendant

alors vers zéro.

Enfin, on peut remarquer que la variation de la fonction E,(k;) au voisinage de k, = 0 est
parabolique (méme si dans la simulation présentée ici la zone on la variation est quadratique devient

minuscule pour de grandes valeurs de n). Pour une bande n donnée, on posera alors

h2k2

En(kz) 2m*

(2.106)
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ou m™* est la masse effective de la particule pour cette bande. En interprétant k, comme le vecteur
d’onde et donc hk, comme l'impulsion, on pourra interpréter E,(k,) comme une énergie cinétique.
Le réseau périodique aura alors simplement pour effet de remplacer la masse de I'électron mg par

la masse effective m*.

Remarquons enfin que la variation de I’énergie en fonction de k; permet d’exprimer la vitesse
moyenne de la particule lorsqu’elle est placée dans une bande donnée. Comme montré en B.4, la

vitesse moyenne s’écrit en effet
1dE,

hdky

(vg) = (2.107)

Dans le cas d’une variation parabolique décrite par I’éq. 2.106, on obtient alors (v,) = hk,/m*, ce

qui conforte 'interprétation de k, en termes de vecteur d’onde.

2.5.4 Reéseau périodique a trois dimensions

Dans le cas d’un cristal a trois dimensions, on pourra raisonner de méme avec un potentiel V (7)

admettant la périodicité du réseau cristallin, c’est a dire
V(7 + @ + npb + ned) = V(7) (2.108)

pour tout triplet (ng4,ny,n.) € Z3. Le théoréme de Bloch nous permettra d’écrire les fonctions

propres du probléme sous la forme

Hy, ) = En(E) |, ) (2.109)

avec
v, 5 () = € Tu 1), (2.110)

ot la fonction u_ (%) présente comme V (7) la périodicité du réseau cristallin. Le vecteur k est alors
défini dans une zone de l'espace de Fourier appelée premiére zone de Brillouin, qui est 1’équivalent

tridimensionnel de l'intervalle [—7/a, 7 /a] de notre modéle unidimensionnel. La Fig. 2.8 représente

FIGURE 2.8 — Représentation dans l’espace de Fourier de la premiére zone de
Brillouin, correspondant a la zone de définition du vecteur d’onde k, pour un
réseau cubique & faces centrées.
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cette zone dans le cas de la structure cristalline adoptée par des matériaux semiconducteurs comme
le silicium et l'arséniure de gallium. Sans rentrer dans le détail, on peut comprendre que selon
la direction de propagation dans le réseau cristallin tri-dimensionnel, le paramétre a devra étre
remplacé par des valeurs plus ou moins grandes, ce qui donne lieu & la forme d’octaédre tronqué

représentée ici.

FIGURE 2.9 — Bandes d’énergie calculées pour le Silicium [8]. Les symboles
figurant sur l’axe des abscisses représentent certains points particuliers de la
premiere zone de Brillouin.

La Fig. 2.9 représente les bandes d’énergie calculées pour un cristal de Silicium. On retrouve
un comportement qualitativement similaire & celui de notre calcul simplifié & une dimension, avec

notamment une bande d’énergie interdite représentée en gris.
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Chapitre 3
Méthodes d’approximation

Seuls certains problémes, comme par exemple I'oscillateur harmonique (voir PHY3X061, section
5.3) ou le mouvement d’une particule chargée dans un potentiel coulombien (5.3), peuvent étre
résolus de maniére exacte. Dans nombre de cas, une telle résolution sera hors de portée et il sera
nécessaire d’avoir recours a des approximations, permettant de déterminer une solution approchée
du probléme considéré. L’objet de ce chapitre est d’aborder les deux méthodes les plus couramment
employées & cet effet, & savoir la méthode des perturbations et la méthode variationnelle. D’autres
méthodes d’approximation, reposant sur une résolution directe de I’équation de Schrédinger en

fonction du temps, seront également abordées au Chapitre 9.

3.1 Meéthode des perturbations

3.1.1 Principe

La méthode des perturbations porte sur la recherche approximative des valeurs propres et vec-
teurs propres d’un hamiltonien indépendant du temps, H, sachant que cet hamiltonien peut s’écrire
H = H, —i—W, ot Hy représente ’hamiltonien principal tandis que W est une perturbation, supposée
petite devant JEIO ®. On supposera que les vecteurs propres et valeurs propres de JEIO sont connus,

et on notera
ﬁoln, r) = Ep|n,r), (3.1)

avec r € {1,2,--- ,gn}, ou lentier g, représente la dégénérescence du niveau d’énergie F,. Afin
d’expliciter le fait que W est petit devant ﬁo, on posera W = )\lﬁh, ot Hy est du méme ordre de
grandeur que ﬁo, tandis que le nombre réel positif A est supposé trés petit devant 1. L’idée de base
de la méthode des perturbations consiste a considérer les vecteurs propres [1)())) et valeurs propres
E()) de Phamiltonien H(\) = Hy + AH), et a effectuer un développement limité en fonction de A

lorsque X tend vers zéro. Cette approche nous permet d’écrire

W) = [O) + Al D) + N2 [p@) + ... (3.2)

OLa question délicate du domaine de validité de la méthode des perturbations et de ce que l'on entend par
I'hypothése “W petit devant Hy” sera évoquée en 3.1.4.

49
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et
E\) =E® £ xEW 4 \2E@ 4 ... (3.3)

L’équation aux valeurs propres s’écrit alors
(Ho+ A1) [0(N) = EQ)OV) (3.4)
ou encore
(Ho+ A1) (J9@) + Ap™) + N2®) +--)
- (Em) LAED 2@ o ) (,¢<o>> DY+ A2 4 ) _ (3.5)

En identifiant les coefficients d’ordres successifs dans les polynémes en A figurant dans les deux

membres de 1’égalité ci-dessus, on obtient une séries d’équations dont les premiers termes s’écrivent

Holyp) = E@|y(©) (3.6)
Holy W)y + Hi[9©) = EOp 1) + EW[3®) (3.7)
Holy®)y + Hi[pDVy = EOp@y 1 EOypD)y 4 E@ 5Oy, (3.8)

La méthode des perturbations consiste & résoudre successivement cette hiérarchie d’équations afin
d’aller jusqu’a 'ordre d’approximation souhaité. Nous allons ci-dessous développer cette approche
seulement jusqu’au second ordre, ce qui est suffisant pour de nombreuses applications, mais la méme
démarche pourrait étre étendue au-dela si nécessaire. Bien entendu, l'ordre zéro de la méthode des
perturbations correspond au cas A = 0, c’est a dire & ’absence de perturbation W = \H;. L’éq. 3.6
nous permet ainsi de retrouver que I'énergie E(Q) est Pune des valeurs propres de Hy. Pour la suite
du traitement de la méthode des perturbations, il sera crucial de prendre en compte la nature

dégénérée ou non du niveau E©) considéré.

3.1.2 Cas d’un niveau non dégénéré

Considérons le cas ou le niveau considéré est non dégénéré. L’éq. 3.6 nous conduit & poser

EO) = E, et [¢©) = |n), ot E, est 'une des valeurs propres de Hy . 1’éq. 3.7 devient alors
HolyW) + Hin) = Euly W) + ED|n). (3.9)
En multipliant & gauche I’équation ci-dessus par le bra (m/|, on obtient
(m|Holp V) + (m|Hi|n) = En(m|p) + ED (m|n). (3.10)
Sachant que (m|Hy = E,,(m|, on en déduit

(m|Hi|n) = (Ey = Ey)(m[p™) + BV (m]n). (3.11)

(DOn omet dans ce cas I'indice r dans expression de 1'état |n) car le niveau FE,, est supposé non dégénéré.
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En appliquant ce résultat au cas m = n, nous obtenons (n[ﬁ[ﬂn) = EM(n|n) = EMW ce qui nous

donne le terme d’ordre 1 dans le développement de I’énergie perturbée
EW = (n|H|n). (3.12)
Appliquons maintenant ’éq. 3.11 au cas m # n, ce qui implique (m|n) = 0. Nous obtenons alors
(| B ) = (Bn — Ep) (mlV), (3.13)

Comme la valeur propre E,, est supposée non dégénérée, et donc différente de E,,, nous pouvons en

déduire A
(m[H|n)

mly®) = F—p= (3.14)

Cette équation nous permet de déterminer (m]w(1)> pour tout m différent de n, mais ne nous dit
rien sur (n|i)™)). Il est naturel de chercher a déterminer ce coefficient manquant du développement
de [¢(M) en utilisant la condition de normalisation du ket |()\)), que I'on développe au premier

ordre en \

W) = (] + A @O1) () + A D)) +0(?) (3.15)
=1+ (<n|¢<1>> + <¢(1)|n)) +0()2). (3.16)

Pour que le ket [1/()\)) soit normé, il est nécessaire que la partie réelle de (n|y™M) soit nulle (D),
Posons donc (n|tp(V) = if, ou B est un nombre réel a priori indéterminé. En nous aidant de cette

valeur, ainsi que de I’éq. 3.14, on peut finalement écrire

(1) )y ) )y (m|H: |n) 317

600 = 3 e 6 = g + 3 o oY) = 381} + 32 G . (347
Le réel 8 est ainsi un parameétre libre, qui peut prendre n’importe quelle valeur sans que ’éq. 3.7
ne cesse d’étre vérifiée. Une telle indétermination, surprenante au premier abord, s’explique par le

lien entre § et la phase globale du vecteur d’état. En effet, au premier ordre en ), on peut écrire

(V) = 10) + A [p) + 0(N?) (3.18)
= (1+iA8)[n) + A ) M| Y +O0(\2) (3.19)
m#n
=M I+ & m|H1‘” im) | +0(\?) (3.20)
m;ﬁn

oit I'on a utilisé le développement e*? = 1+i\3+O(A?). Les différentes valeurs de 3 correspondent
donc & différents choix de la phase globale du vecteur d’état. Or, nous savons que cette phase n’a

pas d’incidence sur les valeurs moyennes des grandeurs physiques ou sur les probabilités de mesure

(i) On obtiendrait de méme des conditions sur |1/1<2)>, |z/)<3>>, etc. en examinant les coefficients du polynéme de degrés
supérieurs.
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(voir 1.2). Tl est donc parfaitement légitime de faire le choix 8 = 0. En imposant ainsi (n|yy(1)) = 0,

I’éq. 3.17 prend la forme plus simple

pi) = 3 ), (3.21)
T m

Ce résultat achéve le calcul du terme d’ordre 1. Nous pouvons maintenant passer au terme d’ordre 2,

en projetant I’éq. 3.8 sur le bra (n|.
(nHol®) + (n|H1[ V) = En(n|p®) + EV(nfp D) + EP (n]n). (3.22)

Sachant que (n|Hy = E,(n| et que (n]i)(Y) = 0, nous en déduisons
. H
E® = (n|f; [y D) Z Km|Hh ) | m‘ 1‘” . (3.23)

Il est utile de reformuler les expressions ainsi obtenues en éliminant le paramétre intermédiaire A
et en exprimant énergies et vecteurs propres perturbés directement en fonction des éléments de
matrice de la perturbation W. On peut alors résumer les résultats obtenus plus haut de la maniére

suivante.

Méthode des perturbations dans le cas non dégénéré

On considére un hamiltonien Hy dont les états propres {|n)} sont connus (Hy |n) =
E,|n)) et on lui ajoute une perturbation W petite devant Hy. Dans le cas d'un
niveau FE, supposé non dégénéré, on peut écrire I’énergie perturbée de I’hamiltonien

H = Hy + W sous la forme du développement
E=E,+6E}D +6E® + ... (3.24)

ol 5E7(,k) correspond au terme d’ordre k en W (ce qui signifie qu’en multipliant W par
le facteur réel A, on multiplie 6E,(Lk) par A¥). On obtient alors les expressions suivantes

du déplacement de I’énergie au premier ordre

SEXM = (n|W|n) (3.25)

et au second ordre )
SE2) ’WW'n)‘ 3.26
i Py (320

On développe de méme 1’état propre perturbé de H sous la forme

[9) = ) + 800 + 8D + - (3:27)
avec, au premier ordre, A
m|Wn
puy = Yo W (3.28)

m#n
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On a en effet SES = M E®) o |60 )y = AF |p(R)). Léq. 3.25 s’obtient alors en multipliant
I’éq. 3.12 par A, sachant que W = \H,. L’ éq. 3.26 s’obtient de méme en multipliant 1’éq. 3.23 par
A2. L’éq. 3.28 s’obtient enfin en multipliant I’éq. 3.21 par A.

On peut interpréter 1’éq. 3.25 en remarquant que le déplacement du niveau au premier ordre est
simplement égal & la valeur moyenne de la perturbation W dans le niveau considéré, soit (n| W |n).

On peut reformuler ce résultat en notant qu’au premier ordre 1’énergie perturbée est égale a
E~ E, +6E) = (n| Hy |n) + (n| W |n) = (n| H|n). (3.29)

L’énergie perturbée d’un niveau donné est donc & peu prés égale a la valeur moyenne de 'hamiltonien

total dans I’état non perturbé, ce qui constitue un résultat relativement intuitif.

La méthode des perturbations est un outil trés utile, non seulement pour effectuer plus simple-
ment des calculs de niveaux d’énergie qui seraient autrement trés compliqués voire impossibles &
mettre en ceuvre, mais également pour se forger une intuition des processus physiques a l'ocuvre
lorsqu’on perturbe un systéme donné. Ainsi, I’éq. 3.28 peut s’interpréter en notant que, sous ’action
de la perturbation W, I'état |n) va se mélanger avec les autres états |m), Pamplitude du mélange
étant proportionnelle a ’élément de matrice entre les deux états, (m| W |n), et inversement propor-
tionnelle & ’écart en énergie entre les deux niveaux. Ce résultat général sera trés utile pour identifier
les niveaux pertinents, a savoir ceux qui sont couplés avec 'état de départ (i.e. (m|W |n) # 0) et
qui en sont le plus proche en termes d’énergie (|E,, — Ey,| petit). En outre, ce sont ces mémes états
|m) qui contribueront majoritairement au déplacement de 1’énergie au second ordre (eq. 3.26).

Rappelons que les résultats établis ci-dessus sont valables dés lors que le niveau considéré E,, est
non dégénéré, y compris lorsque les niveaux F,, sont dégénérés pour m # n. Dans ce dernier cas,
on pourra reformuler les équations ci-dessus en faisant apparaitre explicitement la dégénérescence

des niveaux m pour m # n, ce qui nous conduit a remplacer 1’éq. 3.26 par
)

2
gm ‘ m 7“|W]n>)

SER) =>" Z , (3.30)

m#n r=1

et I'éq. 3.28 par
gm

Dy =% gﬁ'” i, 7). (3.31)

m##n r=1

Mais si le niveau considéré E, est lui-méme dégénéré, le raisonnement effectué plus haut n’est
plus valable et il faudra utiliser la méthode des perturbations dans le cas dégénéré, que nous allons

maintenant aborder.

3.1.3 Cas d’un niveau dégénéré

Considérons maintenant le cas ou le niveau considéré E(©) = E,, est dégénéré. On posera donc

Ho|n,r) = Ep|n,r) (3.32)
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ou l'indice r € {1,2,---,gn}, gn étant la dimension du sous-espace propre associé. L’éq. 3.6 nous

permet alors seulement d’affirmer que le vecteur |¢(0)> est un élément de ce sous-espace propre, soit

In
) =3 ) 833
r=1
En projetant maintenant 1'éq. 3.7 sur le bra (n,r|, pour r € {1,2,--- , g, }, nous obtenons
(7| Holp ™) + (n, r| Hi ) = Epfn, ) + BW (n, rp ). (3.34)

En remarquant que <n,r]ﬁ0 = E,(n,r| et en remplagant |w(0)) par son expression donnée par
I’éq. 3.33 ('indice muet r étant remplacé par ') on obtient
gn

(n,r|H, Z eyn, 'y = EWe, (3.35)

r'=1
ou encore, aprés multiplication par le paramétre A,

gn
Z(nvﬂAHl‘nv TI>CT’ = )‘E(l)cr- (336)

r'=1
ce que l'on peut encore écrire sous la forme

an
Z(n, | Win, r'ye = 6EWe,.. (3.37)
r’'=1
Ce systéme de g, équations linéaires est en fait un probléme de recherche de valeurs propres,
le membre de gauche étant le produit matriciel entre la restriction de W au sous-espace propre

considéré et le ket |¢(0)). Sous forme matricielle, on peut effectivement écrire

<n71|W|n7 1> <n71|W|nagn> C1 C1

n,2|Win,1) --- n, 2|{Wln, gn c2 co

2 Wint) e 2 W) | (] e | .
<n7gn|W|n7 1> T <n7 QN‘W‘na gn> Cyn, Cyn

On en déduit la procédure & appliquer dans le cas d’'un niveau dégénéré.

Méthode des perturbations dans le cas d’un niveau dégénéré

Pour un niveau FE,, dégénéré, la méthode des perturbations consiste a rechercher les
vecteurs propres et valeurs propres de la restriction de la perturbation W au sous-
espace propre de Hy associé au niveau considéré. Les valeurs propres obtenues § E(Y)
correspondent aux déplacements du niveau au premier ordre, tandis que les vecteurs
propres associés correspondent a l’ordre zéro de la méthode des perturbations. Le
nombre de niveaux d’énergie obtenus pourra varier entre 1 et g, selon le probléme
considéré, ce qui donnera souvent lieu a une levée de dégénérescence partielle ou totale

du niveau initial.
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L’intérét de la méthode des perturbations est que la matrice & diagonaliser est beaucoup plus
petite que s’il avait fallu diagonaliser directement ’hamiltonien H = Hy + W dans lensemble de
I’espace de Hilbert. Il suffit ici de diagonaliser la restriction de H au sous-espace propre de Hy

considéré.

3.1.4 Domaine de validité

Il est assez délicat de préciser de maniére a la fois générale et rigoureuse le domaine de validité de
la méthode des perturbations, dans la mesure ot la série donnée par I’éq. 3.24 n’est pas toujours une
série convergente au sens mathématique du terme. On a parfois affaire & une série dite asymptotique,
qui pourra sembler converger vers une bonne approximation de la valeur exacte si on ne conserve
que les premiers termes, mais divergera si on additionne l’ensemble des termes de la série [1]. On
considére toutefois que la méthode des perturbations donne de trés bons résultats dans la limite ot
les éléments de matrice de W sont trés petits devant les écarts en énergie. Dans le cas non dégénéré,

le critére de validité & retenir peut donc s’écrire
(| W n) | < By = Eul. (3.39)

De maniére qualitative, on peut en effet se convaincre que le rapport entre deux termes consécutifs
du développement perturbatif est de Pordre de | (m| W |n) |/|Ep— Eu|. Clest par exemple ce que I'on
observe en comparant les termes d’ordre 1 (eq. 3.25) et d’ordre 2 (eq. 3.26). La condition exprimée
par I’éq. 3.39 nous indique ainsi que les termes de la série seront bien de plus en plus petits, ce qui
nous permet d’obtenir une bonne approximation du résultat exact en ne conservant qu’'un ou deux
termes du développement.

Dans le cas dégénéré, le critére de validité est similaire & celui formulé par 1’éq. 3.39, & savoir que
les éléments de matrice de T doivent étre trés petits devant Pécart en énergie |E,, — Ey,| entre le
niveau F, considéré et les autres niveaux d’énergie de I’hamiltonien non perturbé. Dans ce régime,

le déplacement induit par la perturbation restera petit devant |E,, — E,,|.

3.1.5 Cas quasi-dégénéré

Dans certaines situations intermédiaires, aucun des deux cas dégénéré ou non n’est approprié
pour appliquer la méthode des perturbations. C’est par exemple le cas du systéme dont les niveaux
d’énergie non perturbés sont représentés Fig. 3.1. Les niveaux sont ici groupés par paquets tels que
I’écart entre les paquets est grand devant 'ordre de grandeur typique, appelé w, des éléments de
matrice de W, mais ol I’écart entre niveaux d’un méme paquet est du méme ordre que w. Si on
s’intéresse au déplacement d’un niveau n donné appartenant au paquet appelé A/, on ne peut donc
pas appliquer la méthode des perturbations dans le cas non dégénéré car il y a des niveaux trés
proche de E,,, correspondant & m € N, qui ne satisfont pas la condition donnée par 1’éq. 3.39. On ne
peut pas non plus appliquer directement la méthode des perturbations dans le cas dégénéré car les
niveaux du paquet N ne sont pas exactement dégénérés. Toutefois, dans ce cas que nous appellerons
quasi-dégénéré, notre intuition nous suggére que les états |m) tels que m € N ne contribueront pas

significativement au déplacement des niveaux d’énergie du paquet N car ils satisfont la condition
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FIGURE 3.1 — Représentation des niveauz d’énergie non perturbés d’un systéme
tels que certains niveaux E,, (pour m & N') satisfassent la relation |E, — Eyp,| >

w, alors que d’autres niveauz (pour m € N') soient tels que |E,, — Ep,| est du
méme ordre que w, ot w est l'ordre de grandeur typique des éléments de matrice
de W.

donnée par ’éq. 3.39. La méthode des perturbations dans le cas quasi-dégénéré consistera donc a
ignorer ces niveaux m ¢ N et a simplement diagonaliser la restriction de H au sous-espace associé
am € N. En appelant n un élément donné de N, on peut justifier rigoureusement cette démarche

en introduisant les opérateurs

Hy=Ho+ Y (B = En) Im) (m] (3.40)
meN
et
W' =W = 3" (Ey — Ey) [m) (ml, (3.41)
meN

ot 'on a retranché a W la quantité ajoutée a I:I(), de sorte que la somme H=Hy+W = ]:I(’) + W est
inchangée. Pour tout m € A, on a maintenant JEI(’) |m) = E, |m), ce qui nous permet d’appliquer la
méthode des perturbations dans le cas dégénéré a la perturbation W', dont les éléments de matrices
sont bien de l'ordre de w, qui est trés inférieur a |E,, — E,,| pour m ¢ N. Il nous suffit donc de

diagonaliser directement H dans le sous-espace associé a m € N.

3.2 Meéthode variationnelle

3.2.1 Majoration de I’énergie du niveau fondamental

Pour tout état |¢)) de I'espace de Hilbert, on peut affirmer que ’énergie moyenne dans cet état

est supérieure ou égale & ’énergie Ey du niveau fondamental
(| H|yp) > Eo. (3.42)

Ce résultat peut étre établi trés facilement en écrivant

) = cnaln,r), (3.43)

n,r
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ou {|n,7)} est une base propre de ’hamiltonien H. On peut alors écrire
(WIH[Y) = lenr?En > lens|’Eo = Eo. (3.44)
n,r n,r

On aurait aussi pu remarquer qu'une mesure d’énergie donnera une valeur propre E,, qui par défi-
nition est toujours supérieure ou égale & Fjy. La moyenne de ces résultats de mesure tous supérieurs
ou égaux & Fy devra naturellement étre elle-méme supérieure ou égale & Ey, ce qui nous permet
de retrouver ’éq. 3.44. On peut donc trés facilement trouver un majorant de I’énergie du niveau
fondamental, simplement en calculant (¢)|H|¢)) pour un état [1) arbitraire.

En outre, I'égalité (1)|H|ip) = Ey est évidemment atteinte dés lors que |¢) appartient au sous-
espace propre (éventuellement dégénéré) correspondant a l’énergie Ej. Inversement, si 1'égalité est

atteinte, alors 1'éq. 3.44 nous permet d’affirmer que les coefficients ¢, , associés a n # 0 sont

nécessairement nuls, et donc que |¢) = > ¢o,|0,7) est une combinaison linéaire d’états |0,r)
associés au niveau fondamental Ey. L’état [1)) est donc lui-méme un état propre de ’hamiltonien
pour ’énergie Ey du niveau fondamental. En conclusion, on aura pout tout état |¢)) l'inégalité

(| H |1p) > Eo, I'égalité étant atteinte si et seulement si |¢)) est Pétat fondamental du systéme.

3.2.2 La méthode variationelle

D’aprés ce qui préceéde, le probléme d’optimisation consistant 4 minimiser la grandeur <¢|ﬁ[ [1)
pour tout ket [¢)) de l'espace de Hilbert est équivalent a la recherche de I’énergie Ey du niveau
fondamental et de I’état propre associé. Ce résultat est a la base de ce que I'on appelle la méthode

variationnelle.

La méthode variationnelle consiste & se donner un ensemble {|p,)} de vecteurs
d’essai appartenant & un sous-ensemble de ’espace de Hilbert et a chercher le mini-

mum de la grandeur

(alH|pa)
{(PalPa) '

Le paramétre auyi, correspondant a ce minimum nous permet d’évaluer E(auyin) et

E(a) = (3.45)

|©min)/||(|¢min))||, qui constituent des approximations de ’énergie du niveau fonda-

mental et de ’état propre associé.

Le résultat produit par la méthode variationnelle sera bien entendu exact si I’espace des fonctions
d’essai est égal a l'espace de Hilbert tout entier, ce qui ne présente alors aucun intérét puisque le
probléme de minimisation est dans ce cas équivalent & une recherche directe du niveau fondamental —
et est donc aussi difficile & résoudre. La méthode variationnelle sera intéressante lorsque ’espace des
fonctions d’essais — qui n’est pas nécessairement un espace vectoriel — est suffisamment petit pour
que le travail de minimisation s’en trouve simplifié. La qualité du résultat dépendra naturellement
de la pertinence de l'espace des fonctions d’essais, qui sera souvent choisi en s’appuyant sur des
considérations physiques. On notera qu’il est impossible d’évaluer a priori I'erreur commise suite
a l'usage de la méthode variationnelle, mais que 'on reste certain grace a 1'éq. 3.44 que la valeur
obtenue est toujours une borne supérieure de I’énergie du niveau fondamental. L’objectif sera donc

de choisir au mieux l’espace des fonctions d’essai, de maniére & obtenir le minimum le plus petit
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possible. On remarquera enfin que 1’éq. 3.45 prend explicitement en compte la possibilité que le

vecteur d’essal ne soit pas normé.

3.2.3 Exemple

A titre d’illustration, on pourra traiter '’exercice C.10, qui applique la méthode variationnelle
a la recherche du niveau fondamental d’un oscillateur harmonique & une dimension. La Fig. 3.2
représente la valeur moyenne de I’énergie obtenue en fonction de I’écart quadratique moyen Ax
pour des fonctions d’essai gaussiennes ou lorentziennes. Dans les deux cas, on observe que 1’énergie
augmente de maniére parabolique lorsque Ax tend vers 'infini. En effet, dans ce cas limite, la
fonction d’onde est trés étalée spatialement tandis qu’elle est concentrée autour de p, = 0 dans

I'espace de Fourier. L’énergie cinétique (p2)/(2m) est donc négligeable et I’énergie moyenne est

Az /Axg

FIGURE 3.2 — Energie moyenne d’un oscillateur harmonique calculée pour une
fonction d’essai gaussienne (trait plein) ou lorentzienne (trait pointillé) en fonc-
tion de la largeur Az rapportée a la valeur exacte Axg = \/h/(2mw). La courbe
en trait mizte correspond & la grandeur mw?Ax?/2 représentée dans le méme
systeme d’unités.

alors dominée par 'énergie potentielle, en mw?(z?)/2. A T'inverse, lorsque Az tend vers zéro, la
fonction d’onde est concentrée au voisinage de l'origine et c’est 1’énergie potentielle moyenne qui
devient négligeable. Mais, en vertu de la relation de Heisenberg, (p2) tend alors vers I'infini ce
qui fait diverger le terme d’énergie cinétique. Entre ces deux cas extrémes, un juste compromis
entre énergie cinétique et énergie potentielle permet de minimiser I’énergie moyenne. Comme déja
mentionné plus haut, c’est la valeur la plus faible qui sera la plus proche du résultat exact, puisque
la méthode variationnelle donne une borne supérieure de 1’énergie du niveau fondamental. C’est
donc le résultat fourni par des fonctions d’essai gaussiennes, qui fournit un minimum inférieur a
celui obtenu avec des lorentzienne, qui est le plus proche du résultat correct. En ’occurrence, le
minimum ainsi obtenu (fw/2) correspond précisément au résultat exact, puisque notre espace de
fonctions d’essai gaussiennes comprend la fonction d’onde exacte de I’état fondamental, qui se trouve

effectivement étre une fonction gaussienne dans le cas de 'oscillateur harmonique.
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On pourra également consulter 'exercice C.11, qui porte sur le cas de 'atome d’hydrogéne.

3.2.4 Meéthode variationnelle linéaire

Le probléme variationnel linéaire correspond au cas particulier ol I'espace Eqgsai €8t un sous-
espace vectoriel de ’espace de Hilbert. Comme démontré en annexe B.5.1, la méthode variationnelle
consistant & déterminer les extremums de la fonctionnelle

(Y[Hp)

E(|[y)) = ) (3.46)
revient & chercher les vecteurs propres de la restriction de 'hamiltonien H a lintérieur de I’espace
Eessai- En d’autres termes, la grandeur E(|¢))) est extremum (ou stationnaire) au point |¢) (pour
|t} € Eessai) 1 et seulement si |¢) est 'un des vecteurs propres de la restriction de 'hamiltonien. Ce
résultat nous fournit une méthode efficace pour rechercher les extremums de la fonctionnelle E(]1))),
puisqu’il suffit de diagonaliser une matrice dont la taille sera fonction de la dimension choisie pour
I'espace Eegsai- Selon la taille de la matrice, le probléme pourra donc étre considérablement simplifié
par rapport a une diagonalisation de ’hamiltonien dans I’ensemble de 1’espace de Hilbert. Un point
remarquable est qu’une diagonalisation compléte de la restriction de I’hamiltonien nous donnera
non seulement le minimum absolu de la fonctionnelle mais aussi une série d’extremums relatifs
correspondant aux différentes valeurs propres ainsi obtenues. De méme que le minimum absolu est
une borne supérieure de I'énergie exacte du fondamental, I’annexe B.5.2 montre que ces extremums
relatifs constituent des bornes supérieures des premiéres valeurs propres de ’hamiltonien H. Ce
dernier résultat constitue ainsi une généralisation aux états excités de la majoration de ’énergie du
niveau fondamental démontrée en 3.2.1, ce qui nous permet d’étendre la méthode variationnelle &
la recherche des états excités. Finalement, nous pouvons introduire la formulation suivante de la

méthode variationnelle dans le cas ou I'espace des fonctions d’essai est un espace vectoriel.

La Méthode variationnelle linéaire consiste & rechercher les extremums de la
fonctionnelle E(|y)) = (| H ) / (¥]1h), out [1p) appartient & un espace de fonctions
d’essal Eegsai qui est un sous-espace vectoriel de I'espace de Hilbert. Cette recherche
des extremums sera effectuée en diagonalisant la restriction de I’hamiltonien dans
Iespace Eessai- Les vecteurs propres et valeurs propres ainsi obtenus constituent des
approximations des premiers vecteurs propres et valeurs propres de I’hamiltonien H.
De plus, les valeurs propres obtenues constituent des bornes supérieures des valeurs

exactes.

Nous avons en fait déja rencontré quelques exemples d’application de cette méthode. Ainsi, la
méthode des perturbations dans le cas dégénéré (3.1.3) — qui consiste a diagonaliser la restriction
de Phamiltonien H & l'intérieur d’un sous-espace propre de I’hamiltonien non perturbé Hy — est
équivalente & un probléme variationnel linéaire. Il en va de méme pour la méthode des perturbations
dans le cas quasi-dégénéré (3.1.5), ou l'on a choisi comme espace des fonctions d’essai I’ensemble
des états engendrés par un petit nombre de niveaux proches les uns des autres sans étre tout a fait
dégénéreés.

Un autre exemple trés important d’application de la méthode variationnelle linéaire en physique
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moléculaire est le modéle de Hiickel, traité en PC2. Dans ce cas, I'espace des fonctions d’essai est
I’espace vectoriel constitué des combinaisons linéaires d'un certain nombre d’orbitales atomiques
centrées sur les différents atomes de la molécule. La qualité du résultat dépendra de maniére cru-
ciale d’un choix pertinent des orbitales atomiques, ce qui fait tout 'art des méthodes numériques

développées en chimie quantique.



Chapitre 4
Le moment cinétique

L’étude du moment cinétique, observable associée a la rotation d’un systéme physique, revét une
importance particuliére compte tenu du grand nombre de systémes physiques invariants par rotation,
& commencer par les atomes. Comme évoqué au chapitre 2, I’exploitation de cette invariance nous
permettra de sensiblement simplifier la résolution du probléme. Pour cela, il nous faudra au préalable

étudier les états propres de I'observable moment cinétique, ce qui fait 'objet du présent chapitre.

4.1 Rotations et moment cinétique

On introduit 'opérateur rotation Ra correspondant & l'effet dans l’espace de Hilbert d’une
rotation définie par le vecteur @, c’est & dire autour d’un axe colinéaire au vecteur @ et d’un angle

égal a la norme de ce vecteur, ||d@||.

4.1.1 Définition du moment cinétique

De méme que nous avons défini I'impulsion d’un systéme physique comme le générateur infini-
tésimal du groupe des translations (2.4.4), définissons ici en toute généralité le moment cinétique

comme le générateur infinitésimal du groupe des rotations.

]?éﬁnition : Pour tout systéme physique, on appelle observable moment cinétique
J Densemble des trois opérateurs (J}, jy, jz) définis comme les générateurs infinité-
simaux du groupe des rotations, de sorte qu’une rotation infinitésimale du systéme
associée au vecteur dd = (doy, day, da,) soit représentée dans 'espace de Hilbert par

I’opérateur

T - 0}

ﬁ 4

Buz=1- %szaw . %jyday _jda,=F-L7 4da. (4.1)

St

En particulier, une rotation infinitésimale autour de I'axe z s’écrira

- ]

dea:j_

5

J.da. (4.2)

>t

En procédant comme pour 'opérateur translation a une dimension (2.4.2), on pourra écrire 'opéra-

61
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teur associé a une rotation d’angle fini autour de I’axe z sous la forme d’une exponentielle d’opérateur

Rz,a = exp ( ZOéth> . (4.3)

L’axe z ne jouant pas de role spécifique, on pourra écrire de méme 'opérateur rotation associé a

un axe quelconque en remplagant J. par la projection du moment cinétique selon 1’axe de rotation

Rsz = exp (— th: a) , (4.4)

ot J-a@ = agJy + ayjy + a.J.. Cette relation est parfaitement analogue & l’expression de 'opé-

considéré. On obtient ainsi

rateur translation en fonction de la projection de I'impulsion selon la direction de la translation
considérée. Toutefois, on se gardera ici de factoriser ’exponentielle comme on avait pu le faire pour
les translations (eq. 2.65) car, a la différence du groupe des translations, le groupe des rotations est

un groupe non commutatif.

4.1.2 Relations de commutation entre les observables jx, jy et jz

La nature non commutative du groupe des rotations que nous venons d’évoquer implique que
les composantes cartésiennes du moment cinétique ne commutent pas entre elles. Comme le montre
I’annexe B.6, il est possible d’établir les relations de commutation suivantes a ’aide des propriétés

des rotations.

Les composantes cartésiennes du moment cinétique obéissent aux relations de com-

mutation
[Jz, J,) = ik, [Jy, J.] = ihJ, [J2, Jz] = ik, (4.5)
que 'on peut exprimer sous la forme condensée

Jx J=ihJ. (4.6)

La forme condensée se déduit aisément de la définition du produit vectoriel, en tenant compte

du fait que les composantes cartésiennes ne commutent pas entre elles.

< >Hk‘> NKU
|

< >Hkl> NKU

] >‘:\l>@kl>

JxJ= = ihJ. (4.7)

&S
X
>@K|> HKU
I
S >Nk1>@k|>

IS

4.1.3 L’observable .J2
En utilisant I'éq. 1.56, on peut écrire [J,, J2| = [J., Jo]Jo + JolJz, Jo) = ih(JyJe + JoJy). On a
de méme [J., J2] = [J., J,)Jy + Jy[J., ) = —ik(JyJs + Jo

= Ay)7 soit exactement 'opposé du terme
précédent. Sachant que 'on a évidemment [.J,, J2] = 0, on en déduit la relation

., J5 =0 (4.8)
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ot J2 = =J: j2 4 Jy j2 4 J: J2 est Pobservable associée au carré de la norme du moment cinétique. On aurait
bien entendu pu démontrer la méme relation avec J, et Jy. On en déduit que J J2 commute avec

n’importe quelle projection du moment cinétique.

4.1.4 Cas d’un systéme invariant par rotation

Considérons un systéme invariant par rotation, associé & I’hamiltonien H. En nous aidant du
résultat établi en 2.2.4, on peut en conclure que 'hamiltonien commute avec les générateurs infini-
tésimaux du groupe des rotations, a savoir les composantes cartésiennes du moment cinétique, jx,
jy et J.. On notera simplement )

[H,J)=0. (4.9)
Ainsi, pour tout vecteur &, ’hamiltonien commutera avec j -@ et donc avec 'opérateur R donné par
I’éq. 4.4. L’hamiltonien commutera également avec J2 =J: j2 +J; j2 +Jz. J2.Si on considére les observables
H , J? et une des composantes cartésiennes du moment cinétique, habituellement JZ, on dispose
donc d’un ensemble de trois observables commutant entre elles et qui pourront étre diagonalisées
dans une méme base. La recherche des états propres de 'hamiltonien sera donc considérablement
simplifiée si 'on connait la forme générale des états propres communs des deux observables J? et

J,. Cest ce probléme que nous allons maintenant aborder.

4.2 Théorie générale du moment cinétique

Ce que 'on appelle la théorie générale du moment cinétique consiste & rechercher les états propres
communs de J2 et jz, tache dont on sait qu’elle est possible car J? et J. sont deux observables
qui commutent. On fera cette recherche de maniére générale, sans faire d’autre hypothése que la
relation J X J = ZhJ Nos résultats pourront donc s’appliquer & une grande variété de systémes
physiques.

La démonstration, effectuée dés 1913 par le mathématicien Elie Cartan, est similaire & la méthode
de Dirac que nous avons déja rencontré pour résoudre le probléme de l'oscillateur harmonique (voir
PHY3X061, section 5.3). Dans les deux cas, on introduit des opérateurs permettant de passer d’'un
sous-espace propre & un autre, ce qui permet d’établir des contraintes trés fortes sur les valeurs

propres admissibles.

4.2.1 Introduction des paramétres j et m

La valeur moyenne de J2 dans un état |1} quelconque s’écrit

(W 2 ) = (I J7 ) + (1 Jg [0) + @l T2 ) = [1Ja [9) 117+ 11y [0) 112+ 110 ) 112, (4.10)

On en déduit que la valeur moyenne de J? est toujours positive ou nulle, et donc que toute valeur
propre A de J2 est positive ou nulle. Comme la fonction j+ j(j + 1) est une bijection de RT dans
R*, on a le droit d’écrire A = j(j + 1)A?, ot j est un nombre réel sans dimension positif ou nul.
La justification de ce changement de variable, qui semblera peut-étre un peu curieux a ce stade,

apparaitra ultérieurement. La recherche des valeurs propres de J? se raméne donc a la recherche
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des solutions de I’équation aux valeurs propres

T2 ) = §(j + )% ) (4.11)

oll j est un nombre réel positif ou nul. Comme on cherche les vecteurs propres communs de J? et

J., on écrira également

J. [) = mhly) (4.12)

ol m est un nombre réel sans dimension. Les espaces propres communs a J2 et J, pour les valeurs

propres respectives j(j + 1)h? et mh seront notés &; .

4.2.2 Les opérateurs j+ et J_

On introduit 'opérateur j+ = jx—l—ijy et son adjoint J_=J, —ijy. Comme J, et jy, ces opérateurs

commutent évidemment avec J2, soit

A ~

[J?,Js] = 0. (4.13)
Par contre, les opérateurs ji ne commutent pas avec J,. En effet,

(Jo, i) = [ oy Jo iy = [Ty Jo) £ [z, J,) = ik, + hJy = £hJy. (4.14)

Le produit j:Fji est auto-adjoint, car (ijji)T = jlij = jchi. Il est utile de calculer ce produit

explicitement, ce qui nous donne JxJy = (J, qizjy)(jx :I:ijy) = J2+ jyz +ilJ,, jy] = J2—J2FhJ.,
soit

JoJe = J% = J.(J. + k). (4.15)

Cette équation nous permet notamment d’exprimer ’observable J? en fonction des opérateurs jz,

jJr et JA,.

R R N A R . A R 1 /. 4 A
P=Jvhd+J J =0 —hJ, +J J_=J>+ 3 (J_J+ + J+J_> : (4.16)

4.2.3 Action des opérateurs j+ et J_

Considérons l'action de Ji sur un ket |¢)) appartenant & I'espace &;,,. Pour déterminer si le
vecteur Jy |¢) appartient & 'un des espaces propres, considérons l'action de J? sur ce dernier

vecteur. On obtient

I ) = Je 2 [0) = (5 + )R Ty [9) (4.17)

Par ailleurs
Jodi [9) = (Jaede + [T, Ja]) [0) = (Jemh £ R ) [9) = (ot DR [0, (48)

On peut donc en conclure que Jy |1} est lui-méme un vecteur propre commun de J? et J, pour les
valeurs propres respectives j(j+1)h? et (m=1)A, & moins bien entendu que Ji |1} ne soit le vecteur

nul. Pour étudier cette derniére possibilité, calculons le carré de la norme du vecteur Ja |1). Avec
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Taide de I'éq. 4.15, on peut écrire ||Jx [ ||2 = (] JrJu [00) = (] (j2 — ]+ hf)) 1), soit
1T [} 1 = (G + 1) — m(m £ 1)) A, (4.19)

Le carré d’une norme étant une grandeur positive ou nulle, on en déduit que m(m +1) < j(j + 1).
Il faut donc que m soit compris d’une part entre les deux racines de ’équation du second degré
m(m+1) = j(j+1) et d’autre part entre les racines de I’équation m(m —1) = j(j+ 1), ce qui nous
donne respectivement les intervalles [—7 — 1, j] et [—j,j + 1]. La réalisation simultanée de ces deux

conditions se raméne finalement & 'unique relation
—Jj<m<j. (4.20)

En fait, il n’est pas surprenant que les valeurs possibles pour la projection du moment cinétique
selon ’axe z soit contraintes par la valeur de la norme de ce vecteur. Remarquons toutefois que la
condition obtenue ici n’est pas exactement identique a celle que I’on aurait pour un vecteur classique
car ce n’est qu’a la limite ot j tend vers I'infini que 1'on peut considérer que la norme du moment
cinétique, mh, est approximativement égale & jh.

L’éq. 4.19 nous permet en outre de déterminer dans quel cas j+ |4) sera égal au vecteur nul. Cela
se produira lorsque m sera I'une des deux racines de I’équation du second degré m(m+1) = j(j+1),
soit m = —j —1 ou m = j. La premiére éventualité est exclue en raison de la condition —j5 < m < j
établie plus haut. On en déduit que jJr |) = 0 si et seulement si m = j. On montre de méme
que J_ |t)) = 0 si et seulement si m = —j. En résumé, nous avons montré que si |¢)) € &;,, alors

J [) € Ejma1, sauf si m = £j, auquel cas Jy [y = 0.

4.2.4 Valeurs autorisées pour j et m

Nous allons maintenant montrer que les valeurs possibles pour j et m sont fortement contraintes
par les résultats que nous venons d’établir. Partons d’un ket [¢)) vecteur propre commun de J? et
J. pour les valeurs propres j(j + 1)h% et mh, avec m € [—j, j]. En appliquant I'opérateur Jy a cet
élément de l'espace &j,,, nous pourrons alors construire un nouveau vecteur propre, appartenant
a l'espace & ,41. En répétant cette opération un certain nombre de fois, nous risquons d’aboutir
a une situation absurde ou le couple obtenu (j,m’) ne respecte plus la condition m’ < j. Pour
éviter cette situation, il est obligatoire que 'un des vecteurs obtenus par application répétée de
I'opérateur j+ soit le vecteur nul, pour que ce ne soit plus un vecteur propre commun de J? et J,.
En d’autres termes, il doit nécessairement exister un nombre entier N tel que m + N = j. Ainsi
le vecteur jﬁ[ |Y) appartient & I'espace &;; mais une nouvelle action de I'opérateur j+ donnera le
vecteur nul, mettant ainsi fin au processus itératif. De méme, pour éviter que l'application répétée

de 'opérateur J_ ne méne a une contradiction similaire, il doit exister un nombre entier N’ tel que

m — N’ = —j. En faisant la différence entre les deux équations j = m + N et —j = m — N/, on
obtient 25 = N 4+ N’. On en déduit que 25 est un nombre entier, soit j € {0, %, 1, %, 2,---}. On dira

que j est soit entier, soit demi-entier (i.e. un nombre impair divisé par 2). Par ailleurs, la relation
m + N = j nous permet d’affirmer que j — m est toujours un nombre entier. En tenant compte de

I'inégalité —j < m < j, on en déduit que m € {—j,—j+1,--- ,j}.
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4.2.5 Base standard des observables J?2 et jz

Nous venons d’établir des conditions nécessaires auxquelles doivent obéir les nombres j et m.
Toutefois, a ce stade nous ne savons rien quant a ’existence des différents espaces &; ,,, qui dépendra
du probléme spécifique auquel on s’intéresse. On peut néanmoins montrer de maniére générale que
des lors qu'un espace &, existe, alors tous les espaces &; ,, associés a la méme valeur de j existent
également (pour m € {—j, —j+1,---,j}). De plus, ces 2j+1 espaces ont la méme dimension, comme
montré en annexe B.7. En commengant par construire une base {|n,j,—j)} de l'espace & _;, on
pourra alors construire une base de chacun des espaces &;,, par l'action répétée de I'opérateur
J. En faisant varier les trois indices, on obtient ainsi la base {|n,j,m)} - dite base standard - de
I’ensemble de 'espace de Hilbert. Notons que cette démonstration n’indique rien sur la dimension
des espaces &£, qui pourra, selon la valeur de j et le probléme considéré, étre nulle (valeur de j
interdite), égale a 1, finie ou infinie. L’encadré ci-dessous et la Fig. 4.1 résument les propriétés ainsi

établies de maniére générale pour une observable de type moment cinétique.

Co-diagonalisation des observables J? et J, (sachant que Jx J=ihJ )

e Les valeurs propres de ’observable J? sont de la forme §(j + 1)h?%, ot j est un

nombre entier ou demi-entier, soit j € {0, %, 1, %, 2, %, b

e Les valeurs propres de 1'observable J. sont de la forme mh, on m € {—j,—j +

1,---,4}, ce qui revient & dire que —j < m < j et que j — m est entier.
e La dimension de 'espace propre commun &, est indépendante de m.

e On peut construire une base propre commune aux observables J?2 et J,, appelée

base standard et notée {|n,j,m)}, a Paide des relations de récurrence

Jy n,3,my = /(G + 1) — m(m £ 1)k|n, j,m £ 1) (4.21)

4.3 Cas d’une particule de spin 1/2

Vérifions que la théorie du moment cinétique que nous venons d’établir de maniére générale
s’applique bien au cas particulier du moment cinétique intrinséque d’une particule de spin 1/2
(voir le chapitre 7 du cours PHY3X061). Rappelons que les composantes cartésiennes du moment

cinétique intrinséque d’une particule de spin 1/2 s’écrivent dans la base {|+) ,|—)} selon les matrices

N h(io0 1 A h(f0 —i A h(1 0
En élevant ces trois matrices au carré, on obtient

82 =82 -082-"1], (4.23)
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FIGURE 4.1 — Valeurs possibles des nombres j et m associés aux valeurs propres
j(j +1)h? et mh des opérateurs J? et J,. Les opérateurs J, et J_ permettent
de monter ou descendre dans l’échelle des &;,, selon la relation donnée par
l’éq. 4.21.

ce qui n’est pas surprenant car une mesure de S2 (ou Sg ou S?) donne toujours le résultat (£4/2)? =

h%/4. On en déduit
. A A A 3 5. 13 5-
2 a2 2 2 9327 2
S _Sx+5’y+sz_1h1_§§hl' (4.24)
Ces résultats sont bien conformes & la théorie générale du moment cinétique, avec une unique valeur

propre de la forme j(j 4+ 1)A? pour Sz, ol j = 1/2 est bien un nombre demi-entier, et des valeurs

propres de la forme mh pour S'Z, oum = —1/2 ou +1/2. On pourra donc écrire
1 1
i =2 4.2
[+ =li=gm=3) (4.25)
1 1
N=lj=Zm=—2Y. 4.2
= =li=gom=-3) (1.26)
Par ailleurs, on a
A 4 .4 h(fo1 A0 — 01

ou encore Sy = h|+) (—|. L’adjoint s’écrira S_ = i|—) (+|. On a donc les relations
$) 14) =0 S11-) = hl+) §o|4) = h|-) Sl =0 (429

ce qui est bien conforme a I'éq. 4.21, sachant que pour j = 1/2 et m = 1/2 on a la relation
Vi(G+1)—m(m—1) = +/3/4+ 1/4 = 1. Enfin, I'éq. 9.12 du cours PHY3X061 exprimant I'opé-

rateur rotation pour un systéme de spin 1/2 est parfaitement compatible avec la définition générale

du moment cinétique comme générateur infinitésimal du groupe des rotations (eq. 4.4).

Il est immeédiat dans ce cadre d’interpréter I’évolution d’un systéme de spin 1/2 placé dans un

champ magnétique B. L’hamiltonien s’écrit alors H = — TR B= —’yS_" .B , ce qui nous donne d’apreés
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I’éq. 2.20 Iopérateur d’évolution

&l

U(t, tg) = exp (—ig(t - to)) = exp (—isﬁ (t — t0)> , (4.29)

ol & = —vB. L'opérateur d’évolution est donc égal a l'opérateur rotation associé a un angle
w X (t —tp), ce qui nous permet de retrouver directement le phénomeéne de précession de Larmor

autour du champ magnétique B.

4.4 Moment cinétique orbital

4.4.1 Définition du moment cinétique orbital

Intéressons nous maintenant au mouvement d’une particule ponctuelle sans spin dans ’espace
euclidien & trois dimensions. L’espace de Hilbert associé est constitué dans ce cas de I’ensemble des
fonctions de carré sommable £2(R3). On appellera moment cinétique orbital E le moment cinétique
de ce systéme. D:aprés I’éq. 4.1, cela signifie qu’une rotation infinitésimale Rda dans £%(R3) s’écrira

Ryg =1 — (i/R)L - d@. Comme démontré dans 'exercice C.12, cette définition revient a poser

X P (4.30)

=P

[_::

ol et ]:)' sont les observables associées a la position et & 'impulsion de la particule. Conformément au
principe de correspondance, le moment cinétique orbital s’exprime bien de la méme maniére en mé-
canique quantique et en mécanique classique. Par ailleurs, comme vérifié dans I'exercice C.12, cette
expression nous redonne bien les relations de commutation attendues pour un moment cinétique, a

savoir
L x L =ihL. (4.31)

Nous pourrons donc appliquer au moment cinétique orbital les résultats établis plus haut de maniére

générale pour toute observable de type moment cinétique.

4.4.2 Expression des opérateurs différentiels en coordonnées sphériques

L’expression en coordonnées cartésiennes des opérateurs différentiels associés aux différentes

composantes du moment cinétique se déduit immédiatement de 1’éq. 4.30.

s . .. h( 0 0
Ly = yp. — z2py = 3 <y(‘)z - Zay) (4.32)
5 . .. h(f 0 0
Ly, =2p, —p, = 7 (Z&x — x(‘)z) (4.33)
A . .. h( 0 3}
L, =py — yp = 7 <$3y — (%) (4.34)

Toutefois, dans la mesure ol nous serons amenés & nous intéresser a des systémes invariants par

rotation, il sera souvent préférable d’utiliser un systéme de coordonnées sphériques (r, 6, ) reliées
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aux coordonnées cartésiennes par les relations

x = rsinf cos
y = rsinfsin g (4.35)

z=rcosf

ol 0 est la colatitude et ¢ est la longitude, comme représenté Fig. 4.2. Pour chercher 'action de
Popérateur moment cinétique sur la fonction d’onde 9 (r, 0, ¢) exprimée en coordonnées sphériques,
il suffit d’exprimer les rotations infinitésimales autour des axes x, y et z puis d’utiliser le fait que le

moment cinétique est le générateur infinitésimal du groupe des rotations. Commengons par le cas le

x/ P

FIGURE 4.2 — Représentation des angles sphériques 0 (colatitude) et ¢ (longi-
tude).

plus simple d’une rotation d’angle o autour de I'axe z, qui s’exprime trés facilement en coordonnées
sphériques puisque lors d’une telle rotation les grandeurs r et 6 sont inchangées tandis que ¢ est
simplement translatée de la quantité a. En appliquant 1’éq. 2.23 au cas d’une telle rotation, on
obtient la relation Rz,aw(r, 0,0) =1(r,0,p — a). Dans le cas d’'une rotation infinitésimale d’angle

da, on obtient

. 0
R, 4a(1,0,0) = Y(r, 0,0 — da) = (1,0, ) — azﬁda. (4.36)
Par ailleurs, d’aprés ’éq. 4.1, on a szda =] (i/h)ﬁzda et donc
. 7 ~
R, 40(r,0,0) =1(r,0,¢) — ﬁsz(T’ 0, )da (4.37)

En comparant les deux équations ci-dessus, on identifie

A h oy
Lo(r,0,0) = 2 2% 4.38

lrb.0) = T3 (4.38)
On obtient ainsi Pexpression de opérateur différentiel en coordonnées sphériques, L, = (1/i)0/d¢.
On peut remarquer la parfaite analogie entre cette expression et celle de 'opérateur impulsion,
p» = (h/i)0/0z. Ceci n’est pas surprenant car p, est associé a une translation le long de l'axe z
tandis que L., est associé a une rotation autour de l'axe z, ce qui revient a une translation dans

I’espace des . On pourra trouver en annexe B.8 le calcul similaire des opérateurs reportés ci-dessous.
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Opérateurs différentiels associés a L exprimés en coordonnées sphériques

i, =ih (smge n Eiiﬁai) (4.39)
L, =ih (— cos 90880 + :;1?%) (4.40)
L,= ?;; (4.41)
Ly = het® (iaae + z:?jg;@) (4.42)
[? = —p? <Sh119§0 sin 9839 + Sing@:;) (4.43)

Comme on pouvait s’y attendre, ces opérateurs ne font apparaitre que des dérivées par rapport
aux coordonnées angulaires 6 et ¢, la variable radiale r n’étant pas affectée par les rotations qui
nous ont permis de construire le moment cinétique orbital. On vérifie en outre que les opérateurs Ly,
f/y, L., IAUF et L_ sont des opérateurs différentiels du premier ordre, tandis que L2 est un opérateur

différentiel du second ordre.

4.4.3 Recherche des fonctions propres communes de L% et L,

D’aprés la théorie générale du moment cinétique, nous savons que les observables L% et L,
peuvent étre diagonalisées simultanément et nous connaissons la forme générale des valeurs propres.
Dans le cas du moment cinétique orbital, ces valeurs propres seront notés respectivement £(¢ 4 1)h?
et mh, ou £ et m sont a priori entiers ou demi-entiers. En coordonnées sphériques, les fonctions

propres recherchées ¢ (r, 0, ¢) obéissent donc aux deux équations

1 0 . 0 1 02
- <s1n€89 Slng% + sin2 0 6(,02) w(rv 97 80) - e(f + 1)¢(7”> 97 90) (444)
0
i = 4.4
z&pw(r,@,tp) my(r, 0, ¢) (4.45)

Comme la variable radiale r n’intervient pas dans ces expressions, la résolution simultanée des deux
équations nous donnera une fonction ne dépendant que de 6 et ¢, que 'on notera Y (6, ¢) et qui sera
appelée la partie angulaire de la fonction d’onde. La forme générale des fonctions propres communes

sera donc

P(r,0,0) = R(r)Y (0, ), (4.46)

ou la partie radiale R(r) est a priori arbitraire. Par convention, les parties radiale et angulaire de

la fonction d’onde seront normalisées selon les relations
“+oo
| meprar =1 (4.47)
0

et ™ 27
/ / 1Y (8, ¢)|*sinfdfdyp = 1, (4.48)
0 0
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ce qui assure bien la normalisation de la fonction d’onde, donnée en coordonnées sphériques par la

relation

fjf | (r, 6, (p)\er sin Odrdfdy = 1. (4.49)

En reformulant 1’éq. 4.45 avec ces nouvelles notations, on obtient 1’équation

Y
dont la solution est immeédiate :
Y (0,0) = F(0)e™?. (4.51)

La continuité de la fonction Y (6, ¢) en ¢ = 0 impose que exp(im27) = 1, ce qui exclut d’emblée
les valeurs demi-entiéres de m pour lesquelles exp(im2r) = —1. Dans le cas du moment cinétique
orbital, le nombre m est donc un nombre entier. Il en va de méme pour £ puisque nous savons que

¢ — m est entier.

Pour déterminer la forme de la fonction F'(6), on pourrait envisager de résoudre 1'éq. 4.44 avec
¢ € N. Mais il faudrait alors résoudre une équation différentielle du second ordre. Il est plus simple
d’utiliser la méthode de construction de la base standard (eq. 4.21) a I’aide de 'opérateur différentiel
du premier ordre f/+, ce qui nous incite & commencer par traiter le cas m = —¢. Comme c’est la plus
petite valeur autorisée pour m, nous savons d’aprés la théorie générale du moment cinétique que
la fonction Y (8, ¢) correspondante obéit alors a la relation L_Y (6, ¢) = 0. En utilisant 1'éq. 4.42
donnant ’expression de 'opérateur L_ et en remplacant Y (6, ¢) par la forme obtenue plus haut,

on obtient alors ’équation

0  .cosf 0 ity
<_80 + U E?go) F(8)e =0 (4.52)

soit

dF
= . 4.
7 Lcot OF(0) (4.53)

Il s’agit d’une équation différentielle du premier ordre, dont la solution est donc unique. On pourra

se convaincre en traitant I'exercice C.13 que cette fonction, notée Fy _,(6), peut s’écrire

1 [0+ 1)

Fre0) = 5 = sin‘ 4. (4.54)

La fonction propre Y (0, ¢) sera donc unique et aura pour valeur Y, (6, p) = F&_g(@)e*iz‘p. Compte
tenu de la méthode générale de construction de la base standard, les fonctions propres pour les
autres valeurs de m seront également uniques et pourront étre construites par application répétée
de l'opérateur IAur a l'aide de 1'éq. 4.21. On obtient ainsi un ensemble de fonctions propres uniques

appelées harmoniques sphériques et notées Yy ,,(6, ). On posera
Yim(8,9) = Fg,m(ﬂ)eim“". (4.55)

D’apreés I'éq. 4.21, les harmoniques sphériques vérifient I’équation

IA/:N:H,m(& 90) = \/e(ﬁ + 1) - m(m + l)hn,mil(a @) (456)
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En utilisant ’éq. 4.42 et en remplagant /0y par le simple facteur im, on obtient

A » - 0 cosf -
ime i [ Y . . imep
LiFy.(9)e he (80 + Zsinﬁzm) Fym(0)e (4.57)
ce qui nous donne la relation de récurrence
1 d m
Fypi1(0) = — — Fyn(0). 4.58
i = et (o) P ) (459

Cette relation nous permet d’affirmer que Fy,,(#) est une fonction réelle. Le lien étroit entre les
fonctions Fy,,(6) et les polynomes associés de Legendre [2] permet d’établir un certain nombre de
propriétés que nous admettrons ici mais qu’il sera utile de connaitre. En particulier, on peut montrer
que la fonction Fy,,(0) s’annule exactement ¢ — |m| fois dans 'intervalle ouvert |0,7[. On montre
en outre que

Fﬁ,—m(e) = (_l)mFE,m(9)~ (4.59)

Il n’est guére surprenant que les fonctions Fy ,,(0) et Fy _,,(6) soit similaires car changer m et —m
se raméne simplement & changer le sens de 'axe z. Enfin, on retiendra que la valeur absolue des

fonctions Fy,,(0) est symétrique par rapport a I’équateur (6 = 7/2), soit
|Fom(m = 0)] = |Fom(0)], (4.60)
résultat qui sera démontré d’une autre maniére a l'exercice C.14.
Pour terminer, remarquons que le fait que les fonctions propres communes de L? et L, soient
uniques peut encore s’exprimer en disant que les espaces propres communs de ces deux opérateurs

sont de dimension 1. En d’autres termes, dans ’espace de Hilbert des fonctions de carré sommable

associant a un couple (6, ) la grandeur Y (8, ¢), les observables L? et L. constituent un ECOC.

4.4.4 Propriétés des harmoniques sphériques

L’encadré ci-dessous résume les principales propriétés des harmoniques sphériques, pour la plu-
part déja démontrées ou énoncées plus haut. L’éq. 4.61 résulte directement des éq. 4.55 et 4.59. La

démonstration de 1’'éq. 4.62 fait 'objet de I'exercice C.14.
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o LYym(0,0) = Ll + 1)y (6, ¢), ot L €N

° I:ZY&m(G, ) = mhY; (0, ), ot m est un nombre entier prenant 1'une des 2¢+1

valeurs comprises entre —¢ et +/

o Yy (0,0) = Fyum(0)e™?, ot Fy () est une fonction réelle qui s’annule £ — |m)|

fois dans l'intervalle ]0, 7|

e Conjugaison

e Parité
Yom(m — 0,0+ ) = (=1)Ygm (9, ¢) (4.62)

e [’ensemble des harmoniques sphériques constitue une base orthonormée de 1’es-
pace des fonctions de carré sommable qui associent a un couple (6, ) de co-
ordonnées angulaires la grandeur complexe Y (6, ¢). Pour toute fonction, on

pourra écrire

Y(0,0) =) comYem(8, ) (4.63)
4m
ol les coefficients ¢y ,,, sont déterminés par les produits scalaires hermitiens

Com = jf Yy (0, 0)Y (8, ) sin 0dOdep (4.64)

Le fait que les harmoniques sphériques, fonctions propres communes des observables L2 et ﬁz,
constituent une base orthonormée de l'espace des fonctions Y (0, ¢) de carré sommable est une
conséquence directe du théoréme spectral. A l'instar des fonctions de Hermite dans £2(R) ou des
séries de Fourier dans un espace de fonctions périodiques, les harmoniques sphériques permettront
ainsi de décomposer toute fonction Y (0, ¢) de deux variables angulaires a 'aide de la somme discréte
donnée par ’éq. 4.63. L'impact de ce résultat dépasse largement le cadre de la physique quantique,
avec des applications notamment en géophysique ) et en astrophysique (i)

L’exercice C.13 décrit la méthode de calcul des harmoniques sphériques & 'aide des opérateurs
ﬁ+ et L_ et de I’éq. 4.56. On y trouvera en particulier le calcul explicite des premiéres harmoniques

sphériques, qui nous seront souvent utiles. Ainsi pour £ =0, on a

Yo,0(0,¢) = i (4.65)

et pour £ =1,

3 3 4
Y1,0(6,9) =1/ yp cos @ et Yi41(6,0) =F4/ gei“p sin 6. (4.66)

Pour donner une représentation graphique des harmoniques sphériques, on choisit de les re-
présenter sur une sphére dont chaque point, de coordonnées sphériques (6, ¢), est colorié a l'aide

de la valeur complexe de Yy (6, ¢) selon le code couleur représenté Fig. 4.3. On obtient ainsi

Whttp://wuw.geologie.ens.fr/ vigny/cours/chp-gphy-2.html#SECTION2e
<ii>http ://en.wikipedia.org/wiki/Cosmic_microwave_background#Primary_anisotropy
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ImY (0, )

ReY (0, ¢)

FiGURE 4.3 — Code couleur utilisé dans les figures suivantes pour représen-
ter une fonction complexe Y (6, ). La palette de couleurs permet de repérer la
phase de 0 a 27, tandis que la saturation permet de repérer le module (le blanc
correspondant & zéro). Le rayon du cercle est choisi égal a la valeur mazximale
prise par |Y (0, )| sur ’ensemble de la sphére.

les harmoniques sphériques représentées Fig. 4.4 pour ¢ = 0 et £ = 1. La fonction Y o(0,¢) est
une constante, indépendante de 0 et ¢, conformément & 1’éq. 4.65. On remarque que les fonctions
Y1.1(0,¢) et Y1 _1(6, ) varient bien en exp(=+ip), avec une phase évoluant continument de 0 a 27

lorsque la longitude varie elle-méme de 0 & 27. La variation en sinf (d’aprés 1'éq. 4.66) nous donne

£=0,m=0

{=1,m=-1 £=1,m=0 I=1,m=1

FIGURE 4.4 — Représentation des premiéres harmoniques sphériques, pour £ = 0
et =1.

un maximum au niveau de I’équateur. Ainsi, la fonction F; 1+1(#) ne s’annule pas dans 'intervalle
ouvert |0, 7|, puisqu’elle ne s’annule qu’aux poles, en conformité avec la relation ¢ — |m| = 0 qui
nous indique qu'il n’y a pas de zéro attendu dans cet intervalle. A I'inverse, la fonction Y o(6, ¢)
ne dépend pas de ¢ (puisque m = 0) et s’annule £ — |m| =1 — 0 = 1 fois dans l'intervalle |0, 7|, &

savoir au niveau de I’équateur ou la fonction cos# s’annule effectivement.
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TS,
s

.

FIGURE 4.5 — Représentation de l’harmonique sphérique Yig6(0, ¢).

La Fig. 4.5 représente une harmonique sphérique d’ordre plus élevé, mais que nous pouvons
néanmoins aisément reconnaitre grace aux propriétés énoncées plus haut. En effet, la variation en
fonction de ¢ montre 3 cycles complet dans I’hémisphére visible pour l'observateur, soit 6 x 2w

pour I'ensemble de la circonférence. On reconnait ici une variation en e"™?, avec |m| = 6. De plus,

’1‘%

/71 %\

£=20,m=20

FIGURE 4.6 — Représentation de ’harmonique sphérique Yo 20(0, ¢).
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compte tenu du fait que les couleurs se succédent dans le méme ordre que dans le code couleur
représenté Fig. 4.3, on en déduit que m = +6. Par ailleurs, on observe que la fonction Fy,,(6)
s’annule 4 fois, deux fois dans I’hémisphére nord et deux fois dans I’hémisphére sud (si on excepte
les deux poles). On en déduit que ¢ — |m| = 4 et donc que ¢ = 10. Il s’agit donc de I'harmonique
sphérique Yi06(0, ¢).

La Fig. 4.6 représente le cas ou m = £, pour une valeur assez élevée de ¢, en l'occurrence
¢ = 20. Comme m = ¢, la fonction |F},,(0)| ne s’annule pas. On sait d’aprés I’éq. 4.54 qu’elle est
proportionnelle & sin®#, ce qui explique que la fonction soit concentrée au voisinage de I'équateur
puisque la fonction tend trés vite vers zéro dés lors que 6 s’écarte de 7/2. Par ailleurs, 1’évolution
en fonction de ¢ couvre bien une variation de phase de 20 x 27.

On pourra se familiariser avec les différents modes de représentation des harmoniques sphériques

a 'aide du site https://www.quantum-physics.polytechnique.fr/sphericalHarmonics.php.

4.5 Rotation d’une molécule diatomique

Comme déja évoqué plus haut, la théorie du moment cinétique permet de simplifier la résolution
de nombre de problémes invariants par rotation. Nous en verrons un exemple dés le prochain chapitre
avec 'atome d’hydrogéne. Mais nous allons dés maintenant étudier une application directe des
harmoniques sphériques avec le mouvement rotationnel d’une molécule diatomique. Ce probléme
a deux corps (voir annexe B.9) est bien invariant par rotation puisque l'interaction entre les deux

atomes est inchangée suite & une rotation quelconque de I’ensemble du systéme.

z

FIGURE 4.7 — Représentation schématique d’une molécule diatomique, dont
Dorientation est repérée a l'aide des angles sphériques 6 et .

4.5.1 Modéle du rotateur rigide

Considérons une molécule diatomique, comme par exemple le monoxyde de carbone (CO). Une
telle molécule est constituée de deux atomes, comme représenté Fig. 4.7. Pour traiter de maniére
simplifiée le mouvement de rotation de la molécule, on va utiliser le modéle dit du rotateur rigide,
dans le cadre duquel un certain nombre de degrés de liberté ne seront pas pris en compte :

e On ne s’intéresse pas au mouvement du centre de masse, qui comme montré en annexe B.9,
peut étre découplé du reste du mouvement. On supposera donc que le centre de masse est fixe
et situé a l'origine.

e On ne s’intéresse pas non plus au mouvement des électrons, déja pris en compte dans la mesure

ou il est a l'origine de la liaison chimique entre les deux atomes.


https://www.quantum-physics.polytechnique.fr/sphericalHarmonics.php
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e Enfin, on ne prendra pas en compte le mouvement de vibration, correspondant a la variation
de la longueur de la liaison chimique. Un tel mouvement pourrait étre traité dans le cadre
d’un modéle harmonique. Les énergies associées a ce mouvement sont trés supérieures a celles
que nous allons rencontrer ici, ce qui explique qu’on puisse ne pas le prendre en compte en

premiére approximation.

4.5.2 Traitement classique

Appelons 7 et 7 les positions des deux atomes, de masses my et mo. On introduit également
le vecteur 77 = 75 — 7 séparant les deux atomes, dont la longueur r = ||7]| est constante dans le
cadre du modéle du rotateur rigide. Le centre de masse étant placé a 'origine, on aura la relation

m17T1 + meoTy = 0, ce qui nous permet d’écrire

=—Lr et =t (4.67)
my mao

ou p est la masse réduite du systéme a deux corps, donnée par la relation usuelle

1 1 1
-—=— 4+ —. (4.68)
w mip M2

En dérivant I'éq. 4.67 par rapport au temps, on pourra écrire de méme les vitesses

- /’L—» -
V] = ——0 et Vg =

4.69
o o (4.69)

ou ¥ = dif/dt. Le systéme étant invariant par rotation, nous savons que le moment cinétique L est

une constante du mouvement. Il est donc intéressant de calculer son expression

2 2
L= xmty +7 xmath = 7xv+ L Fxo=7xus (4.70)

mi ma
On retrouve ici le moment cinétique d’une particule fictive dont la masse serait égale & la masse
réduite p. On remarque que le moment cinétique est perpendiculaire & I'axe de la molécule. La
distance r étant constante, la vitesse ¥’ est toujours perpendiculaire au vecteur 7, ce qui permet de

calculer simplement le produit vectoriel et d’écrire la norme du moment cinétique sous la forme
L = urv. (4.71)

Evaluons maintenant 1’énergie H du systéeme. La molécule étant entiérement libre de s’orienter selon
n’importe quelle direction de 'espace, il n’y a pas de terme d’énergie potentielle et 1’énergie totale

se réduit a la seule énergie cinétique des deux atomes, soit

1 1 1/ 2 2 1
H= §m1v% + 57@1}% =3 <m1 + o v? = §uv2. (4.72)

On retrouve ici encore ’énergie cinétique d’une particule fictive de masse p. En exprimant la vitesse

en fonction du moment cinétique a I'aide de 1’éq. 4.71, nous pouvons encore écrire I’énergie sous la
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forme H = L?/(2ur?), soit
L2
Tl

ou 'on a introduit le moment d’inertie I par rapport & un axe passant par le centre de masse et

H (4.73)

perpendiculaire & la liaison entre les deux atomes, qui s’écrit
I =myri + mors = pr. (4.74)

On retrouve ainsi ’expression usuelle de I’énergie cinétique d’un corps solide en rotation. En résumé,
le traitement classique nous a permis d’établir la forme de I’énergie du systéme. Le moment cinétique
L étant conservé, le plan de rotation de la molécule — perpendiculaire & L — restera fixe, de méme

que la fréquence de rotation de la molécule qui pourra prendre toute valeur réelle.

4.5.3 Traitement quantique

Dans le cadre de la mécanique quantique, I’état de notre rotateur rigide est défini par une
fonction d’onde Y (6, ¢) telle que |Y' (6, ¢)|? sin @dfdip représente la probabilité que la molécule soit
orientée selon les angles sphériques 0 et ¢, a 'intérieur d’un angle solide infinitésimal sin dfdp. La

fonction d’onde Y (6, ¢) est alors normalisée selon la relation

{1y (8, ) 2 sin6dodip = 1. (4.75)

Comme montré plus haut, I’espace de Hilbert £y (constitué de ’ensemble des fonctions Y (6, ¢) de
carré sommable) est engendré par les harmoniques sphériques. On pourra donc également caracté-
riser I’état de notre systéme par la donnée des coefficients complexes ¢ ,,, définis par les éq. 4.63 et
4.64.

Sans méme avoir & invoquer la forme exacte de I’hamiltonien H , I'invariance par rotation du
systéme nous permet d’affirmer qu’il est possible de construire une base propre commune aux trois
observables H , L% et i}Z, car ces trois opérateurs commutent deux & deux. Or les deux observables
L2 et L, suffisent a constituer un ECOC de &€ I, puisque nous avons montré que leur base propre
commune était unique dans €. On peut donc en conclure que les fonctions Yy, (6, ¢) sont néces-
sairement fonctions propres de 'hamiltonien.

On peut vérifier ce résultat en explicitant I’hamiltonien. Ce dernier peut étre obtenu a par-
tir de 1’éq. 4.73, simplement en remplagant les grandeurs physiques classiques par les observables

correspondantes. On obtient ainsi

. L2
H= 5T (4.76)
Les harmoniques sphériques sont effectivement fonctions propres de I’hamiltonien, avec
Y1 (0, 9) = EYom(0,9). (4.77)
ol les valeurs propres
E, =00+ 1)Z_ (4.78)

sont dégénérées 2¢+1 fois puisque ’énergie est indépendante de la valeur de m. Les niveaux d’énergie
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rotationnels constituent donc une échelle comme celle représentée Fig. 4.8.

—_— (=4
— (=3
—_— =2
—_— =1
2
Ry P

FIGURE 4.8 — FEchelle des niveauz d’énergie associés au mouvement de rotation
d’une molécule diatomique. Chaque niveau Ey est dégénéré 2 4+ 1 fois.

Il peut paraitre étonnant que les fonctions propres Yy, (6, ) ainsi obtenues privilégient 1'axe
z, ce qui semble & premiére vue briser l'invariance par rotation du systéme. Ceci résulte de la
procédure consistant & diagonaliser simultanément H , L% et L,. Le choix de L, est clairement
arbitraire et aurait pu étre remplacé par n’importe quelle autre projection du moment cinétique,
qui nous aurait donné une autre base propre privilégiant n’importe quelle autre direction. Mais il ne
faut pas perdre de vue que notre procédure de co-diagonalisation permet simplement de déterminer
une base propre de 'hamiltonien, qui n’est pas définie de maniére unique dés lors que les valeurs
propres sont dégénérées. Le choix arbitraire de privilégier 'axe z est donc sans conséquence car
les prévisions physique que nous pourrons faire avec notre base seront évidemment indépendantes
de l'axe choisi. La seule fonction propre unique du probléme est celle correspondant au niveau
fondamental, qui est non dégénéré. La fonction d’onde correspondante, Y 0(6, ¢) =1/ V47, est bien
totalement isotrope et donc indépendante du choix que nous avons fait de privilégier 'axe z. La
méme remarque s’appliquera naturellement aux fonctions propres de I’atome d’hydrogéne que nous
allons déterminer au chapitre suivant.

Malgré ’absence de puits de potentiel, on aboutit finalement & une quantification des niveaux
d’énergie, conséquence directe de la quantification du moment cinétique. Ce comportement est
radicalement différent du comportement classique rappelé plus haut, pour lequel I’énergie de rotation
pouvait prendre n’importe quelle valeur. En mécanique quantique, 1’échelle de niveaux prend une
forme caractéristique qui constitue une véritable empreinte digitale de la molécule, accessible a
I'expérience dans le cadre de la spectroscopie rotationnelle.

En effet, la rotation de la molécule est associée a la rotation d’un dipole, au moins dans le cas ot
les deux atomes sont différents. Il en résulte un couplage efficace avec une onde électromagnétique
de fréquence appropriée. On montre qu’'une onde radio de fréquence angulaire w (i.e. de fréquence
w/(2m)) pourra induire une transition entre deux niveaux d’énergie associés a deux valeurs succes-
sives de ¢, soit par exemple les niveaux Fy et Fy11, a condition bien entendu que ’énergie Aw des

photons soit égale & ’écart en énergie entre les deux niveaux, soit

Ey1— E
= e ¢ _

S (D 2) — 1) g = () (4.79)

21

Le rayonnement électromagnétique sera donc absorbé a chaque fois que la fréquence w/(27) est un

multiple de h/(4w2I). Pour lisotope le plus abondant du monoxyde de carbone, & savoir 12C!60,
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FIGURE 4.9 — Spectre rotationnel du monoxyde de carbone. La courbe repré-
sente en fonction du nombre d’onde le spectre de transmission d’une onde sub-

centimétrique. Extrait de [9)].

on peut calculer h/(47I) ~ 115 GHz, connaissant les masses des atomes et la longueur de la liaison

chimique. Cette valeur est en parfait accord avec le résultat expérimental représenté Fig. 4.9, qui

révele une série de raies d’absorption réguliérement espacées de cette quantité. On observe également

une série de raies beaucoup moins intenses, associées aux isotopes plus lourds 3C160 et 12C80,

dont les moments d’inertie sont sensiblement différents de celui de 'isotope le plus abondant. La

spectroscopie est donc un puissant outil d’analyse, qui permet d’analyser une composition chimique

aussi bien en laboratoire qu’a grande distance, par exemple & l'aide de radiotélescopes.



Chapitre 5
L’atome d’hydrogeéne

La structure des atomes restait au début du XXCM€ siscle une véritable énigme pour la phy-
sique classique. Parmi les faits expérimentaux inexpliqués, on peut citer notamment la stabilité des
atomes ) et le spectre discret des vapeurs atomiques. Ainsi, une vapeur d’hydrogéne excitée par

une décharge électrique émet un rayonnement constitué de raies spectrales discrétes, de longueurs

Lo (Lo 1), o)

ny n;

d’onde A obéissant a la relation

oll np et ny sont deux nombres entiers et Ry ~ 109737 cm™! est la constante de Rydberg. Un tel

résultat est évidemment inexplicable dans le cadre d’une théorie purement classique.

Dans ce chapitre, nous allons d’abord rappeler le modéle de Bohr, avant de développer la véritable
théorie quantique de 'atome d’hydrogéne, en commencant par traiter le cas général du potentiel
central qui sera ensuite appliqué au potentiel coulombien. Nous pourrons ainsi dénombrer les états
liés de I'atome d’hydrogéne et donner une représentation graphique des fonctions d’onde associées.

Nous nous intéresserons enfin & I’évolution temporelle d’états non stationnaires.

5.1 Le modéle de Bohr

Le modéle de Bohr ne constitue en aucun cas une théorie satisfaisante de ’atome d’hydrogéne
dans la mesure ot il n’abandonne pas la notion de trajectoire et qu’il ne rend pas compte de la
véritable structure interne des niveaux d’énergie. Toutefois, il parvient fortuitement & donner les
valeurs exactes des niveaux d’énergie et son role historique justifie qu’on en donne ici un bref rappel.
Partant de la variation selon l'inverse du carré de la distance commune aux forces coulombiennes
et gravitationnelles, ce modéle s’appuie sur une vision planétaire de ’atome. On part donc de I’hy-
pothése d’une trajectoire circulaire de I’électron autour du proton, supposé fixe et placé a 'origine.
Dans le cadre de la mécanique newtonienne, la proportionnalité entre ’accélération centripéte et la
force coulombienne nous donne alors

Me— = =3 (5.2)

) Une application conjointe de I’électromagnétisme et de la mécanique newtonienne conduit en effet & I’effondrement
de I’électron sur le noyau en raison de ’énergie perdue suite au rayonnement électromagnétique de 1’électron.

81
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ol me est la masse de I’électron, r est le rayon de 'orbite et v est la vitesse de ’électron. On a en
outre posé e? = ¢%/(4meg). On déduit de 'éq. 5.2 la relation r = €2 /(m.v?), qui exprime le rayon de
I’orbite en fonction de la vitesse de I’électron. On rajoute alors un ingrédient quantique en postulant

que le moment cinétique L, doit étre quantifié (le quantum étant ), ce qui nous donne la relation
L. = rmev = nh, (5.3)

ou n est un entier naturel. On justifie souvent cette relation en remarquant qu’elle correspond & un
nombre entier de longueurs d’onde le long de la circonférence de I'orbite, assurant ainsi la continuité
de l'onde de de Broglie associée a I’électron. En remplacant r par la valeur obtenue plus haut, on
en déduit que la vitesse est quantifiée et doit prendre 'une des valeurs
1e? c
Up = —— = Q— 5.4
" nh n (54)
ol c est la vitesse de la lumiére. On a introduit ici la constante

o= —~ — (5.5)

appelée — pour des raisons historiques — constante de structure fine. Remarquons au passage que la
vitesse est ainsi toujours inférieure ou égale a la valeur v1 = ac qui est elle-méme plus de deux ordres
de grandeur inférieure a la vitesse de la lumiére. Ce résultat justifie 'approximation non relativiste
que nous avons faite plus haut en nous plagant dans le cadre de la mécanique newtonienne. En
exprimant enfin le rayon a partir de la vitesse, on en déduit que le rayon est quantifié et prend 'une

des valeurs

h
Ty = nro_ n2a; (5.6)
MeUn,
ou
h2
= 0.053 nm (5.7)
e

est le rayon de Bohr, correspondant a la plus petite orbite possible. Enfin, I’énergie mécanique

associée a l'orbite n s’écrit

1 e? Er
En = §mev7% — a = _ﬁ (58)
ou 4 12
Mee
Er= = —— ~13.6eV 5.9
I 2h? 2mea? ¢ (5.9)

est par définition I’énergie d’ionisation de I'atome d’hydrogéne. C’est en effet 1’énergie qu’il faut
fournir pour libérer un électron situé sur 'orbite n = 1 et dont ’énergie est égale & Fy = —F7. On
obtient donc une série infinie de niveaux d’énergie en —E;/n?, comme représenté Fig. 5.1. Le spectre
expérimental s’interpréte aisément en attribuant chaque raie observée a la désexcitation du niveau

E,0 vers le niveaux E,1, associée a I’émision d’un photon de fréquence v obéissant & la relation

1 1
hv =E,, — E,, = E; (2 — 2) . (5.10)
ny Ny

Le modéle de Bohr est ainsi en accord non seulement qualitatif mais aussi quantitatif avec les
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FIGURE 5.1 — Niveauz d’énergie de l’atome d’hydrogéne. Les fleches verticales
correspondent a des transitions de désexcitation vers le niveau n = 2, corres-
pondant a la série dite de Balmer qui est observable dans le visible.

résultats expérimentaux. Toutefois, ce succés apparent ne doit pas occulter le fait qu’un tel mo-
déle est totalement inadapté & I’échelle d’un atome, que seule la mécanique quantique peut traiter
convenablement. Comme nous allons le voir plus loin, nous allons effectivement retrouver les mémes

niveaux d’énergie dans le cadre d’une véritable théorie quantique.

5.2 Mouvement dans un potentiel central

Considérons dans le cadre de la mécanique quantique le probléme de l'interaction entre deux
particules de masses mqy et msy. On supposera que le potentiel d’interaction ne dépend que de la
distance r = ||y — 71|| entre les deux particules, ce qui revient a dire que le systéme est invariant
a la fois par translation et par rotation. On choisira en outre I'origine des énergies de sorte que le

potentiel V(r) tende vers zéro lorsque 7 tend vers l'infini. L’hamiltonien du systéme s’écrit alors

~2 ~2
2 p p
Htot — 1 + 72

V(|7 — 7). 5.11
oy T 2m (Ilm2 — 71]]) (5.11)

Comme le montre I’annexe B.9, un tel probléme se raméne de maniére générale & deux problémes
indépendants, correspondant d’une part au mouvement libre du centre de masse, de masse M =
m1 + ma, et d’autre part au mouvement d’une particule fictive plongée dans le potentiel V(r) et

dont la masse est la masse réduite p définie par la relation
-—=—+ —. (5.12)

On peut alors écrire 'hamiltonien du systéme sous la forme

S N S
Htot = m + @ + V(T’) (513)

ot P = ) + P est Vimpulsion totale du systéme tandis que p = (mlﬁg — mgf)’l) /M est I'impulsion

de la particule fictive. Le mouvement du centre de masse étant ici trivial, il suffira de s’intéresser
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au mouvement de la particule fictive dans £2(R3), associé & ’hamiltonien

H= P + V(7). (5.14)

2p
Finalement, le probléme a deux corps se raméne de maniére générale & un probléme portant sur une
seule particule, placée dans le méme potentiel V(7). Le potentiel ne dépendant que de la distance a
I'origine, on parle alors de mouvement dans un potentiel central. Dans le cas de 'atome d’hydrogéne,
il suffit de remplacer la masse de 1’électron m, par la masse réduite pu. Compte tenu des ordres de
grandeur (mj,/m. ~ 1836), on pourra parfois utiliser en premiére approximation directement la

masse de ’électron — ce qui revient a supposer que le proton est fixe a l’origine.

Cherchons donc les fonctions propres ¥(r, 0, ¢) de 'hamiltonien H défini par Iéq. 5.14. L’équa-
tion de Schrédinger indépendante du temps H [¢)) = E |¢) s’¢écrit alors

h2
(=58 V() 606, = Bu(r0,) (515)

Le laplacien A s’écrit en coordonnées sphériques selon la relation

1 92 1/ 1 8 oY 1L 9%
Ny 1O 1 9 (¥ GaUAY 1
¥ ror2 * 72 <Sin0 00 (sm 89> * sin208<p2> (510

On reconnait dans la partie angulaire du laplacien 'opérateur différentiel L2 deéfini par Déq. 4.43,

ce qui nous permet de reformuler le laplacien selon ’expression plus compacte

10° L?

=T = 1
ror | h2r2 (5.17)

En remplacant dans 1’éq. 5.15, on obtient

h?1 02 L2

(—%TWT + 2 + V(r)) »(r,0,p) = Ev(r,0,p). (5.18)
Le second terme, égal au carré du moment cinétique divisé par le double du moment d’inertie
ur?, peut s’interpréter physiquement comme une énergie cinétique de rotation, tandis que les deux
autres termes sont liés au mouvement radial de notre particule. Sous cette forme, on peut vérifier
explicitement que ’hamiltonien commute avec le moment cinétique, comme nous nous y attendions
en raison de l'invariance par rotation. Nous allons donc chercher une base propre commune aux
trois observables H , L2 et L,. D’apreés 4.4.3, nous pouvons alors écrire notre fonction propre sous

la forme

w(rﬁ,@) = R(r)Yz,m(eaSO), (5'19)

ot la partie radiale R(r) reste a déterminer. On sait que dans ce cas L2(r, 0, @) = £(4+1)h%)(r, 0, ).
En remplacant dans 1’éq. 5.18, on obtient alors
( R 1 92 00+ 1)h?

_%m&f+2wz+vm>mmnmaw=Emmnaaw. (5.20)
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Aprés multiplication par r et simplification du terme Yy ,,,(6, ), on obtient '’équation

(_h2d2 L ey V(?")> rR(r) = ErR(r), (5.21)

2 dr? 2pur?
qui porte uniquement sur la variable radiale r. Introduisons alors la fonction d’onde réduite u(r) =
rR(r), ce qui nous permet d’obtenir une équation de Schrodinger indépendante du temps a une

dimension

2 j2
(5 A+ Venelr) ) () = B, 65.22)

correspondant au mouvement d’une particule de masse p dans le potentiel

00+ 1)h?

Veff,é(r) = V(T) + 2MT2

(5.23)

Ce potentiel effectif, représenté Fig. 5.2, est la somme du potentiel central V(r) et de I’énergie
cinétique de rotation, que I'on appelle barriére centrifuge car la variation en 1/7? se traduit par

un potentiel répulsif, qui correspond & la force d’inertie centrifuge. Ainsi, I'invariance par rotation

1 .eff’g(r) Barriere

/ centrifuge

~

3 3.3
I
[E I e )

FIGURE 5.2 — FEzemple de potentiel effectif Veg (1) pour £ = 0 et £ = 1.
La courbe en pointillé représente la barriere centrifuge (¢ + 1)h%/(2ur?). Les
niveaux d’énergie sont repérés par le nombre quantique radial n’, en commencant
par n' = 0 pour l’état de plus basse énergie.

nous permet de transformer un probléme tridimensionnel, a priori difficile a résoudre, en une série
de problémes unidimensionnels (pour les différentes valeurs de £), qui seront beaucoup plus faciles a
résoudre. Ces problémes unidimensionnels sont autant d’équations de Schrodinger indépendantes du
temps portant sur la fonction d’onde réduite u(r). On peut donner une interprétation physique trés
simple de cette derniére fonction, en remarquant que |u(r)|?dr est la probabilité que la particule se
trouve entre deux spheéres concentriques de rayons r et r 4+ dr. Conformément & 1’éq. 4.47, la densité

de probabilité |u(r)|? est bien normalisée comme il convient, soit

+o0
/0 u(r)2dr = 1. (5.24)

Si le potentiel V (r) est négatif au voisinage de l'origine, on est donc en présence d’un puits semi-

infini, comme ceux déja étudiés en PHY3X061 (voir section 4.3). Rappelons que les niveaux d’énergie
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de ce probléme unidimensionnel sont non dégénérés. On sait que le spectre est continu pour une éner-
gie F positive, ce qui correspond aux états de diffusion — ainsi nommés car ils décrivent la réflexion
d’une onde incidente sur le puits semi-infini. Si le puits de potentiel est suffisamment profond, on
s’attend en outre & une série discréte d’états liés, d’énergies E négatives, comme représenté Fig. 5.2.
Rappelons que la quantification des états liés résulte d’'une double contrainte : la fonction d’onde
u(r) doit s’annuler en 7 = 0 (car la région r < 0 est interdite) et doit tendre exponentiellement
vers zéro lorsque 7 tend vers I'infini. Ces deux conditions ne pourront étre satisfaites simultanément
que pour certaines valeurs bien précises de ’énergie, qui constituent le spectre des états liés. Si ’'on
numérote ces états discrets a I'aide de l'entier n’, appelé nombre quantique radial, on sait en outre
d’aprés le théoréme de Sturm-Liouville que la fonction d’onde repérée par le nombre n’ s’annulera
exactement n' fois dans U'intervalle ouvert |0, +-o00[ (si les états sont numérotés par énergie croissante
en commengant par n’ = 0 pour P'état fondamental). Appelons cette fonction d’onde wu, ¢(r) et la
valeur propre correspondante E, , (car I'éq. 5.22 dépend de ¢ mais pas de m). On peut alors écrire
les fonctions propres de I’hamiltonien H sous la forme

Upy o(T)

Unt o (1,0, 0) = Yem (0, 0), (5.25)

ou 'on retrouve la dégénérescence 2¢ + 1 annoncée plus haut puisque les 2¢ + 1 valeurs possibles de

m correspondent toutes & la méme valeur propre E, ;.

5.3 Cas du potentiel coulombien

Appliquons maintenant la démarche exposée plus haut au cas particulier de I’atome d’hydrogéne,
correspondant au potentiel coulombien V(1) = —e?/r. 1l nous faut donc résoudre '’équation aux
valeurs propres Hy [u) = F |u), ot I'hamiltonien Hy est défini par Vopérateur différenticl

ﬁg:—h—Qd—Q—éJrM. (5.26)

2udr? r 2412

avec b = (mg Ly my, 1)_1, qui pourra parfois étre simplement pris égal & m,. compte tenu des trois
ordres de grandeur séparant la masse du proton de celle de I’électron. On trouvera en annexe B.10
la résolution de ce probléme, effectuée & I'aide d’'une méthode algébrique similaire & la méthode de
Dirac déja utilisée pour l'oscillateur harmonique. Le calcul fait apparaitre un résultat remarquable, &
savoir que les états associés a une méme valeur de n’ 4-£ ont exactement la méme énergie. Ce résultat
nous conduit & introduire un nouveau nombre quantique n appelé nombre quantique principal et
défini par la relation n = n’ +£+ 1. Comme n’ et £ sont des entiers positifs ou nuls, le nombre n sera
un entier strictement positif. Comme 1’énergie ne dépend que de n, on la notera simplement E,. Le
calcul de I’annexe B.10 redonne le méme résultat que le modéle de Bohr, & savoir E,, = —E;/n?,
en conformité avec ’expérience. Mais la théorie quantique exacte nous donne en outre la véritable
structure de ces niveaux d’énergie, qui regroupent en fait des valeurs trés diverses du moment
cinétique puisque, pour une valeur donnée de n, le nombre £ = n — 1 — n/ peut prendre toutes les

valeurs entiéres comprises entre 0 et n — 1 (correspondant a des valeurs de n’ variant de n — 1 & 0).
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La dégénérescence du niveau FE, sera donc égale a

n—1

gn = (20+1)=n’. (5.27)
=0

Remarquons enfin que la projection du moment cinétique sur l'axe z prendra la valeur mh, ol
|m| < £ < n — 1. Le moment cinétique ne pourra donc jamais atteindre la valeur nh utilisée pour
établir le résultat du modéle de Bohr, ce qui démontre que ce dernier modéle est incorrect. On peut
finalement résumer les propriétés importantes des états liés de ’atome d’hydrogéne de la maniére

suivante.

Etats liés de ’atome d’hydrogéne

e Les niveaux d’énergie sont repérés par un entier positif n et ont pour valeur

Er

E, = ) (5.28)
ou 2 4 h2 h?
e e
Er=—="_=_— _~—_=~13.6€eV 5.29
1= %4 ~ 212~ 2ud2 " 2medd ¢ (5.29)
est ’énergie d’ionisation de ’hydrogéne et ou
h? h?
ag = —5 = 5 ~ 0.053nm (5.30)
e mee
est le rayon de Bohr.
e Le niveau E,, est dégénéré n? fois.
e Les états propres |n, ¢, m) sont associés aux fonctions d’ondes
Une;m (7,0, 9) = Ry o(r)Ye,m (6, ¢) (5.31)
ol Yy m (0, ¢) est une harmonique sphérique et ot
Ry o(r) = Un,e() = [Polynome de degré n’] x rfexp (—T> , (5.32)
nay

Ientier n’ = n — £ — 1 étant appelé le nombre quantique radial.

e Les zéros du polynome de degré n/ introduit ci-dessus étant tous strictement
positifs, la fonction R, ¢(r) s’annule exactement n’ fois dans I'intervalle |0, +oof,

conformément au théoréme de Sturm-Liouville.

e La fonction d’onde de I’état fondamental s’écrit

677‘/(11

Y1,00(7) = (5.33)

W)

On remarque en outre que le fait que la fonction d’onde du niveau fondamental soit proportion-

nelle a e/ justifie a posteriori les résultats que nous avons obtenus a l'exercice C.11.
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5.4 Représentation des orbitales atomiques

Pour représenter les fonctions propres, ou orbitales atomiques, de ’hydrogéne, on a recours & une
méthode similaire & celle des courbes de niveau permettant de représenter un relief topographique
— mais avec ici une dimension supplémentaire. Au lieu d’'une courbe de niveau — qui représente
un ensemble de points d’égale altitude — on va ici tracer une surface (ou un ensemble de surfaces)
représentant un ensemble de points de ’espace associés & une méme valeur n du module de la
fonction d’onde |¢(x,y, z)|. On choisira par ailleurs le nombre 7 de sorte que la probabilité de
trouver la particule a l'intérieur du volume délimité par la (ou les) surface(s) ainsi définie(s) soit

égale & une valeur P prédéfinie, par exemple P = 0.5, ce qui correspond & la condition

jjf [v(z,y, 2)|*dedydz = P. (5.34)

[ (z,y,2)|=n

Meéme si on ne peut se faire une idée compléte de la fonction d’onde qu’en faisant varier P sur
une grande plage de valeurs (ce qui correspond a représenter un profil topographique par une
série de courbes de niveau), on se contente souvent d’une seule valeur de P pour représenter les
différentes orbitales atomiques. Il faudra toutefois prendre soin de choisir cette valeur de P de sorte
que I’ensemble des zéros de la fonction d’onde soient correctement mis en évidence. Par ailleurs,
la fonction d’onde étant une grandeur complexe, la surface représentée sera coloriée en fonction de
la phase de la fonction d’onde selon le code couleur de la Fig. 4.3. Mentionnons enfin que pour
des raisons historiques, les orbitales associées & des valeurs de £ égales & 0, 1, 2, 3, seront appelées

respectivement orbitales s, p, d et f.

., @
11,0,0)

12,0,0)

13,0,0)

FIGURE 5.3 — Vue écorchée des premieres orbitales atomiques de l’atome d’hy-
drogéne pour £ = 0 (et donc m = 0), ce qui correspond aux orbitales 1s (ou

[1,0,0)), 2s (ou |2,0,0)) et 3s (ou |3,0,0)).

La Fig. 5.3 représente les premiéres orbitales s de ’atome d’hydrogéne, correspondant donc a
¢ = 0. La partie angulaire de la fonction d’onde est alors égale a Yy o(6, ¢) = 1/v/4m, ce qui signifie
que la fonction d’onde ne dépend que de r. Les surfaces représentant les orbitales s sont donc des
sphéres, dont le rayon correspond aux point de I'espace ol le module de la fonction d’onde est
égal & 7. Dans le cas de l'orbitale 1s (état |1,0,0)), on sait que la fonction d’onde, en e~"/ est
strictement décroissante. Il n’y a donc qu'une seule sphére & représenter. La fonction étant réelle
et positive, cette sphére sera coloriée en turquoise (selon le code couleur de la Fig. 4.3). Pour des
valeurs de n plus grandes, I’échelle de la fonction d’onde sera plus grande en raison de la décroissance
exponentielle plus lente en exp(—r/(nay)), ce qui explique les orbitales plus grandes représentées
Fig. 5.3. De plus, 'exponentielle est multipliée par un polynome de degré n’ =n—~¢—1=n—1, qui

présente n — 1 zéros. Ainsi la zone au voisinage de I'origine reste positive et est toujours délimitée
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par une sphére turquoise, mais le maximum de probabilité observé aprés le premier zéro correspond
au contraire & une fonction d’onde négative, et donc a une phase égale & w. La zone correspondante

est donc délimitée par deux sphéres concentriques coloriées en rouge.

z

2,1,-1) 12,1,0) 12,1,1)

FIGURE 5.4 — Représentation écorchée des orbitales atomiques correspondant
aux états 2p de l’hydrogéne, pour m = —1, 0, et 1.

La Fig. 5.4 représente les orbitales 2p, correspondant donc an =2, ¢ =1et m € {—1,0,1}. La
variation angulaire de ces orbitales se déduit directement des propriétés des harmoniques sphériques
établies au chapitre précédent. On reconnait en effet la variation en exp(imyp) en fonction de la
longitude ¢, ainsi qu'un nombre de zéros égal & £ —|m| = 1 —|m| quand 6 varie du pole nord au pole
sud. Ainsi, seul 'état |2,1,0) présente un zéro, localisé sur 1’équateur. Enfin, le nombre quantique
radial n’ =n—/f—1=2—1—1 étant nul, on vérifie que la fonction d’onde ne présente pas de saut

de phase lorsqu’on se déplace le long d’un rayon.

(a)

FIGURE 5.5 — Représentation de l'orbitale |6,4,2) (a) et de l’état de Rydberg
|50,49,49) (b), a des échelles différentes.

On peut ainsi identifier toute fonction propre de 'atome d’hydrogéne. Dans I'exemple représenté
Fig. 5.5(a), 'observation de la variation de la couleur avec la longitude nous permet de déduire la
valeur m = 2. En faisant varier ensuite 6 de 0 a 7 (i.e. le long d’un méridien), on observe deux
zéros, ce qui nous donne ¢ — |m| = 2 soit £ = 4. Enfin, la variation selon un rayon (par exemple dans
le plan équatorial) fait apparaitre un seul saut de phase de 7, et donc un seul zéro. On en déduit
n’ =1 et donc n =n'+ ¢+ 1= 6. Dans Pexemple représenté Fig. 5.5(b), on compte 49 périodes le
long de I’équateur, ce qui correspond & m = 49. L’absence de zéro le long d’un méridien implique

que ¢ = |m| = 49. Enfin, I'absence de zéro en fonction de r implique que n = ¢ 4+ 1 = 50. Il s’agit
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donc de 'état |50,49,49). Un tel état est appelé état de Rydberg circulaire, défini par la relation
m=F{=n-—1, avec n > 1.

Pour conclure cette partie, mentionnons que la forme spatiale des orbitales atomiques que nous
venons de discuter joue un roéle essentiel en chimie pour comprendre la maniére dont les différents

atomes d’un édifice moléculaire s’assemblent entre eux.

5.5 Evolution temporelle

Comme dans tout systéme gouverné par un hamiltonien indépendant du temps, la connaissance
des états propres permet de déterminer I’évolution temporelle de I’état du systéme sous la forme

d’une superposition d’états stationnaires, ce qui nous donne ici

BO) = 3 cagme " |n, £,m) (5.35)
nd,m
ot wy, = E,/h = —FE;/(n?h). En termes de fonctions d’onde, on peut donc écrire
¢(7“7 07 ©, t) = Z Cn,€7mRn7€(r)F€,m(9) €xp (Z(mSO - wnt)) . (536)
n,,m

A titre d’illustration, utilisons cette expression dans le cas d’une superposition de deux états,
(In, €, m) + [0/, ¢/, m"))/+/2. On obtient alors

et(me—wnt)
B00,) = S (Rt () + Rt 1) o (00 i = ) = 1) . (537

Ol Wy = Wy — wp. On en déduit que la densité de probabilité ne dépend du temps qu’au travers

de la quantité (m’ —m)y — wypt. Dans le cas ot m # m/, on peut méme écrire

[9(r,0,0,1) = [(r,0, 0 — wprnt/(m' —m), 0) 2. (5.38)

Le paquet d’onde tourne donc a la fréquence wy,,/(m’ — m) autour de l'axe z, sans se déformer.



Chapitre 6

Particule chargée dans un champ

magnétique

Ce chapitre porte sur I'application de la mécanique quantique au cas d’une particule chargée
se déplacant dans un champ magnétique, situation que ’on rencontre dans nombre d’expériences
visant par exemple & piéger des particules ou a mesurer les propriétés de matériaux conducteurs
ou semiconducteurs. En mécanique classique, nous savons qu’une particule chargée de charge ¢ se

mouvant a la vitesse ¢ dans un champ magnétique B est soumise a la force de Lorentz
F =gt x B, (6.1)

ol nous avons omis le terme proportionnel au champ électrique E, supposé pour l'instant égal &
zéro dans tout l'espace. A I'inverse des forces que nous avons discutées jusqu’ici, la force résultant
de 'action du champ magnétique présente deux caractéristiques spécifiques. D’une part, au lieu de
dépendre seulement de la position, elle est aussi fonction de la vitesse de la particule. D’autre part,
la force F est toujours perpendiculaire a la vitesse, de sorte que le produit scalaire F -7 est égal
a zéro. En 'absence de champ électrique, la force de Lorentz ne produit donc aucun travail. Ces
deux arguments montrent qu’on ne saurait écrire cette force comme le simple gradient d’une énergie

potentielle. La forme de 'hamiltonien que nous avons employée jusqu’ici,
H=2 +vw, (6.2)
m

est ainsi inappropriée pour traiter le mouvement d’une particule chargée dans un champ magnétique.
Il nous faut donc introduire une nouvelle forme de I’hamiltonien. On peut y parvenir en partant de
la formulation lagrangienne de la mécanique classique, qui permet d’établir une forme de I’hamilto-
nien prenant correctement en compte 'effet du champ magnétique. Il est ensuite aisé d’appliquer le
principe de correspondance pour construire 'opérateur hamiltonien agissant dans ’espace de Hil-
bert. Nous renvoyons toutefois au cours PHY431 pour cette approche lagrangienne, qui reléve des
principes variationnels (voir aussi le chapitre 15 de [1]). Dans ce chapitre, nous nous contenterons de
postuler la forme de ’hamiltonien — telle qu’elle est déduite de la mécanique lagrangienne — puis de
vérifier que les conséquences physiques sont raisonnables et conformes & I’expérience. Comme nous le

verrons, cet hamiltonien présente la caractéristique remarquable de ne pas faire intervenir le champ

91
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magnétique mais une grandeur appelée potentiel vecteur, que nous allons maintenant introduire.

6.1 Le potentiel vecteur

6.1.1 Potentiels

Rappelons la forme prise par les équations de Maxwell dans le vide, dans des régions de 1'espace

ne comportant ni charges ni courants électriques

V-E(7t) =0 (6.3)
V- B(ft)=0 (6.4)
. OB(7,t)
V x E(F,t) = ———=> 6.5
< E(Ft) = (6.5)
> o 1 OE(F,t)
V x B(7,t) = = ——=~ 6.6
x B(it) = (6.6)
Rappelons également les expressions de la divergence
- - OFE, OF oF,
V- -E= Y Y 6.7
ox + oy + y (6.7)
et du rotationnel
Kl E 0E, OEy
ox z oy Oz
Vi o_ | 0 _ | 8E. _ OE,
VxFE= % X Ey = 9z o= . (68)
0z Z Oz Oy

On déduit immédiatement des deux expressions ci-dessus que la divergence d’un rotationnel est nulle,
de méme que le rotationnel d’un gradient. De plus, comme le montre ’annexe B.11, tout champ dont
le rotationnel est nul (encore appelé irrotationnel) peut se mettre sous la forme d’un gradient, et tout
champ de divergence nulle peut se mettre sous la forme d’un rotationnel. Ainsi, en électrostatique
'éq. 6.5 devient V x E(F) = 0, ce qui permet d’écrire E(f’) = —§U(F). On dit que le champ
électrique E (7) dérive du potentiel électrique U(7). De la méme maniére, la divergence du champ
magnétique est toujours nulle (éq. 6.4), ce qui nous autorise a ’écrire comme le rotationnel d’un
autre champ de vecteurs, soit é(f’, t) = V x E(F, t). On dira que le champ magnétique g(f’, t) dérive
du champ de vecteur A'(F,t), appelé potentiel vecteur du champ magnétique, ou plus simplement

potentiel vecteur. Si on remplace maintenant B (7, t) par cette nouvelle expression dans ’éq. 6.5, on

V x (E(F, t) + W) =0 (6.9)

peut écrire

ot

ce qui signifie que le champ de vecteurs E(F, t) + aff/ Ot est irrotationnel. Il dérive donc d’une

grandeur scalaire U(7,t) que 'on appelle par définition le potentiel électrique. On obtient donc

E(7t) + 8‘%7;’5) = —VU(,1). (6.10)

On peut résumer ces résultats de la maniére suivante :



6.1. LE POTENTIEL VECTEUR 93
Dans une région de l’espace ne comportant ni charges ni courants électriques, les

champs électrique et magnétique peuvent s’exprimer en fonction du potentiel élec-

trique U (7, t) et du potentiel vecteur A(7,¢) a 'aide des relations

E(7t) = —VU(F,t) — — (6.11)

B(7,t) =V x A(F,t) (6.12)

Les équations 6.4 et 6.5 sont alors automatiquement vérifiées.

6.1.2 Choix de jauge

Sachant que le potentiel électrique, défini en électrostatique & une constante additive prés, n’est
pas unique, on doit se poser la question de I'unicité des potentiels introduits plus haut. Considérons
donc un autre potentiel vecteur A’ (7, t) associé au méme champ magnétique B (7, t) = V x ff(f', t) =

V x A (7, t). Les rotationnels des deux potentiels vecteurs étant identiques, on peut écrire
V x (A"(F, t) — A(F, t)) ~0 (6.13)

ce qui nous permet d’affirmer que la grandeur irrotationnelle A’ (7 t)— ff(f', t) dérive d’une grandeur

scalaire, que nous appelons x(7,t), soit

—

A7 t) = A(F)t) + Vx(7 1) (6.14)

Inversement, il est immédiat que pour toute fonction x(7,t), le choix de potentiel vecteur A (7, 1)
donne bien le méme champ magnétique puisque vV x ﬁx(f", t) = 0. En remplagant X(f’, t) par
A'(7,t) — Vx dans I'éq. 6.11, on obtient alors

A"

. . oA 9 5
' ot

+ =Vx(Ft) = -V (U(F, t)

—VU'(F, (6.15)

ot ot

B dx _8/1” B
ot ' ot -

ou U'(7,t) = U(F,t) — dx/dt. L’opération consistant a remplacer les potentiels A(7,t) et U (7, t) par

AP t) = A(F, t) + V(T t) (6.16)
U'(Ft) = U(Ft) — ?;t( (6.17)

s’appelle un changement de jauge. Comme nous venons de le voir, ce nouveau choix de potentiels

donne lieu aux mémes champs électrique et magnétique.

6.1.3 Jauge de Landau et jauge symétrique

Considérons le cas d’'un champ magnétique constant, uniforme, et orienté selon 'axe z, soit

0
B(Ft) =0 (6.18)
B
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et cherchons un potentiel vecteur simple dont ce champ magnétique pourrait dériver. L’équation

V x A(F) = B(F) s'écrit ici
9A; _ 04y

Jy 0z 0
VxAF)=| %9 — | (6.19)
0Ay _ 9A
oxr Byx B
ce qui nous donne le systéme d’équations
8Az . aAy —
oy 0z
0A 0A, __
b~ o =0 (6.20)
ox oy

Il ne s’agit pas ici de chercher ’ensemble infini de solutions qu’admet ce systéme d’équations, mais
seulement de trouver quelques solutions les plus simples possibles. Comme A, n’intervient que dans
les deux premiéres équations, dont le second membre est nul, il est évidemment plus simple de
choisir A, = 0. La premiére équation nous indique alors que A, ne dépend pas de z. La dérivée de
A, par rapport a y n’intervenant nulle part, il est plus simple de supposer que A, ne dépend pas
non plus de y, ce qui signifie que A, ne dépend que de x. De méme, on peut supposer que A; ne
dépend que de y. Les deux premiéres équations sont ainsi vérifiées. Essayons maintenant de vérifier
la derniére équation en imposant arbitrairement A, = 0. La condition 0A,/0x = B nous permet

alors d’écrire A, = Bx. On obtient ainsi une premiére possibilité, appelée jauge de Landau, avec

0
AP =| Bz . (6.21)
0

Si 'on préfére que A, et A, jouent des roles similaires, on peut supposer que les deux dérivées
0A, /0y et 0A,/0x sont opposées. On obtient alors 204, /0x = B, soit Ay, = Bx/2 et A, = —By/2,

ce qui nous donne la jauge symétrique

—By/2
A(P) =| Bz/2 . (6.22)
0

On peut vérifier immédiatement que le rotationnel de ces deux choix de potentiel vecteur nous
redonne bien le champ magnétique considéré. On peut également vérifier que ’on passe de la jauge
symétrique a la jauge de Landau par le changement de jauge associé a la fonction x(7) = Bxy/2.
Il existe naturellement une infinité de jauges possibles pour décrire ce champ magnétique, mais les
deux jauges explicitées ci-dessus sont les plus fréquemment utilisées.
Concernant la jauge symétrique, remarquons qu’elle peut se mettre sous la forme
—By/2 1

0
A(7) = | Bx/2 =50 x
0 B

BxT. (6.23)

N 8
N | —

L’axe z ne jouant pas de réle particulier, on pourra utiliser ’expression Bx T /2 quelle que soit la

direction prise par le champ magnétique. De maniére générale, la jauge symétrique revient donc a
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écrire le potentiel vecteur associé & un champ magnétique uniforme sous la forme

AP = -BxT. (6.24)

NN

6.2 Hamiltonien en présence d’un champ magnétique

Comme annoncé plus haut, nous allons nous contenter d’admettre le résultat de la mécanique
lagrangienne, qui fait intervenir le potentiel vecteur dans I’hamiltonien d’une particule chargée

placée dans un champ magnétique. L’hamiltonien classique s’écrit ainsi

g PmaAnD)? V(7 t). (6.25)

La transposition & la mécanique quantique est immédiate.

L’hamiltonien d’une particule chargée de charge g et de masse m placée dans un
champ magnétique dérivant du potentiel vecteur ff(f', t) s’écrit
y_ (P—qA(R))?

H=——"7"—"" ) 2
o V() (6.26)

Dans le cas particulier ou 1’énergie potentielle résulte uniquement de I’application
d’un potentiel électrique U(7,t), on pourra écrire V(7,t) = qU (7, t) et

i= MW L U D). (6.27)

Dans la suite de ce chapitre, nous allons vérifier que cette proposition donne lieu a des prédictions

théoriques vraisemblables et conformes a l’expérience.

6.2.1 Impulsion et quantité de mouvement

Une premiére conséquence de la forme prise par ’hamiltonien est que nous ne pourrons plus
considérer impulsion et quantité de mouvement comme une seule et méme grandeur physique. Il
nous faut donc revenir en détail sur les définitions de ces deux quantités. D’aprés ce que nous avons
vu au chapitre 2, I'impulsion 1%’ est définie de maniére générale comme le générateur infinitésimal des
translations. Dans le cas d’une particule sans spin décrite par la fonction d’onde 1 (7), rappelons

que cette définition peut s’écrire
L = .
U7 = da) = Y(7) — () - da. (6.28)

Comme on a par ailleurs (77 — dd) = (7)) — V) - dd@, on retrouve Iexpression bien connue de
I’observable impulsion sous forme de 'opérateur différentiel
h -

p==V. (6.29)
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Les relations de commutation habituelles, [#,p,] = [9,Dy] = [2,D.] = ih, s’en déduisent immédia-
tement. Intéressons nous maintenant & la quantité de mouvement mu, que nous avions jusqu’ici
implicitement supposée étre égale & I'impulsion p. L’observable vitesse v peut étre définie de sorte
que la valeur moyenne de la vitesse soit égale & la dérivée par rapport au temps de la position

moyenne de la particule. Pour tout état [¢(t)), on doit donc avoir

(WO ()

A, d
()] §lp(0) = S (6.30)
ce qui nous donne, par exemple pour la premiére composante cartésienne, la relation
A d (p@)| 2[4 (1))
()] 0g |9(t)) = : (6.31)

dt

En exprimant le membre de droite de ’égalité ci-dessus a I'aide du théoréme d’Ehrenfest généralisé

(éq. 1.72), on peut en déduire

1

W) 0z [¥(t)) = — (¥(t)] [, H][9(1)) - (6.32)

Cette relation étant vérifiée pour tout état |¢(t)), et pour chacune des trois composantes cartésiennes

de la vitesse, on en déduit les relations

qui peuvent étre considérées comme la définition de I'observable vitesse. Bien entendu, si nous
utilisons 1'éq. 6.2 pour écrire I'hamiltonien, alors on a [z, H] = ifip, /m (voir exercice C.4), de sorte
que l'on retrouve 0, = p,/m et donc p, = mo,. Mais la situation sera différente pour ’hamiltonien

donné par I'éq. 6.26. On a alors

8, H] = [, (e — 0Ae(P))] (6.34)
= o (180 — 04PN — 04() + (B — 1A e — 4 A7) (6.35)
- %(ﬁ”f = 44:(7), (6.36)

ou 'on a utilisé le fait que & commute avec toute fonction de 7. L’éq. 6.33 nous permet d’en déduire

Uy = (Pe — qA4(7))/m, soit, en étendant ce résultat aux autres composantes cartésiennes,

0= ZLA(T) (6.37)
m
L’hamiltonien donné par 1’éq. 6.26 peut alors s’écrire
1, .
H = -—mv* + V(7), (6.38)

2

ou l'on reconnait tout simplement la somme de I’énergie cinétique et de ’énergie potentielle. Fina-

lement, ce qui change en présence d'un champ magnétique n’est pas tant la forme de I’hamiltonien
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(s'il est exprimé a l'aide de la vitesse) que le fait qu’il nous faut maintenant distinguer impulsion et

quantité de mouvement, ces deux quantités étant désormais reliées par la relation

~
=

P=mi+ qA(Ft). (6.39)
Ces deux grandeurs ne différant que par une fonction de la position, on peut en déduire que les
relations de commutation de la position avec la quantité de mouvement seront les mémes que les

relations de commutation de la position avec 'impulsion. On en déduit
[, miy] = [§, md,] = [2,mb,] = ikl (6.40)

Remarquons enfin que chaque composante cartésienne de la vitesse dépend a la fois de I'impulsion
et de la position, par I'intermédiaire de la dépendance spatiale du potentiel vecteur. On peut donc
s’attendre a ce que les composantes cartésiennes de la vitesse (ou de la quantité de mouvement) ne

commutent pas toujours entre elles.

6.2.2 Force de Lorentz

Considérons le cas d’une particule placée dans un champ magnétique homogéne orienté selon
l'axe z, comme donné par 1'éq. 6.18, et choisissons la jauge de Landau pour écrire le potentiel
vecteur, ce qui correspond & I’éq. 6.21. A 'aide de 1’éq. 6.37, on peut en déduire 'expression des

composantes cartésiennes de la vitesse,

by = ]Z; N (6.41)
. — ¢qBz#
by = }jqu (6.42)
0, = % (6.43)
Les composantes cartésiennes de p’ commutent évidemment entre elles, donc [v,, v.] = [vy, V] = 0.
Par contre, »
] = 5 ([ o] — 0Bl 1) = " (6.44)

Comme annoncé plus haut, on constate que certaines composantes cartésiennes de la vitesse (ici
Uy et 0,) ne commutent pas entre elles. A partir de ces relations de commutation, nous allons
pouvoir utiliser le théoréme d’Ehrenfest généralisé pour déterminer 1’évolution temporelle de la
valeur moyenne de la vitesse. Ecrivons pour cela ’hamiltonien H = K + V comme la somme de

énergie cinétique K et de 'énergie potentielle V, avec K = (1/2)md? et V= qU(%). On a

1thqB

. I 0 9 o . P S PO .
[0z, K] = Qm[vm 0y + U; +02) = oM ([0, Dyl Oy + Oy[On, 0y]) = m Y (6.45)
“ 1 ihqB
P PN . . . PN ? .
[0y, K] = im[vy’ Ug + U; + Ug] = 5m([by, 0a]0z + 03[0y, 0]) = — :’Il Vg (6.46)
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Enfin, [0,, K] = 0 car 0, commute avec toutes les composantes cartésiennes de la vitesse. Par
ailleurs,

N 1 A ~ 1 - qhoU -

A:mvzi[(Ax_ Az —»)’Vi|:7AZ’V:_77 6.47

00, V) = = [ (2 — aa(7) —[p,, V] = - L2 ) (647

ot I'on a utilisé la relation [p, V()] = —ihdV/dz démontrée lors de I'exercice C.2. On obtiendrait
de méme - 5 80

[6,, V] = —i%a—y(%) et [0, V) = =i = (7). (6.48)

Le théoréme d’Ehrenfest généralisé, d(A)/dt = —(i/h) (4 (t)|[A, H]|1(t)), nous permet alors d’écrire

d{vz) _ ¢B q /OU
_4B, \_ a4 /oU 4
dt m (o) m \ Ox (6.49)
d(vy) qB qg /oU
_ B,y a /U 6.50
dt m (V) m \ 0y ( )
d(vz) q /oU
__a/oU 51
dt m < 0z > (6.51)
On obtient donc 04
U . o o
m=Ch = q(e) x B—g <VU(F)> . (6.52)
Dans le cas ot le champ électrique E(7) = —VU () est lui aussi uniforme, on retrouve exactement

I’expression de la force de Lorentz pour la valeur moyenne de la vitesse,

d(7)

m=t =g (E +(7) x é) . (6.53)

On peut donc en conclure que 1’éq. 6.27 constitue un choix raisonnable pour I’hamiltonien d’une

particule chargée dans un champ magnétique.

6.2.3 Moment magnétique orbital

Considérons & nouveau le probléme d’une particule chargée placée dans un champ magnétique

uniforme B et développons le carré de la quantité de mouvement,

A —

(0= ¢A(F))* = 0* = qA(F) - p— ap- A(F) + A, (6.54)

=

Nous choisissons ici la jauge symétrique, ff(f’) = Bx 7/2 (éq. 6.24), ce qui nous permettra d’expliciter

facilement le terme en A - ﬁ On obtient

- A ~ 1 /- ~
A(F)ﬁ:i(BxF)-ﬁ:

=p

(

ot nous avons utilisé I'invariance du produit mixte (Z x ¥) - @ par permutation circulaire. Nous

X ﬁ) B (6.55)

N | —

voyons ainsi apparaitre le moment cinétique orbital L = 7 x p, de sorte que 1'on peut écrire

&

AF) - p=-L-B. (6.56)

N | —
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Un calcul similaire aboutit au méme résultat pour le terme ﬁ . /Y, ce qui n’est pas surprenant car
d’aprés 'exercice C.2, ﬁ’ A- [fﬁ’: —iAVA =0 (pour la jauge que nous avons choisie). L’éq. 6.26
devient donc

H = Hy+ Wy + W, (6.57)

ot Hy est 'hamiltonien en I’absence de champ magnétique, et

. AP -p Lo o

P L\ Gl AV B 0 S 3 (6.58)
m 2m

2 q2 T/5\2

Le terme W, est appelé terme paramagnétique |2| et correspond a I’énergie du moment magnétique
orbital i = (q/ 2m)E placé dans le champ B. Cette expression est en parfait accord avec le modéle

classique de magnétisme atomique traité en PHY3X061 (chapitre 7).

Le terme W est appelé terme diamagnétique. 11 s’interpréte comme 1’énergie dans le champ B
d’un moment magnétique lui-méme induit par le champ magnétique, ce qui explique la variation
quadratique de Wy avec le champ magnétique. On peut vérifier & 1'aide d’un simple calcul d’ordre
de grandeur que le diamagnétisme atomique est trés inférieur & la contribution paramagnétique
tant que le champ magnétique reste modéré (i.e. inférieur au Tesla) [2], de sorte que ce terme sera

souvent négligé.

6.3 Invariance de jauge

Meéme si I’hamiltonien exprimé par 1’éq. 6.27 parvient a rendre parfaitement compte de la force
de Lorentz et du magnétisme orbital, il n’en garde pas moins une part de mystére car il s’exprime non
pas en fonction des champs mais des potentiels. Or ceux-ci, définis & un changement de jauge prés
(eq. 6.16 et 6.17), ne sont pas uniques. Pour clarifier cette situation a priori étonnante, considérons
un changement de jauge associé a la fonction x(7), supposée dans un premier temps indépendante
du temps. Appelons alors H et H' les hamiltoniens associés respectivement a E(F, t) et A (7, t),
correspondant au potentiel vecteur avant et aprés le changement de jauge. Rappelons que, d’aprés
I’éq. 6.17, le potentiel électrique n’est pas affecté pour une fonction x(7) indépendante du temps. Bien
entendu, si 'on considére une solution [1(t)) de ’équation de Schrédinger associée a ’hamiltonien
H, il n’y a aucune raison pour que |¢)(t)) soit aussi solution de 'équation de Schrédinger associée au
nouvel hamiltonien H'. I faut donc en conclure que, lors d’'un changement de jauge, il est également
nécessaire de changer le ket décrivant I’état du systéme. Introduisons pour cela la transformation
unitaire 7' définie par T'[¢)) = o), avec

. X (7 "
Y (F,t) = exp <quh()> W(T,t). (6.60)
Cette expression a été choisie pour qu'un terme supplémentaire, proportionnel & ﬁx, apparaisse

lorsqu’on calcule le gradient de la fonction d’onde, de fagon & compenser le terme qui vient s’ajouter

a I'impulsion dans ’hamiltonien lors du changement de jauge. Pour le vérifier, évaluons ’action de
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l'opérateur impulsion sur la nouvelle fonction d’onde /(7 t) :

Y (7 t) = §6exp <iqxéf)> (7, t) = exp (iqx<f>> (ﬁ+ qVX) (7, b). (6.61)

On en déduit

— exp (iQX(F)> (ﬁ— gA(F t)) (7, 1). (6.62)

En appliquant a nouveau l’opérateur ﬁ —qA (1%, t), on obtient

. RN . A N2
(-0 G:0)" w5 = exp (17 (- d0) (. (6.63)
Comme le potentiel électrique U (7, t) est inchangé, on peut en déduire

H' exp (z qxﬁ) W(F,t) = exp <2 q"ﬁ) (7, 1) (6.64)

ou encore H'T = TH. Remarquons au passage que pour un hamiltonien H indépendant du temps
dont la base propre est {|p,)}, alors les états T]cpn> seront vecteurs propres de H’ pour les mémes

énergies propres. L’équation de Schrodinger pour [¢(t)) s’écrit

Ldly)
e T

ind¥) _ de’d? _ PH()) = BT|() = B (1), (6.65)
On en conclut que [1/(t)) est bien solution d’une équation de Schrodinger associée a 'hamiltonien
H'. Le changement de jauge ne pose donc pas de probléme, & condition de considérer qu’il affecte
non seulement ’hamiltonien mais aussi le ket décrivant I'état du systéme, par le biais de la trans-
formation unitaire 7' introduite plus haut. Il nous suffit maintenant de vérifier que les grandeurs
physiques associées a cette nouvelle fonction d’onde ne différent pas de celles associées a la fonction
d’onde initiale. On a évidemment [¢)/(7,t)[? = [1(7,t)|? : la densité de probabilité de présence est
indépendante du choix de jauge. Par ailleurs, en multipliant a gauche 1’éq. 6.62 par ¢'*(r,t), on
obtient

W) (B aA ) /(7 0) = v (1) (5= gAG D)) () (6.66)
soit, aprés intégration sur les coordonnées spatiales,

(W0 [ = (p[v]h). (6.67)

La quantité de mouvement m@ est bien une grandeur physique mesurable, indépendante du choix

de jauge. Il n’en va pas de méme pour I'impulsion. En effet,

WP = (1) —a (V) ) (6.68)
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La valeur moyenne de I'impulsion dépend ainsi du choix de jauge. L’impulsion, n’étant pas invariante
de jauge, ne peut donc pas étre considérée comme une grandeur physique mesurable.
L’exercice C.17 permet d’étendre ces résultats au cas d’un changement de jauge dépendant du

temps, lors duquel potentiel vecteur et potentiel électrique sont tous deux affectés.

6.4 L’effet Aharonov-Bohm

Il est bien connu en électromagnétisme que le potentiel vecteur peut étre non nul méme dans
des régions de I'espace ol le champ magnétique est rigoureusement nul. On peut s’en convaincre a
I’aide du théoréme de Stokes, qui relie I'intégrale d’un champ de vecteurs le long d'un chemin fermé

C au flux du rotationnel & travers la surface 3 délimitée par ce méme chemin fermé, soit
%/T(F) ar =[] (¥ x @) -d§ = ([ B aS. (6.69)
¢ ) >

Plagons par exemple un solénoide a l'intérieur du chemin C comme représenté Fig. 6.1. Le flux du
champ magnétique & travers la surface 3 est évidemment non nul, ce qui implique que le potentiel
vecteur E(F) le long du chemin C soit lui aussi non nul. Pour autant, ce chemin est entiérement

situé a extérieur du solénoide, dans une région ou le champ magnétique est égal & zéro.

FIGURE 6.1 — Selon le théoréeme de Stokes, la circulation du potentiel vecteur
le long du circuit C est égale au flux du champ magnétique o travers la surface
3.

Le fait que le potentiel vecteur ff(F) apparaisse directement dans I’hamiltonien signifie-t-il qu’une
particule chargée peut étre affectée par la présence d’'un champ magnétique, sans jamais pénétrer
dans les régions de I'espace o celui-ci est non nul ? Aussi étrange que cela puisse paraitre, la réponse
a cette question est positive. Aprés des travaux précurseurs passés relativement inapergus [10], ¢’est
Aharonov et Bohm qui ont attiré attention de la communauté scientifique sur I'importance de
cette question, dans un article publié en 1959 et intitulé Significance of electromagnetic potentials

in the quantum theory [11].

6.4.1 Principe de ’expérience

La Fig. 6.2 représente le montage expérimental permettant de révéler cet effet Aharonov-Bohm,
qui fut effectivement clairement confirmé par I'expérience |12, 13]. Le dispositif s’appuie sur un in-
terférométre dans lequel un faisceau d’électrons d’énergie E peut suivre deux chemins possibles pour

atteindre un écran, sur lequel sont observées des franges d’Young. Comme dans tout interférométre
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& deux ondes, les franges brillantes correspondent aux points de I’écran pour lesquels la différence
de distance parcourue entre les deux chemins est un multiple de la longueur d’onde de de Broglie,
A=h/ V2mE, ce qui donne lieu & des interférences constructives. A I'inverse, les franges sombres
correspondent aux points de ’écran pour lesquels les deux chemins différent d’un multiple impair

de /2, de sorte que les deux faisceaux sont en opposition de phase et interférent destructivement.

2
5,

FIGURE 6.2 — Montage expérimental permettant d’observer effet Aharonov-
Bohm. En présence du champ magnétique, les franges d’Young observées sur
l’écran sont déphasées d’une quantité dp proportionnelle au flux du champ ma-
gnétique o travers la surface 3.

On introduit alors un solénoide au milieu de l'interférométre, afin d’appliquer un champ ma-
gnétique qui reste confiné dans une zone de l'espace ol la probabilité de présence des électrons
est rigoureusement nulle. Malgré cette derniére caractéristique, on observe un décalage des franges
proportionnel au champ magnétique appliqué a I'intérieur du solénoide. Cet effet extraordinaire est
de toute évidence incompréhensible dans le cadre de la mécanique classique, puisque les électrons
ne sont soumis & aucun moment a la force de Lorentz évoquée plus haut. D’un point de vue quan-
tique, l'effet Aharonov-Bohm confirme que la grandeur devant intervenir dans I’hamiltonien n’est
certainement pas le champ magnétique, mais bien une grandeur comme le potentiel vecteur qui peut

prendre des valeurs non nulles méme dans des régions de ’espace ou le champ magnétique est nul.

6.4.2 Interprétation

Revenons dans un premier temps sur I'expérience d’Young, en 'absence de champ magnétique.
L’hamiltonien du systéme est alors noté

. P> .
Ho = — + V(7). (6.70)

- 2m
Considérons un état propre [1)1) d’énergie E, choisi tel que la fonction d’onde associée, 11 (7), prenne
des valeurs non nulles uniquement dans la région appelée (1) sur la Fig. 6.3, le long du chemin abd.
On pourrait obtenir une telle situation en injectant le faisceau d’électrons le long de la direction
ab. Ce faisceau est ensuite dévié par l'interférométre dans la direction du segment bd, soit a l'aide
d’un dispositif électrostatique non représenté (et intégré au terme d’énergie potentielle V (7)), soit &
I’aide d’une fente placée au point b diffractant les électrons notamment vers le point d. Considérons

maintenant un second état propre |1¢9) de méme énergie, mais associé & une fonction d’onde o (7
b
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prenant des valeurs non nulles uniquement dans la région (2). Cette seconde solution correspond au
faisceau se propageant le long du chemin acd. La superposition linéaire ¢ (7) o 11 (7) + 12(7) est
également fonction propre de I:IO, et correspond & la solution qui nous intéresse, lorsque les deux

bras de l'interférométre sont utilisés simultanément. La densité de probabilité associée s’écrit

()| o [1(F) + o (P (6.71)
= [1(P)1? + [2(P) | + 201 (Pa(7)] cos(02() — 01(7)) (6.72)

ot 0, (7) est la phase de la fonction d’onde v, (7). Le dernier terme de 1’éq. 6.72 est responsable du
phénomeéne d’interférence entre les deux ondes, qui produit une variation sinusoidale de la densité
de probabilité sur I’écran le long de la coordonnée transverse x. En s’appuyant sur 'analogie avec
I'optique, on peut montrer que la variation de ce terme d’interférence en fonction de x est & peu prés
proportionnelle a cos Ak,z, ot Ak, = (pa; — p1z)/h correspond a la différence de vecteur d’onde

transverse entre les ondes venant des régions (1) et (2).

Faisceau
d’électrons

FIGURE 6.3 — Vue de dessus du montage expérimental, avec une représentation
des deuzr chemins abd et acd menant de la source a l’écran.

Appliquons maintenant le champ magnétique B a lintérieur du solénoide, et appelons /T(ff") le
potentiel vecteur correspondant, défini dans tout I’espace. L’hamiltonien s’écrit maintenant
o (P = qA(r))?

H="5— V(7). (6.73)

Considérons & nouveau la situation ou la fonction d’onde est entiérement confinée dans 'une des
deux zones (1) ou (2). Dans la totalité de chacune de ces zones («), le champ magnétique est nul,
ce qui signifie que le potentiel vecteur y est irrotationnel. Pour tout point 7 de la zone («), on
peut donc écrire le potentiel vecteur comme le gradient d’une fonction dépendant de 7, et poser

A(7) = Vxa(7). Un choix possible pour la fonction yq(7) est par exemple

,r_,‘
Xa(P) = [ AG")-di, (6.74)
T,
avec la condition que l'intégrale — prenant son origine en a — est calculée le long d’un chemin
entiérement compris dans la zone (). En vertu du théoréme de Stokes, cette intégrale a bien un
sens puisqu’elle ne dépend pas du chemin suivi tant que ce dernier reste entiérement contenu dans

la zone («). On pourra s’en convaincre en écrivant la différence entre deux telles intégrales comme
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la circulation du potentiel vecteur le long d’un chemin fermé entiérement confiné dans la zone (o).
A linverse, pour un point 7 situé au voisinage du point d, dans une zone commune aux régions (1)

et (2), les fonctions x1(7) et x2(7) sont clairement différentes. On a en effet

T 7
el —a@= [ AF)-dr - / A - dr' = 7{ A - d (6.75)
7,2 Ta,l C
ou C est un circuit fermé similaire au chemin acdba. A 'aide du théoréme de Stokes, on peut en
déduire

() = xa(7) = [ B - dS = @. (6.76)
by

La différence entre ces deux fonctions est donc égale au flux du champ magnétique a travers la
surface ¥ délimitée par le circuit C, ce qui se raméne tout simplement au flux total du champ
magnétique, noté @, puisque le champ magnétique est nul a 'extérieur du solénoide.

Il est possible de décrire trés simplement l’effet du champ magnétique sur la fonction propre &
l’aide d’une transformation de jauge limitée a I'intérieur de la zone («) [14]. En effet, en nous limitant
a une telle zone, nous pouvons considérer que les hamiltoniens Hy et H décrivent le méme probléme,
associé a un champ magnétique nul mais avec deux jauges différentes, la premiére correspondant
& un potentiel vecteur nul et la seconde au potentiel vecteur /T(F) = ﬁxa(F). D’aprés 1’éq. 6.60,
connaissant la fonction propre 1, (7) de ’hamiltonien ﬁo, on peut directement écrire la fonction
propre 1/, () de 'hamiltonien H & I’aide de la transformation unitaire associée & la fonction yq(7),

ce qui nous donne .
0l = exp (el ) val) 6.7

Le terme donnant lieu aux interférences en présence du champ magnétique pourra alors s’écrire

70 = exo (=) i) exp (el ) ) (6.78)
—exp (0l ~ () v (6.79)
—exp (i) vi0al) (6.80)

ol nous avons utilisé ’éq. 6.76. En plus de la phase dépendant de x intervenant dans ’expérience

d’Young habituelle, il existe donc un déphasage supplémentaire prenant la valeur

(6.81)

ou ® est le flux total du champ magnétique. Les franges d’Young donneront ainsi un signal en
cos(Akyx + d¢p), avec un déphasage dp directement proportionnel au flux du champ magnétique.
En conclusion, on observe un décalage des franges d’Young bien que les électrons ne soient a
aucun moment directement soumis au champ magnétique. Remarquons que la raison pour laquelle
les transformations de jauge associées aux régions (1) et (2) sont distinctes est directement liée a la
topologie du probléme, caractérisée par la zone occupée par le solénoide au milieu de 'interférométre.

L’effet Aharonov-Bohm rentre ainsi dans le cadre plus général des phases dites géométriques [15, 16].



Chapitre 7

De I’addition de deux spins 1/2 aux

horloges atomiques

Avant d’entreprendre la lecture de ce chapitre, il est recommandé d’avoir une bonne connaissance
des propriétés d’une particule de spin 1/2 (voir PHY3X061, chapitre 7).

De méme que I'impulsion d’un systéme composite est la somme des impulsions des différents
constituants du systéme, le moment cinétique est lui aussi égal a la somme des moments cinétiques
des différentes parties du systéme. La démonstration est similaire & celle qui a été donnée en 2.4.4
pour 'impulsion. Considérons ainsi un systéme composite constitué de N sous-systémes, le systéme n
étant décrit a Paide d’un espace de Hilbert £ . Dans l'espace produit tensoriel EN@EPD . . .@EW)
I'opérateur associé & une rotation définie par le vecteur @ s’obtient en effet en écrivant la composition

des rotations portant sur chaque sous-systéme n, ce qui nous donne

j - o—iJ1:G/h=iTo-d/h . —iIn-a/h _ ,~iJ-&/h (7.1)

ou l'on a utilisé le fait que pour n # m les opérateurs J, et J,,, commutent entre eux (car ils agissent

dans des espaces différents). On a également introduit le moment cinétique total

~ N ~
=> Jn. (7.2)

n=1

Bien entendu, comme J est le générateur infinitésimal des rotatlons du systéme complet, on sait

qu’il obéit aux relations de commutation habituelles, soit J X J ZFLJ . On peut également le vérifier

explicitement :
TIx J= T X Jom (7.3)
n,m
=Y T X Tt > (In X T A T X ). (7.4)
n n<m
Sachant que [j J, m] = 0 pour n # m, on peut écrire comme dans un produit vectoriel classique
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jm X fn = —j?; X fm,Ace qt}i permet d’éliminer la somme sur n <m (llans I’expression ci-dessus.
Sachant en outre que J_;L X J_;l = ihj;“ on retrouve bien la relation J x J = ihj.

Dans le cas oul le systéme est invariant par rotation, on sait que ’on pourra diagonaliser dans
une méme base les observables H , J? et J,. Ce sont donc bien les états propres du moment cinétique
total qui vont nous intéresser dans une telle situation. La démarche consistant & savoir déterminer
les valeurs propres admissibles du moment cinétique total lorsqu’on connait celles de ses constituants
individuels est appelée addition des moments cinétiques. Dans ce chapitre, nous allons développer
cette démarche dans le cas de deux particules de spin 1/2, avant d’appliquer les résultats obtenus

au niveau fondamental de 'atome d’hydrogéne.

7.1 Addition de deux spins 1/2

Soit deux particules (a) et (b) dont nous ne considérons que les degrés de liberté de spin. L’espace
de Hilbert &y = £ & &Y

spin spin €St donc un espace de dimension 2 x 2 = 4. On appelle ga et S"b les

observables associées au spin de chacune des deux particules. On décrit le systéme dans la base
tensorielle {|++),[+—),|—+),|——)}, construite a I'aide des vecteurs propres des observables S,.

et sz. Le moment cinétique total s’écrit alors

~ ~
= —

S=35,+85,. (7.5)

Comme montré plus haut, il s’agit d’une observable de type moment cinétique, obéissant a la relation
§ X § = ih§ . Nous savons donc d’aprés les résultats du chapitre 4 que les valeurs propres de S2
et S, s’écrivent respectivement s(s + 1)A? et mh, ol s et m sont des nombres a priori entiers ou
demi-entiers. Cherchons maintenant & déterminer plus précisément les valeurs effectivement prises
par s et m.

Les valeurs propres les plus faciles a déterminer sont évidemment celles de l'observable S, =

Sas + Sy, car la base tensorielle est déja une base propre de cette observable. On a en effet

S |H+) = Saz [4) ® |+) + [+) ® Sp [+) = g ) ®[+) + [+ ® g [+) = B[ ++) (7.6)
5. [+) = 80: [ @ 1) + 1) @ Sie |- = D11 @ |) + 1) © S |) =0 (77)
S lt) = Sux |V @ 1) + 1) © 8 [9) = S [V @ )+ @ 2[4 =0 (78)
Sl) = 8ux |V @ ) + ) © 8 |y = S @)+ ) e o )= —hl-)  (79)

On en déduit que les valeurs propres de S, sont bien de la forme mh, olt m peut prendre les valeurs
—1, 0 ou 1. La valeur propre associée & m = 1 est non dégénérée, le vecteur propre correspondant
étant I’état |[++). De méme, la valeur propre associée & m = —1 est non dégénérée, le vecteur
propre correspondant étant 1’état |——). Quant a l'espace propre associée a la valeur propre 0, il est
de dimension 2 et est engendré par les états |[+—) et |—+). Enfin, comme nous savons que s —m
est entier, nous pouvons en déduire que s sera un nombre entier.

Considérons un état propre commun de 52 et S, associé aux valeurs propres s(s + 1)h% et mh.

Cela signifie que 'espace propre &gy, associé a ce couple (s, m) est de dimension au moins égale & 1.
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Comme nous avons vu au chapitre 4 que les espaces propres associés aux 2s + 1 valeurs possibles
de m sont de méme dimension, cela signifie que 'espace propre de 52 associé a la valeur propre
s(s 4+ 1)h? est de dimension au moins égale & 2s + 1. Cette valeur est nécessairement inférieure ou
égale a la dimension totale de I'espace, soit 2s + 1 < 4. On en déduit que s < 3/2, soit s = 0 ou
s = 1 puisque s est entier. La seule possibilité pour I'état |[++) est donc d’appartenir a Iespace
&1 (soit s = m = 1). La valeur propre de SZ associée & m = 1 étant non dégénérée, on peut en
déduire que &1 est un espace de dimension 1. Il en va de méme pour &9 et & _1, puisque nous
savons que la dimension de I'espace & ,, ne dépend que de s. Il nous manque un quatriéme vecteur
propre commun pour engendrer notre espace de dimension 4. Ce dernier correspond nécessairement
a s = 0, qui est la seule autre valeur possible pour s. Nous en déduisons que ’espace & o est lui aussi
de dimension 1. Les 4 espaces propres communs étant de dimension 1, nous pouvons en conclure
que S2 et S, forment un ECOC. Il ne nous reste plus qu’a construire explicitement les 4 vecteurs
propres communs aux deux observables 52 et S, qui seront notés |s, m), avec s = 1 (m = —1,0,1)

et s =0 (et m = 0). Pour cela, considérons I'observable
N 2 2N\2 . A 55
82 = (Su+S)) =52+ 82 +28,- S (7.10)

ainsi que les observables 5’+ et 5'_, définies par

A~

S’i =S5, + iS'y = So+ + Sp+. (7.11)

En reformulant I’'éq. 4.15 & 'aide des notations de ce chapitre, nous pouvons écrire

S 8, =5%2-8%2_ns, (7.12)

soit
5?2 =8_8, 4+ 82+ hS.. (7.13)

Or
St [H4) = Sat [4) @ |+) + [4+) ® Spy [+) = 0. (7.14)

Sachant en outre que |4+4) est un vecteur propre de S, pour la valeur propre h, I’éq. 7.13 nous

permet d’écrire
S? | 4+) = 212 |[+4), (7.15)

ce qui confirme que 'état |[++) est bien un vecteur propre commun aux deux observables 52 et
S, pour les valeurs propres s(s 4+ 1)A? et mh, avec s = m = 1. L’espace propre commun étant de
dimension 1, il est légitime de noter ce vecteur |s = 1,m = 1), ou plus simplement |1, 1), puisqu’il
est entiérement déterminé (& une phase prés) par la donnée des deux valeurs propres. Nous avons
ainsi la relation

1,1) =[++). (7.16)

On peut ensuite construire les vecteurs propres de la base standard & ’aide de la relation de récur-
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rence donnée par 1’éq. 4.21, qui nous donne ici

S_|s,m) =+/s(s+1) —m(m—1)k|s,m —1). (7.17)

Nous allons appliquer cette expression pour s = 1 et m = 1 puis m = 0, de sorte que la quantité

s(s+ 1) — m(m — 1) sera toujours égale a 2. On en déduit

LS L (¢ ; [+=) + =+
1.0)= =8 1) = o (Sa- 19y @ 1)+ 1+) @ 5y |+)) = R (7.18)
De méme,
Lol =L g Loy= LS-MeDtes b _ (7.19)

V2h V2h V2

Nous avons ainsi construit les trois vecteurs |[4++), (|[+—) + |—+))/v2,|——) de la base standard
engendrant le sous-espace propre de 52 pour la valeur propre 2A2. Le vecteur orthogonal a ce sous-
espace, (|+—)—|—+))/v/2, est nécessairement vecteur propre de 52 pour s = 0, ce que nous pouvons

facilement vérifier. En effet

g o)== _ @S =) — Sar [2) @ 4) _ hil++) — hl++)
R V2 V2

= 0. (7.20)

Par ailleurs, I'état (|[+—) — |—+))/v/2 étant vecteur propre de S, pour la valeur propre 0, 'éq. 7.13

nous permet d’écrire

) = 1=+)

5 =0 (7.21)

Tt (508, 4 824 08.)
V2
L’état que nous avons identifié est donc bien un vecteur propre de 52 pour la valeur propre 0, que

I'on notera |0,0). On peut finalement résumer 'addition de deux spins 1/2 de la maniére suivante.

Soit § = §a 4 §b le moment cinétique résultant de ’addition de deux spins 1/2. Les
valeurs propres de 1’observable 52 sont de la forme s(s+1)h? avec s =0 ou s = 1.
On appelle base couplée 'ensemble des vecteurs propres communs de 52 et S, qui

s’écrivent dans la base tensorielle selon les expressions

ey T =)
|0,0) =|s=0,m =0) = 7 (7.22)
1,1 =|s=1,m=1) = [++) (7.23)
ey T =)
11,0) =|s=1,m=0) = 5 (7.24)
1,-1)=|s=1,m=-1) =|—-) (7.25)

L’état |0,0) est appelé état singulet tandis que les trois états correspondant & s = 1

sont appelés états triplets.
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7.2 Addition de deux moments cinétiques quelconques

La démarche que nous venons de mettre en ocuvre pour ’addition de deux spins 1/2 peut
étre généralisée au cas de deux moments cinétiques arbitraires, J:i et fg, agissant respectivement
dans les espaces EW et £@) Les opérateurs j12, jlz, j22 et jzz commutant entre eux, on peut alors
construire une base dite tensorielle, {|n1, j1,m1)®|ne, jo, ma) }, engendrant I’espace produit tensoriel
En = EW @ £?) et associée aux valeurs propres respectives ji (71 + 1)i2, mih, j2(jo + 1)A2 et mah
pour les quatre opérateurs j12 , j127 j22 et jgz. Ces derniers ne constituant pas obligatoirement un

ECOC, les nombres ni et ng sont a priori nécessaires.

Considérons maintenant le moment cinétique total, j = J:i + Jié Avant de diagonaliser J? et jz,
remarquons que ces deux opérateurs commutent avec j12 et j22 En effet, j12 commute d’une part avec
toutes les composantes cartésiennes de jl (voir 4.1.3) et d’autre part avec toutes les composantes
cartésiennes de fg (qui agit dans un autre espace). L’observable j12 commute donc avec toutes les
composantes cartésiennes de j = fl + jg Il en va évidemment de méme pour ’observable j22 Les 4
observables j12, j22, J? et J, commutent donc entre elles et peuvent étre diagonalisées simultanément.

On obtient ainsi une base couplée que I’on peut noter {|n1, na, j1, j2, j, m) }, et obéissant aux relations

7.26
7.27
7.28
7.29

j12 ’nlanZajlvj%j? = jl(jl + 1)52 ‘n17n27j17j2aja m>

j22 ’nlan2aj17j27j7 = j2(j2 + 1)52 ‘n17n27j17j2aja m>

j2 ’nlan2aj17j27j7 = ](] + 1)52 |n1’n27j17j23j7m>

T [n1, 2, g1, ja, 4, m) = mhlny, ng, ji, ja, j,m) (7.29)

[’annexe B.13 montre que, pour des valeurs données des nombres j; et jo, on a

Jge{lin—gollin — g2l +1,--- g1+ ja} (7.30)
m€{-j,—j+1,---,j} (7.31)

La démonstration de ce résultat, détaillée dans 'annexe B.13, consiste & partir de I'état de

moment cinétique maximum
In1,n2, 1,42, § = J1 + J2,m = j1 + j2) = |n1, ji,ma = i) @ [n, ja, ma = ja) (7.32)

puis & construire les états |ni,na, j1,J2,J = j1 + jo, m) par action répétée de 'opérateur J_. On
construit alors 'état |ny, na, j1,J2,J = j1 + jo — 1,m = j1 + jo — 1), défini comme le seul état propre
de J, pour la valeur propre m = j; + jo — 1 qui soit orthogonal a 1’état associé a j = j1 + j2 et
m = j1 + j2 — 1. On itére ensuite cette procédure jusqu’a construire tous les états de la base couplée
jusqu’a j = [j1 — jal.

Ce résultat généralise ce que nous avons établi en 7.1 dans le cas de deux spins 1/2, i.e. pour

J1 = j2 = 1/2, ot nous avions effectivement trouvé que s, associé au moment cinétique total, pouvait
prendre les valeurs s =1=1/2+1/2 et s=0=[1/2—-1/2|.
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7.3 Interaction spin-orbite

Lors du traitement de I’atome d’hydrogéne (chapitre 5), nous n’avons pas tenu compte du degré
de liberté de spin de I’électron. La premiére conséquence de la prise en compte du spin est a priori
de multiplier par deux la dégénérescence de tous les niveaux que nous avons identifiés, la portant

ainsi & 2n? pour le niveau d’énergie E,,. On écrira ainsi
Ho [, £,m) ® |£) = Ey [n, £,m) ® |£), (7.33)

ot E,, = —E;/n% Mais il y a plus. En fait, ’hamiltonien Hy ne décrit pas parfaitement le systéme
complet et il faut lui ajouter un terme supplémentaire faisant intervenir explicitement le spin de
I’électron en raison d’effets relativistes que nous avons négligés jusqu’ici. En développant 1’équation
de Dirac (qui généralise I’équation de Schrédinger dans le cas relativiste), on obtient en effet le

terme correctif suivant, venant s’ajouter & Hy :

A 1 14V
Weo = -2
50 2m2e? ¢ dr

—

(LS., (7.34)

ol §e est I’observable décrivant le spin de I'électron et V(r) est le potentiel central liant I’électron au
noyau. Ce terme correctif est appelé interaction spin-orbite car il fait intervenir le produit entre le
spin et le moment cinétique orbital de I’électron. Sans chercher & démontrer I’expression ci-dessus,
ce qui sortirait du cadre non relativiste de ce cours, essayons d’en donner une interprétation au
moins qualitative. Partons d’une vision trés naive dans laquelle 1’électron tourne autour du noyau
selon une trajectoire circulaire. Mais dans le référentiel de 1’électron, c’est au contraire le noyau
qui semble tourner autour de 1’électron. L’électron est ainsi au centre d’une spire de courant, ce
qui résulte en un champ magnétique apparent B proportionnel & la vitesse apparente du noyau,
c’est & dire la vitesse v de I’électron dans le référentiel du noyau. Ce champ magnétique apparent
donnera lieu & une énergie magnétique W = —fi, - B , OU fle = 7656 est le moment magnétique
de I’électron. On peut raffiner un peu cette approche en utilisant la transformation de Lorentz du
champ électromagnétique (voir PHY431). En se plagant dans le référentiel de Iélectron, que 1'on
supposera galiléen et animé d’une vitesse U, ’approximation non relativiste de la transformation de

Lorentz nous donne le champ magnétique

B=-YxE, (7.35)

c2

ot E est le champ électrique dans le référentiel du noyau. Pour une énergie potentielle V (r) =

—qU (r) ne dépendant que de la distance r au noyau, le champ électrique s’écrit

E=-—"—-="""_, 7.36
drr qdrr ( )
On en déduit le champ magnétique
- v 1dV ¥ 1 1dV 1 1dV -
B=——x—-—F—-=——_-—(¢¥ ) = -—1L. 7.37
e gdrr gmec?r dr X mev) gmec? r dr (7.37)
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En utilisant 7. = —¢/me, on en déduit I’énergie d’interaction

L = q = 1 1dV - 1 1dv - 4
W=-ji-B=—8 ——-—L=———-—L-8 7.38
He Me ¢ qmecr dr m2c r dr © (7.38)
ce qui nous redonne & un facteur 2 prés 'expression annoncée plus haut. Ce facteur 2 peut étre
attribué au fait que le référentiel de I’électron n’est évidemment pas un référentiel galiléen, de sorte

que 1’éq.7.35 n’est pas exacte, méme si 'ordre de grandeur reste correct.

Cherchons & évaluer 'ordre de grandeur de Wgp dans le cas de ’atome d’hydrogéne, pour lequel
V(r) = —e*/r et dV/dr = €?/r? ~ €?/a3, oi a; est le rayon de Bohr. Le rapport entre le terme

d’interaction spin-orbite et I’énergie d’ionisation de 'hydrogéne E; (donnée par I'éq. 5.9) s’écrit

alors
W 627)525 2 4 1 2
SO m2c2a3 e e 9 4
E; thaQ mec2a;  h2c2 (137) ( )
eay

ol nous avons utilisé I’éq. 5.7 pour exprimer a; et 1'éq. 5.5 pour faire apparaitre la constante
de structure fine «. Le terme d’interaction spin-orbite, de 'ordre du meV, est donc trés inférieur
aux écarts entre les niveaux d’énergie de Hy, ce qui nous permettra d’utiliser la méthode des

perturbations pour traiter l'effet de Wso.

Une conséquence de la présence du terme spin-orbite dans ’hamiltonien total H= ﬁo + WSO
est que ce dernier ne commute plus avec le moment cinétique orbital i, puisque les composantes
cartésiennes de ﬁ ne commutent pas entre elles. Il nous faut maintenant considérer le moment
cinétique total J=1L+ ge, qui correspond au véritable générateur infinitésimal des rotations du
systéme complet, prenant en compte 1’ensemble des degrés de liberté (externes et de spin). Le carré

du moment cinétique total s’écrit
J?=1%+824+2L-8, (7.40)

ce qui permet d’exprimer le produit scalaire sous la forme

~
=

[.§ = % (ﬁ . 52) . (7.41)

Cette expression met explicitement en évidence le fait que le terme d’interaction spin-orbite commute
avec f, ce qui n’est pas surprenant compte tenu de I'invariance par rotation du systéme. Compte
tenu des résultats énoncés plus haut sur 'addition des moments cinétiques, nous savons que les
valeurs propres de J?2 seront de la forme §(j + 1)A2, avec j = £ 4 1/2. On pourra ainsi aisément

diagonaliser la restriction de Wgp dans les sous-espaces propres de Hy.

Dans le cas de ’hydrogéne, le niveau fondamental 1s de 'hamiltonien H, est doublement dégé-
néré, compte tenu du degré de liberté de spin. Une base de cet espace de dimension 2 peut s’écrire
{]1,0,0) ® |[+),]1,0,0) ® |—)}. Ces deux états, correspondant a ¢ = 0, sont vecteurs propres des
opérateurs L, i}y et L, pour la valeur propre zéro, d’ott l'on peut déduire Wgo 11,0,0) ® |£) = 0.
En d’autres termes, l'interaction spin orbite est sans effet sur ces états qui restent états propres de
'hamiltonien total H = Hy + Wso. 11 nous faudra, prendre en compte le couplage avec le spin du

noyau pour observer une levée de dégénérescence, phénoméne que ’on appelle structure hyperfine.



112 CHAPITRE 7. DE L’ADDITION DE DEUX SPINS 1/2 AUX HORLOGES ATOMIQUES

7.4 Structure hyperfine de ’hydrogéne

Considérons maintenant une application importante de I’addition de deux spins 1/2, avec I’étude
de la structure hyperfine du niveau fondamental de I'atome d’hydrogéne. Pour cela, nous devons
prendre en compte un degré de liberté supplémentaire, & savoir le spin du noyau. Dans le cas
de I'atome d’hydrogeéne, le noyau est un proton qui porte donc un spin 1/2. Ce degré de liberté
supplémentaire, combiné au spin de 1’électron, donnera lieu & une interaction entre les dipodles
magnétiques du proton et de I’électron. L’énergie d’interaction magnétique entre deux tels dipoles
séparés d’une distance r s’écrit

Witr = {22 (e - fip — 30 - 0) 7y 1)) — 22 i -y (7) (7.42)
ol g est la perméabilité magnétique du vide, tandis que fi. et [i, représentent les moments magné-
tiques de I’électron et du proton. Enfin, @ est un vecteur unitaire porté par le vecteur 7 séparant
les deux dipoles. Remarquons la présence du terme de contact proportionnel & la fonction de Dirac
d(7), qu'il est essentiel de conserver en mécanique quantique car la probabilité que I'électron et le
proton se trouvent au méme point est non nulle (dans le cas d’un état de moment cinétique orbital

nul comme 'état fondamental). En termes d’ordre de grandeur, on peut écrire

252
q°h _
Whr ~ o ,ue/;p ~ Lo 3 ~ 10 eV, (7.43)
ay MeMypasy

L’interaction hyperfine, de 'ordre de 10 peV, est donc encore deux ordres de grandeurs plus petite
que l'interaction spin-orbite, qui était elle-méme quatre ordres de grandeurs plus petite que I'écart
entre les niveaux d’énergie de Hy. 11 est donc parfaitement légitime de traiter I'impact de Wyp a
I’aide de la méthode des perturbations, ce que nous allons faire dans le cas du niveau fondamental
d’énergie By = —Ej. Il nous faut donc diagonaliser la restriction de 'observable WH F au sous-espace
de dimension 4 engendré par les états |1,0,0) ® |e: ) ® |p: £). Comme le montre le calcul reporté
en annexe B.12, on obtient alors un opérateur appelé H, agissant dans notre espace de dimension
4, qui est simplement proportionnel au produit scalaire entre les deux observables de spin. On peut
ainsi écrire

. Az 2

H, = ﬁSe =Sy (7.44)
ou A =~ 5.87ueV, ce qui correspond biAen aAl’ord{e de grandeur annoncé plus haut. Considérons
maintenant le moment cinétique total S=25 + gp, qui peut étre considéré comme le générateur
infinitésimal des rotations du systéme si on se limite aux degrés de liberté de spin. En procédant

comme pour l'interaction spin-orbite, on peut écrire

G2 &2, &2 g &

57 =545, +25 - Sp, (7.45)
ce qui nous permet d’écrire le produit scalaire directement a Daide de 52,

$.. 5, = % (52-92-8). (7.46)



7.4. STRUCTURE HYPERFINE DE L’HYDROGENE 113
D’aprés 'éq. 4.24, on a pour un spin 1/2 la relation
§2— g2 = 3p2f 7.47
e = p Ty (7.47)
ce qui permet d’écrire
5 182 3.
H=A|-—=—--1]. 4
(i) o

L’hamiltonien de structure hyperfine s’exprime donc directement en fonction de 1’observable 52,
Nous pouvons ainsi tirer parti de notre travail préalable sur 'addition de deux spins 1/2, la base

couplée constituant a ’évidence une base propre de I’hamiltonien. On peut alors écrire

N 1
Fyfsmy = A (28D _3Y 0oy (7.49)
2 4
ou encore A 3A
Hi|1,m) = 7 [Lm) et H,0,0) = —=10,0). (7.50)

Comme représenté Fig. 7.1, le niveau fondamental de I’atome d’hydrogéne est ainsi clivé en deux

sous-niveaux. Le sous-niveau singulet, non dégénéré, qui est le véritable état fondamental de notre

systéme, et le sous-niveau triplet, dégénéré trois fois. L’amplitude du clivage, égale & A ~ 5.87, ueV,
s=1

T ==——— Triplet
Niveau 1S s

—Y Singulet
s=0

FIGURE 7.1 — Structure hyperfine du niveau fondamental de ’atome d’hydro-
gene.

est extrémement faible. Elle correspond & une fréquence de transition v = A/h ~ 1.42 GHz, soit
une longueur d’onde A = ¢/v =~ 21 cm. Elle donne lieu a ce que l'on appelle la raie ¢ 21 c¢m de
I’hydrogéne, qui est notamment utilisée en radioastronomie pour observer ’hydrogéne interstellaire.

En laboratoire, on pourra observer la transition hyperfine en faisant interagir de I’hydrogéne avec
un champ magnétique oscillant de fréquence proche de v = A/h, de fagon similaire a la résonance
magnétique nucléaire (RMN). Considérons ainsi un champ magnétique oscillant B, (t) orienté selon

I’axe z. L’hamiltonien du systéme s’écrit alors
H(t) = H + W(t) (7.51)

ou

W(t) = —fi- Bi(t) = — (’yS + ypgpz) Bi(t). (7.52)
Or le rapport gyromagnétique, inversement proportionnel & la masse, est environ trois ordres de
grandeur plus petit pour le proton que pour I’électron. Il est donc légitime de le négliger et d’écrire
simplement

W(t) = _'YegezBl(t)- (7.53)
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Dans la base couplée, nous pouvons écrire

N N h h
Sez|1,1) = Se. |[++) = 3 |++) = 3 I1,1) (7.54)
Sez’17_1> :gez‘__> :_E __> :_E’17_1> (755)
2 2
ainsi que
A s [ F) =) R+ —[=+) R
Sez 170 - Sez = = = = 0,0 7.56
1,0 - - S (7.50)
A s [ F) ==+ R+ H[-+) R
Sez 070 = Sez =3 = = 1,0 7.57

Dans la base {|1,1),|1,—1),]1,0),]0,0)}, la matrice de I'opérateur S,, s’écrit alors

10 00

. _hlo 100

Se=510 0 01 (7.58)
00 10

Cette matrice est ainsi bloc-diagonale, ce qui est donc aussi le cas de I'hamiltonien total H (t). I
est donc possible de traiter indépendamment I’évolution dans les sous-espaces associés a chacun des
blocs, de sorte que les seules transitions possibles interviendront entre les deux états |1,0) et |0,0).

Dans ce sous espace de dimension 2, la matrice de la restriction de S, s'écrit simplement
A 0 kL
Ser = ( s 8 ) . (7.59)

Cette matrice est exactement identique & celle de ’observable S, pour un spin 1/2. L’effet sur notre
systéme d’un champ magnétique oscillant selon ’axe z est donc strictement équivalent & celui d’un
champ oscillant selon 1’axe x sur une particule de spin 1/2 (dont on aurait levé la dégénérescence

a 'aide d’un champ statique orienté selon I'axe z). On se raméne ainsi & un probléme de RMN.

m=—-—1 m=20 m=1
s=1
hw
WW\—~ |4
s=0 ——70

FIGURE 7.2 — Couplage entre les deur niveauz |0,0) et |1,0) sous Uaction d’un
champ magnétique orienté selon l’axe z et oscillant a une pulsation w proche de

A/

On en déduit que 'on pourra effectuer une transition efficace entre les deux niveaux |0,0) et |1,0)
a condition que w soit proche de A/h (voir PHY3X061), comme représenté sur la Fig. 7.2. Cela
revient & dire que ’énergie hw des photons doit étre de 'ordre de la différence d’énergie A entre
les deux niveaux. Ce phénomeéne de résonance est utilisé notamment dans les masers & hydrogéne,

ainsi que dans les horloges atomiques.



7.5. HORLOGES ATOMIQUES 115

7.5 Horloges atomiques

Le clivage hyperfin du niveau fondamental n’est pas limité au seul cas de I’hydrogéne et se
rencontre dans tout atome comportant un spin nucléaire non nul. En particulier, dans le cas des
alcalins (atomes situés dans la premiére colonne du tableau périodique des éléments), la situation est
trés similaire & celle de I’hydrogéne. Il existe en effet une interaction entre le moment magnétique
du noyau et celui de I’électron de valence célibataire. On obtient ainsi une structure hyperfine
parfaitement similaire & celle de I’hydrogéne, donnant lieu & deux sous-niveaux selon les deux valeurs
possibles du moment cinétique total. La fréquence de transition hyperfine est ainsi une grandeur
caractéristique de 1’élément considéré, connue avec une précision remarquable, comme le montre le

tableau ci-dessous.

Atome Fréquence (Hz)
Hydrogéne 'H | 1 420 405 751.768
Rubidium  8"Rb | 6 834 682 610.904
Césium 133Cs | 9 192 631 770

On pourra remarquer que la fréquence de transition hyperfine du césium 133 présente une
caractéristique particuliére, & savoir qu’il s’agit d’'un nombre entier, et méme multiple de 10 Hz. La
raison en est fort simple. Depuis 1967, la seconde est la durée de 9192 631 770 périodes de la radiation
correspondant & la transition entre les deur niveaux hyperfins de [’état fondamental de I’atome de
césium 133, selon la définition officielle du Bureau International des Poids et Mesures. La valeur de
la transition hyperfine du césium 133 n’est donc pas une mesure mais bien une définition. La mesure
expérimentale de cette fréquence de transition permettra ainsi de disposer d’un étalon primaire de
fréquence. Un étalon secondaire sera obtenu en mesurant la fréquence de transition hyperfine d’un
autre élément, comme par exemple le rubidium 87, dont la fréquence de transition est connue avec
une excellente précision.

Les horloges atomiques sont des dispositifs permettant de mesurer avec une précision extréme
la fréquence de transition hyperfine d’'un élément donné. Leurs nombreuses applications portent
notamment sur la synchronisation de réseaux informatiques ou de télécommunication, sur des sys-
témes de navigation par satellite comme le GPS ou Galileo, sur la synchronisation d’interféromeétres
géants en radio-astronomie, ou encore sur des tests de physique fondamentale (relativité restreinte,
relativité générale et variation des constantes fondamentales).

La Fig. 7.3 représente un exemple d’horloge atomique a rubidium 87. Une telle horloge repose
sur une cavité micro-onde contenant du rubidium 87 & 1'état gazeux, dans laquelle est injectée
une onde radio de fréquence proche de la transition hyperfine, soit environ 6.83 GHz. Si elle est
convenablement accordée & la transition, cette onde induira des oscillations de Rabi entre les deux
niveaux hyperfins. Pour évaluer 'efficacité du couplage, on mesure la transmission d’un faisceau
lumineux produit par une lampe a rubidium 87, qui émet un spectre constitué de deux raies trés fines
résultant de la désexcitation d’un niveau électronique excité |e) vers les deux niveaux hyperfins du
niveau fondamental. Une cellule de rubidium 85, dont le spectre d’absorption est 1égérement décalé
par rapport au rubidium 87, permet d’éliminer I'une des deux raies lumineuses. Ainsi, ce faisceau ne

sera absorbé que par un seul des deux niveaux hyperfin, qu’il finira par dépeupler, donnant lieu & une
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Oscillateur
LCT i
i > Compteur
_— Signal d’horloge
Dispositif Synthétiseur

d'asservissement micro-onde
l RF (6.834682611 GHz)

Lampe 8’Rb

Cavité
micro-onde

FIGURE 7.3 — Schéma de principe d’une horloge a rubidium 87.

diminution de ’absorption. Mais si l'onde radio est correctement accordée, les oscillations de Rabi
viendront repeupler ce niveau, augmentant ainsi I’absorption du faisceau lumineux. C’est ce que
l'on appelle la méthode de double résonance, due a Brossel et Kastler [17, 18|. En utilisant comme
signal d’erreur la puissance lumineuse transmise mesurée sur une photodiode, il est alors possible
d’asservir trés précisément la fréquence d’un oscillateur & quartz qui constituera le signal de sortie
de I’horloge. Cette architecture permet de disposer d’horloges commerciales & faible cott, de I'ordre
d’un millier d’euros, disposant d’une précision relative de I'ordre de 107!, Des dispositifs beaucoup
plus précis ont également été développés, notamment & l'aide de systémes interférométriques et
d’atomes froids. Ces horloges atomiques sont elles-mémes en train d’étre détrénées par les horloges

optiques, qui utilisent des fréquences de transition beaucoup plus élevées (voir controle X2016).



Chapitre 8

Particules indiscernables

Il va de soi que deux électrons sont deux particules parfaitement identiques, de méme que deux
protons ou deux neutrons. En d’autres termes, aucune expérience ne pourra faire la distinction
entre deux électrons donnés. Cette propriété d’apparence anodine aura des conséquences majeures,
avec par exemple le principe d’exclusion de Pauli sans lequel nous ne pourrions pas comprendre la

structure de la matiére.

En physique classique, méme si deux objets sont rigoureusement identiques, il sera toujours
possible de marquer I'un d’entre eux sans modifier ses propriétés physiques. Méme sans faire un tel
marquage, les lois de la physique classique ne nous interdisent pas d’observer les deux objets en
permanence. En les suivant tout au long de leurs trajectoires respectives, par exemple a ’aide d’une
caméra suffisamment rapide, nous pourrons clairement reconnaitre les deux objets a 'issue de leur
interaction. L’identité, méme parfaite, entre deux objets classiques ne pose donc pas de difficulté
particuliére.

La situation est tout autre en physique quantique. D’une part, les objets auxquels nous nous
intéressons sont évidemment trop petits pour qu’il soit possible de les marquer sans changer leur
comportement. D’autre part, les lois de la physique quantique nous interdisent d’observer conti-
niment le systéme sans modifier profondément son évolution temporelle. On dira donc de deux
particules identiques (au sens ot la totalité de leurs caractéristiques physiques comme la masse, la
charge, le spin, etc. sont identiques), qu’elles sont indiscernables.

Pour bien comprendre la nature du probléme, considérons un systéme constitué de deux parti-
cules indiscernables de spin 1/2, le degré de liberté de spin étant le seul pris en compte ici. Préparons
le systéme de sorte que I'une des deux particules soit dans I'état |+), et I'autre dans I'état |—),. Si
les deux particules étaient différentes (par exemple un proton et un électron), il nous faudrait pré-
ciser laquelle des deux particules est dans 1'état |[+), pour définir complétement I’état du systéme.
Mais dans le cas de deux particules indiscernables qui nous intéresse ici, il n’existe pas d’expérience
permettant de savoir laquelle des deux particules est dans Iétat |+),, précisément parce que les par-
ticules sont indiscernables. Stipuler que I'une de nos deux particules est dans I’état |+), tandis que
l'autre est dans I’état |—), définit donc aussi précisément que possible I’état physique du systéme.
La question qui se pose maintenant est d’écrire le vecteur d’état |¥) représentant ce systéme dans
I'espace de Hilbert. Une premiére option consisterait a écrire simplement |¥) = |+), ®|—),, état que

nous noterons |+—) dans la suite. Mais 1’état |—+) est a priori tout aussi légitime, de méme que

117
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toute combinaison linéaire de ces deux derniers états, comme les états |0,0) = (|+—) — |—+))/v/2
et [1,0) = (|+=) + |=+))/Vv2 (oil nous avons repris la notation introduite au chapitre 7 pour la
base couplée {|s,m)}). Pour chacun de ces quatre vecteurs d’état, I'une des deux particules est dans
Iétat |+) tandis que autre est dans I’état |—). L’ensemble des vecteurs d’états a priori acceptables,
engendré par les deux vecteurs orthogonaux |[+—) et |—+), est ainsi un espace vectoriel de dimension

2. On parle de dégénérescence d’échange.

Une telle dégénérescence ne poserait pas de probléme particulier si ’ensemble des vecteurs d’états
évoqués plus haut donnait lieu aux mémes prédictions physiques. Or, il se trouve que tel n’est pas le
cas. Pour nous en convaincre, considérons 1’observable S, correspondant au moment cinétique total
selon 'axe x, observable dont les valeurs propres sont —#, 0 et i. Mesurons cette grandeur physique
et intéressons nous a la probabilité de trouver le résultat h. Cette valeur propre est non dégénérée

et correspond au vecteur propre

)+ 1=) o B 1) e+ o)+ =) + =)
V2 V2 2 '

), @ 4, = (8.1)
Il est immédiat de vérifier que la probabilité de mesure P = |(,(+| » (+]) [¥) |* vaut 1/4 pour les
états |[+—) et |—+), mais 1/2 pour I'état |1,0), et 0 pour I’état singulet |0,0) (ce dernier état étant
vecteur propre de S, pour la valeur propre 0). Nous arrivons ainsi au résultat absurde que différents
vecteurs d’état semblant également légitimes pour représenter convenablement 1’état physique du

systéme donnent lieu a des prédictions de mesures physiques totalement incompatibles.

Il nous faut donc en conclure que les principes de la physique quantique dont nous disposons
a ce stade ne sont pas adaptés au traitement d’un systéme constitué de particules indiscernables.
Cette difficulté majeure nous ménera a 'introduction d’un nouveau postulat, dont nous évoquerons

ensuite les conséquences concernant la structure électronique des atomes et des solides.

8.1 Echange de deux particules

8.1.1 Opérateur d’échange

Considérons deux particules indiscernables appelées 1 et 2 et plagons-nous dans 1’espace produit
tensoriel £y = EW  £@). On introduit I’opérateur d’échange ]512 permettant d’échanger 1’état des
deux particules. Ainsi, si la particule 1 est dans 'état |¢),) et la particule 2 est dans 1’état |1), alors

aprés échange la particule 1 sera dans l'état |¢3) tandis que la particule 2 sera dans I’état |1,), soit

Pro|Lithg; 2:40) = [1:¢hp;2:9h) - (8.2)

Cette propriété définit complétement 1'opérateur d’échange puisque, pour tout état |¥) décomposé

dans la base tensorielle selon 'expression

|\I]> :ch,m|13¢n§2:wm>a (8.3)

n,m
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on pourra écrire

Prs ‘\I’> = P ch,m |1 :wn;2:wm> = ch,m |1 :¢m;2:¢n> = Zcm,n |1 :wn;zzwm> . (84)
n,m n,m n,m

En d’autres termes, ’échange des deux particules se raméne simplement a remplacer les coeflicients

Cn,m Par Cpmp, c’est a dire a échanger les deux indices. L’opérateur d’échange est évidemment

involutif, soit ]5122 =1 Tlest également auto-adjoint puisque
(L:thnr; 2| Pro |1 thn: 2:hm) = (1: 0052 s |12 ¥ 25000 = Onrmmmrm.- (8.5)

Or, les éléments de matrice de PI]L2 s’écrivent

(195 2 | Py 113900522 00m) = (1203 2 s | 129003 22 9hm) = GG (8.6)

ce qui nous donne le méme résultat que pour les éléments de matrice de Pjy. On peut donc en
déduire P{B = Pp,. L’opérateur Pyy étant a la fois involutif et auto-adjoint, il est donc également
unitaire.

Sachant que ]5122 =1 , on peut en déduire que les valeurs propres de 'opérateur d’échange sont
+1 et —1. Les états propres associés a la valeur propre +1 sont appelés états symétriques, tandis
que les états propres associés a la valeur propre —1 sont appelés états antisymétriques. D’aprés
I’éq. 8.4, les états symétriques seront caractérisés par la relation ¢, , = ¢y m, ce qui permet d’écrire

la forme générale d’un état symétrique,

T5) =D Cnn1:9n;2:0n) + > o (119052 ¥m) + 11103 2:900)) (8.7)
n n<m

Ecrit sous cette forme, 1’état ci-dessus est évidemment symétrique par échange des deux particules.

De méme, d’apres Iéq. 8.4 les états antisymétriques vérifient la relation ¢y, ,, = —cp m, ce qui impose

notamment ¢,, = 0. On peut écrire les états antisymétriques sous la forme

W) =D cnam (11003 2: %) — [1:90m; 2:0)) . (8.8)
n<m

Ecrit sous cette forme, I'état |W,4) ci-dessus est clairement antisymétrique par échange des deux

particules.

8.1.2 Opérateurs de symeétrisation et d’antisymétrisation

Il est utile de considérer les projecteurs sur les deux sous-espaces propres de 'opérateur d’échange.
On définit ainsi 'opérateur symétrisation S par la relation
, I+P
S=-""1 (8.9)
2
Cet opérateur, dont les valeurs propres sont 1 (pour les états symétriques) et 0 (pour les états

antisymétriques) est bien le projecteur sur 'espace propre des états symétriques. On définit de
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méme opérateur antisymétrisation A par la relation

I— Py

A= 8.10

. (8.10)
Cet opérateur, dont les valeurs propres sont 1 (pour les états antisymétriques) et 0 (pour les états
symétriques) est quant a lui le projecteur sur I'espace propre des états antisymétriques. Pour un

état décomposé dans la base tensorielle selon 1'éq. 8.3, on pourra écrire

4 1:n;2: 1:m;2:
S|W):ZW|1:n;2:m>:Zcmm| e m)—;| il n>’ (8.11)

n,m n,m

ce qui nous donne bien un état symétrique (éventuellement nul si |¥) était antisymétrique). De

méme,
[1:n;2:m) — |1:m;2:n)
2 )

A|‘P>=ZW|1:n;2:m>:ch7m (8.12)

n,m n,m

ce qui nous donne bien un état antisymétrique (éventuellement nul si [¥) était symétrique).

8.1.3 Invariance de I’hamiltonien

Si les deux particules sont indiscernables, I’énergie du systéme doit naturellement rester inchan-
gée lors de I’échange des deux particules. Pour tout état |¥), Pénergie dans I'état Py |¥) doit ainsi

étre égale a I'énergie dans 'état |U), soit
(U| ProH Py |U) = (U] H | W) (8.13)

Cette relation étant valable pour tout |¥), on en déduit PuoHP, = H , ce qui nous donne (aprés

multiplication & gauche par ]512) la relation
HPyy = PioH. (8.14)

L’hamiltonien commute donc avec 'opérateur d’échange. Au méme titre que les invariances géomé-
triques discutées au chapitre 2, I'invariance d’échange d’un systéme de deux particules identiques
nous permet ainsi d’affirmer que ’hamiltonien commute avec 'opérateur d’échange. En conséquence,
l'opérateur d’échange commutera également avec 'opérateur d’évolution U(t, to), ce qui signifie que
ses sous-espaces propres resteront stables sous 'action de 'opérateur d’évolution. Un état initiale-
ment symétrique restera donc toujours symétrique lors de ’évolution du systéme. De méme, un état

antisymétrique restera antisymétrique.

8.2 Postulat de symétrisation

8.2.1 Enoncé du postulat

Comme évoqué au début de ce chapitre, nous avons besoin d’un nouveau postulat nous per-
mettant d’écrire sans ambiguité I'état |¥) d’un systéme de deux particules identiques. Pour qu’un

vecteur d’état |¥) soit physiquement acceptable, il est souhaitable que |¥) et Pjo|¥), qui décrivent
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a I’évidence le méme état physique, correspondent au méme vecteur d’état dans ’espace de Hilbert

(& une phase 6 prés). Cette condition s’exprime sous la forme
Ppo |0) = e W) (8.15)

ce qui signifie que |¥) est un vecteur propre de 'opérateur d’échange Pyy. Comme les valeurs propres
de ce dernier sont +1, on peut donc proposer la condition suivante pour caractériser un vecteur
d’état physiquement acceptable :

Pia | W) = +|¥). (8.16)

L’état |¥) doit donc étre soit symétrique, soit antisymétrique. Dans 1’exemple de deux spins 1/2
donné dans I'introduction, seuls les états |0, 0) (antisymétrique) et |1,0) (symétrique) conviendraient
donc. De plus, la stabilité des espaces propres de Pyy sous laction de I'opérateur d’évolution nous
assure qu’'un état initialement (anti)symétrique le restera tout au long de son évolution ultérieure.

Toutefois, cette seule condition est insuffisante. Par exemple, si une paire d’électrons pouvait
étre mise parfois dans un état symétrique, et parfois dans un état antisymétrique, le principe de
superposition imposerait qu’on puisse mettre cette méme paire d’électrons dans une combinaison
linéaire de ces deux états, qui ne serait ni symétrique, ni antisymétrique. Une telle situation n’étant
pas physiquement acceptable, il nous faut admettre que pour un type de particule donné, par
exemple I'électron, un seul type d’état (soit symétrique, soit antisymétrique) est acceptable. L’effet
de l'opérateur d’échange sur ’état du systéme est ainsi directement lié & la nature de la particule.
Ces considérations préalables nous permettent maintenant d’énoncer le postulat de symétrisation,

dont les multiples conséquences sont effectivement en accord avec I’expérience.

Postulat de symétrisation. Les particules de la nature appartiennent toutes a

I’'une ou l'autre des deux catégories suivantes.

e Les bosons, pour lesquels le vecteur d’état est symétrique par échange de deux

particules identiques,
Py |U) = |T) . (8.17)

e Les fermions, pour lesquels le vecteur d’état est antisymétrique par échange

de deux particules identiques,
Pra|¥) = — ). (8.18)

On admettra que les particules de spin entier (mésons 7, photons, Higgs, etc.) sont
des bosons, tandis que les particules de spin demi-entier (électrons, neutrinos, quarks,

protons, neutrons, etc.) sont des fermions.

8.2.2 Cas des particules composites

Remarquons que le postulat de symétrisation s’applique non seulement & des particules élémen-

taires comme les électrons ou les quarks, mais aussi a des particules dites composites comme les
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nucléons ou méme les atomes. Ces systémes composites ne sont pas des particules élémentaires mais
sont constitués de particules plus petites en interaction mutuelle. Considérons par exemple le cas du
proton, qui est un assemblage de trois quarks liés entre eux sous 'effet de I'interaction forte. Dans la
plupart des situations expérimentales, en particulier en physique des basses énergies, ’état interne
du proton reste en permanence dans son niveau fondamental, de sorte que tout se passe comme si
le proton était une particule élémentaire. Comme pour une véritable particule élémentaire comme
I’électron, les degrés de liberté pertinents du proton seront alors les coordonnées de son centre de
masse et son état de spin. De méme, dans certaines situations expérimentales, la structure interne
d’un atome pourra jouer un roéle important (par exemple lors de l'interaction avec un faisceau lumi-
neux). Mais, dans d’autres situations ot les énergies disponibles sont trés inférieures aux énergies
d’excitation de I'atome (typiquement la dizaine d’eV), alors on pourra considérer que 'atome reste
en permanence dans son niveau fondamental (comme par exemple le niveau 1s pour I'hydrogéne).
C’est par exemple le cas d’une vapeur atomique a température ambiante, ’énergie d’agitation ther-
mique (kT =~ 26 meV) étant négligeable devant les énergies des transitions électroniques. Dans une
telle situation, on pourra se contenter de considérer ’atome comme un unique objet dont les degrés
de liberté pertinents sont les coordonnées du centre de masse et le moment cinétique intrinséque (ou
spin total). La question se pose alors de savoir si une telle particule composite doit étre considérée

comme un boson ou comme un fermion.

11 existeA deux approches pour répondre a cette question. La premiére consiste & déterminer le
spin total S de la particule composite, en s’appuyant sur la relation entre le spirAl (rgsp. ent}er ou
demi-entier) et la nature de la particule (resp. boson ou fermion). Si on appelle 51,85, Sn les
observables de spin des N particules élémentaires constituant notre particule composite, alors on a
la relation

~ N ~
S=>"8, (8.19)
n=1

et donc

~

S, =3"5,.. (8.20)

iM-

Appelons Ny et Nj les nombres de fermions et de bosons constituant la particule composite, avec
N = Ny + Np. Lors d’une mesure de S, on obtiendra un résultat égal a la somme des S,,., soit mh
ou m est la somme de Ny nombres demi-entiers et de /N, nombres entiers (car un fermion porte un
spin demi-entier tandis qu’un boson porte un spin entier). Le nombre m sera donc demi-entier si
Ny est impair, et entier si Ny est pair. On peut en conclure qu'une particule composite peut étre
considérée comme un fermion (car de spin total demi-entier) si elle comprend un nombre impair de

fermions, tandis qu’elle peut étre considérée comme un boson dans le cas contraire.

Une autre approche consiste a considérer 'opérateur échange Py permettant d’échanger deux
particules composites appelées a et b. L’échange de deux particules composites pouvant étre défini

comme la composition des échanges deux & deux de tous ses constituants individuels, on peut écrire
Pab = Pap1 - Panon (8.21)

ol Py, échange la particule n de (a) avec la particule de méme numéro n dans (b). Si |¥) est
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I’état du systéme constitué de ces deux particules composites, on peut alors écrire
Pop |W) = Poypr -+ Panow | W) = (—1)NF | W) (8:22)

puisque I’échange des N}, bosons est sans effet tandis que chacun des Ny échanges de fermions change
le signe de I’état. A nouveau, on trouve que la particule composite est un fermion si Ny est impair
(changement de signe de ’état lors de I’échange des deux particules), tandis que ¢’est un boson dans

le cas contraire (état inchangé suite a I’échange des deux particules).

Lorsqu’un ensemble de particules en interaction mutuelle reste dans son état interne
fondamental, cet ensemble peut étre considéré comme une particule composite. Cette
particule composite peut étre globalement considérée comme un fermion si elle com-
porte un nombre impair de fermions, tandis qu’elle peut étre considérée comme un

boson dans le cas contraire.

A titre d’exemple, les protons et les neutrons sont des particules constituées de trois quarks -
qui sont des fermions. On pourra donc les considérer comme des fermions - ce qui est confirmé par

la valeur de leur spin.

8.3 Cas de 2 particules indépendantes

8.3.1 Hamiltonien d’un systéme de deux particules indépendantes

Considérons le cas de deux particules indépendantes, ce qui signifie que 'hamiltonien pourra
s'écrire comme la somme de deux opérateurs, 1'un agissant dans £ et I'autre agissant dans £,
soit

=W g 1@ 4 0 g i), (3.23)

Cette forme de I'hamiltonien exclut la présence d’un terme supplémentaire qui agirait a la fois
dans les deux espaces et qui rendrait compte d’une interaction entre les deux particules, comme
par exemple une répulsion coulombienne en ¢2/||7" — 7%||. Comme les particules sont identiques, les
opérateurs h(W et 2 correspondent & un méme hamiltonien h que 'on appellera ’hamiltonien &
une particule, pouvant agir indifféremment dans €1 ou dans £2). Cet hamiltonien a une particule
admet des vecteurs propres |¢,) associés aux valeurs propres F,,, qui conviendront aussi bien pour

RV que pour h®. Ainsi, la base tensorielle {|1:y;2:1,)} est une base propre de H , avec
H{1:thn;2:0m) = M 1:90,) @ |2:0m) +1:90,) @ B3 [2:40,,) = (By+ Em) [1:900;2: 0m) (8.24)

L’énergie est donc simplement additive, ce qui est caractéristique du comportement attendu pour
une assemblée de deux sous-systémes indépendants. Dans la suite, les états |1:1),;2:1,,) de la base

tensorielle seront simplement notés |¢y,, ¥n,).

8.3.2 Systéme de deux bosons

Considérons deux bosons identiques de spin nul et supposons pour simplifier que les valeurs

propres de I’hamiltonien & une particule soient non dégénérées, I’état fondamental de h étant associé
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a la valeur propre appelée E;. L’état fondamental de I’hamiltonien total est obtenu en placant les
deux bosons dans ’état de plus basse énergie, comme représenté Fig. 8.1(a). L’état correspondant,
|¥) = |¢1,%1), est bien symétrique par échange des deux bosons, ce qui satisfait au postulat de

symétrisation. L’énergie associée est simplement égale & 2.

|13) ——— E; |3) Es
|2) ——— E |2) —e— E
[91) —ee— E; |11) —o— E;

(@) (b)

FIGURE 8.1 — FEltat fondamental (a) et premier état excité (b) d’un systéeme de
deuz bosons identiques sans spin.

Cherchons maintenant le premier état excité. Comme représenté Fig. 8.1(b), ce dernier peut étre
obtenu en transférant I’'un des deux bosons de I'état d’énergie F vers I’état d’énergie immédiatement
supérieur, c’est a dire I’état [1)2) d’énergie Eo. L’énergie du systéme sera alors égale a 1 + Eo. D’un
point de vue mathématique, I’espace propre de H associé a la valeur propre E7 + E5 est un espace
vectoriel de dimension 2, engendré par les états |1, 19) et [1)2,71). Une autre base possible de ce
méme espace est constituée de 1'état symétrique, (|11, ¥2)+ |2, 1)) /V/2, et de I'état antisymétrique,
(|11, %2) — |t2,41))/v/2. D’aprés le postulat de symétrisation, seul le premier de ces deux états est
physiquement acceptable pour un systéme de deux bosons identiques. Nous sommes donc amenés
a en conclure que la valeur propre E; + FEo est en fait non dégénérée, le seul état associé & cette

valeur propre étant — & une phase prés — la combinaison symétrique

‘wh 1/}2> + |¢27 1/11>
\/§ .

Physiquement, ce résultat n’est pas surprenant. En effet, les valeurs propres de I’hamiltonien &

(8.25)

une particule étant non dégénérées, I'état du systéme est a priori entiérement défini en spécifiant
que l'une des particules est dans 'état |¢)1) tandis que l'autre est dans I’état |¢)2). Une méthode
générale permettant de trouver ’état décrivant alors le systéme consiste & partir d’un état donné
du sous-espace propre mathématique, par exemple I’état |1, 1)2), puis a lui appliquer I'opérateur

de symeétrisation S défini par I’éq. 8.9. On obtient alors

f+p12 _ |¢1,¢2>+W2a¢1>

— 11, 2) 5 : (8.26)

S|, ) =

11 suffit ensuite de normer ’état obtenu pour obtenir I'unique état physiquement acceptable associé
a la valeur propre E1 + Fo. L’état ainsi obtenu sera toujours le méme, & une phase pres, quel que

soit I’état de départ - sauf si nous avions eu la mauvaise idée de partir d’un état antisymétrique.

8.3.3 Systéme de deux fermions

Considérons maintenant un systéme de deux fermions identiques. Remarquons tout d’abord que,

contrairement au cas des bosons, il est impossible de mettre deux fermions dans le méme état |«)
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car I'état |1:,2: ) est évidemment symétrique par échange des deux particules, ce qui n’est pas
acceptable pour une paire de fermions. C’est ce que 'on appelle le principe d’exclusion de Pauli. Par
contre, pour deux états |a) et |3) différents, on pourra construire un état physiquement acceptable
par antisymétrisation, ce qui nous donne I’état

C1rey2:8) —|1:8,2:q)

All:a,2:8) = 5 , (8.27)

qu’il suffira ensuite de normer. On dispose ainsi d’un état défini de maniére unique correspondant a la
configuration ot I'une des particules est dans I'état |«) tandis que l'autre est dans I’état |3). Dans le

cas de deux états orthogonaux, 1'état du systéme pourra donc s’écrire (|1:a,2:8) —[1:3,2:a))/v/2.

Décrivons maintenant explicitement le degré de liberté de spin de nos deux fermions, lequel
est par définition demi-entier. Considérons plus particuliérement le cas de deux fermions de spin
1/2, par exemple deux protons, deux neutrons ou deux électrons. L’espace de Hilbert s’écrit alors

Er = Eerme @ ELD @ EX) e © €

externe ® Egpin @ Eexterne @ Egpin- Nous pouvons réordonner ce produit tensoriel en groupant

d’une part la partie orbitale et d’autre part la partie liée au spin, soit

b = (e 800 ) & (60, 062, 52%)

spin spin

Supposons en outre que '’hamiltonien & une particule n’agisse que sur les degrés de liberté externes

de la particule, de sorte que les valeurs propres E, de h sont maintenant deux fois dégénérées, soit
h|tn) ® |£) = En th) ® |£) . (8.29)

Cherchons I’état fondamental de ce systéme. Comme précédemment, nous allons mettre chacune
des deux particules dans le niveau FE7, ce qui détermine complétement ’état orbital. La forme la

plus générale des états ainsi obtenus s’écrit alors
(W) = [¥1,91) @ (coy [+4) e [+=) Feq [=H) + e [--). (8.30)

D’un point de vue mathématique — ne tenant pas compte du postulat de symétrisation — la valeur

propre 2E7 est ainsi dégénérée 4 fois. Mais, comme nous avons affaire & des fermions, le postulat de

symétrisation impose que |¥) soit antisymétrique, soit Ppp|¥) = —|¥). Comme vu en 8.1.1, cette
condition impose c;4 =c__ =0et ¢, = —c_, soit - aprés normalisation,
) = |=+)
(W) = |¢1,91) ® (8.31)

7 .
Si on se limite aux états physiquement acceptable, le niveau fondamental est donc non dégénéré,
I’espace propre étant engendré par le seul état antisymétrique défini par 1’équation ci-dessus, oul
I’on reconnait un état singulet de spin. Comme le montre la Fig. 8.2, on représente cet état a l'aide
d’une double fleche positionnée sur le niveau E7. Celle-ci ne signifie pas que le premier spin est dans
I'état |[+) tandis que 'autre est dans ’état |—), mais bien que ’ensemble des deux spins est dans
I'état antisymétrique (|[4+—) — |—+))/V/2.

En s’appuyant sur les résultats du chapitre 7, on aurait pu utiliser directement la base couplée
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|¥3)

|1)2) Es
1) —H— En

FIGURE 8.2 — Ftat fondamental d’un systéme de deux fermions identiques de
spin 1/2.

Es

|s,m) pour décrire le sous-espace propre de dimension 4 associé aux degrés de liberté de spin.
D’aprés les équations 7.22 & 7.25, il est clair que ’état singulet est antisymétrique tandis que les

états triplets sont symétriques, soit
Pio|s,m) = (=1)* L |s,m). (8.32)

Parmi les 4 états de base [11,11) ® |s,m) du sous-espace propre mathématique associé a la valeur
propre 2FE7, trois sont ainsi symétriques (et donc exclus pour des fermions) et un seul est antisymé-
trique (et donc physiquement acceptable). On peut ainsi directement écrire le seul état fondamental

physiquement acceptable sous la forme
|¥) = [¥1,1) ®10,0). (8.33)

Généralisons cette derniére approche aux autres états propres de I'’hamiltonien. En 'absence de
couplage spin-orbite (ce qui est le cas ici ot 'hamiltonien ne dépend pas du spin), les états propres

de H peuvent toujours s’écrire sous la forme |Wopital) ® |s,m). On peut alors écrire
Pio (|Worital) ® |s,m)) = (—1)°F! (PIZ !\I’orbita1>> ®|s,m) . (8.34)

Pour que I’état proposé soit antisymétrique, il est donc nécessaire et suffisant que la partie orbitale
soit symétrique lorsque les spins sont dans I’état singulet (s = 0) ou que la partie orbitale soit

antisymétrique lorsque les spins sont dans un état triplet (s = 1).

8.4 Cas de N particules indépendantes

8.4.1 Hamiltonien d’un systéme de N particules indépendantes

Généralisons maintenant notre propos au cas d’un systéme constitué de N particules indépen-

dantes. On se place dans ’espace de Hilbert
5H :8(1)®5(2)®__.®5(N)_ (8.35)

Les particules étant indépendantes, on peut écrire I’hamiltonien comme une somme d’hamiltoniens

& une particule agissant chacun sur une seule des N particules, soit

N N
f{:Zf(l)(g)...@fl(")@...@f(]v):Z}AL(")_ (8.36)
n=1

n=1
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Comme plus haut, on appelle |1),) et E, les vecteurs propres et valeurs propres de I’hamiltonien a
une particule. Les états de la base tensorielle sont alors états propres de I’hamiltonien total, ce que

I’on peut écrire sous la forme

H|1:%a,,2:%ay, N :Yay) = (Bay + Eay + -+ Bay) 11001, 2:an, -+ s N :ithay) . (8.37)

Comme dans le cas de deux particules indépendantes, I’énergie totale est simplement égale a la

somme des énergies des [N particules.

8.4.2 Systéme de N bosons

Considérons les N! permutations p de 'ensemble {1,2,---, N}, ainsi que les opérateurs corres-
pondant Pp agissant dans 'espace . On sait que toute permutation p peut se décomposer comme
un produit de transpositions échangeant chacune deux particules, ce qui signifie que Pp peut se
décomposer de méme comme un produit d’opérateurs d’échange de deux particules comme celui
étudié en 8.1.1. Or le postulat de symétrisation stipule que chacun de ces échanges de deux bosons
identiques laisse 'état |¥) du systéme inchangé. On peut en conclure que pour un systéme de N

bosons, on aura pour toute permutation p la relation
P |¥) =[¥). (8.38)

Inversement, si ’équation ci-dessus est vérifiée pour toute permutation p, elle est notamment vérifiée
pour des transpositions ce qui permet d’affirmer que I'état |¥) vérifie bien I’éq. 8.17 pour toute
paire de bosons. L’éq. 8.38 est donc une formulation équivalente du postulat de symétrisation
pour un ensemble de N bosons identiques. Dans le cas d’un ensemble de N particules, 'opérateur

symétrisation devient

R 1 R
S=+ > b, (8.39)
p

En effet, on peut vérifier que
- .1 . 1 . .
hS =1 > BPy = i > by=8 (8.40)
p/ p//

ou l'on a simplement renuméroté les permutations d’une autre maniére dans la derniére somme,
selon l'effet de la permutation p. On en déduit que P,S |¥) = S |¥), ce qui signifie que état S|¥)

est bien invariant sous ’action de n’importe quelle permutation. De plus
g2-l3ps-Lys-s 8.41
=N Y BS= NI Y 8=5, (8.41)
p P

ce qui nous permet de déduire 52 = S. Etant idempotent, 'opérateur S peut donc bien étre
identifié au projecteur sur le sous-espace vectoriel des états symétriques sous l'effet de n’importe
quelle permutation, qui correspond & l’espace des états physiquement acceptables selon le postulat
de symétrisation.

Cherchons maintenant & construire I’état physique correspondant & la configuration ou une
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particule est dans I’état [, ), une autre dans 'état |1y, ), - - -, et la derniére dans I'état [t)q, ). Il nous
suffit pour cela de projeter 1'état |1:1q,,2:9ay, -+, N 114, ) & l'aide de Popérateur symétrisation,

puis de normer le résultat obtenu. On obtient ainsi

) =C> Ppl1l:¢ay,2: %0y, - Nithay), (8.42)
p

ou C est une constante de normalisation. L’opérateur S étant idempotent, cet état est bien symé-

trique par permutation des particules et satisfait donc au postulat de symétrisation.

L’écriture de I'état fondamental d’un systéme de N bosons est immédiate. C’est tout simplement
I’état
’\I/>:’13¢1723¢1a"'7N1¢1>7 (843)

d’énergie £ = NFE;. A I'évidence, cet état est bien invariant sous 'effet de n’importe quelle permu-
tation. Il est donc parfaitement possible de mettre tous les bosons de notre systéme dans le méme
état quantique, comme représenté Fig. 8.3(a). Cette caractéristique remarquable des bosons peut
donner lieu & des effets spectaculaires, comme par exemple la condensation de Bose-Einstein ou

encore le rayonnement laser.

0000000

(@) (b)

FIGURE 8.3 — Etat fondamental d’un systéme de N bosons identiques (a) et de
N fermions identiques de spin 1/2 (b), ot N est supposé pair dans le second
cas.

ik

8.4.3 Systéme de N fermions

Procédons de méme pour un systéme de N fermions et décomposons & nouveau une permutation
donnée en un produit de transpositions. Chaque transposition changeant ici le signe de I’état du
systéme, l'effet global de la permutation dépend de la parité du nombre de transpositions. Cet effet
est ainsi directement lié & ce que l'on appelle la signature €, de la permutation p, qui vaut +1
(resp. —1) si p se décompose en un nombre pair (resp. impair) de transpositions. Le postulat de

symétrisation appliqué a un systéme de N fermions identiques peut donc s’écrire

P,|0) = ¢,|). (8.44)
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Considérons maintenant I'opérateur antisymétrisation d’un ensemble de N particules défini par

A 1 .
A= > b, (8.45)
P
On obtient alors ) .
B SRy =y S = 40
: P’ - p!
ol l'on a utilisé que si p” = pop’ alors €,» = €p€,y. Sachant que d’une part, PLA|T) = e, A|D),

et que d’autre part I'opérateur A est idempotent (comme S’), on peut en déduire que l'opérateur
A est le projecteur sur l'espace des états physiquement acceptables pour des fermions, i.e. 'es-
pace des états satisfaisant 1’éq. 8.44 pour toute permutation p. Partant d’une configuration donnée
11:%0,,2: %0y, - , N :9q,), on peut ainsi obtenir un état physiquement acceptable en projetant

cette configuration & l'aide de 'opérateur ./Zl, ce qui nous donne 1’état
. C .
(W) = CAIL:%ay,2:Vay, - s N :tay) = ﬁ26ppp|1:1/)a1,2:¢a2,~-- JNiay),  (8.47)
P

ou C est une constante permettant de normaliser I’état |¥). On reconnait dans 1’expression ci-dessus

la définition d’un déterminant, ce qui permet d’écrire ’état du systéme sous la forme

11:%ay)  [1:%ay) ’13¢a3> ‘1:¢az\r>
C |2:¢a1> |2:wa2> |237,Z)a3> ‘2:¢QN>

¥) =75 . : : : : (8.48)
|N:¢a1> ’N:@baz) |N¢¢a3> |N:wa1\r>

ou chaque ligne représente une particule et chaque colonne un état. Cette expression, appelée déter-
minant de Slater, permet de retrouver immédiatement le principe d’exclusion de Pauli dans le cas
d’un systéme de N fermions identiques. En effet, il est impossible de mettre deux particules dans
le méme état quantique puisqu’on aurait alors deux colonnes identiques, conduisant & une annu-
lation du déterminant de Slater. Pour obtenir un résultat non nul, il est en fait nécessaire que les
N états choisis soient linéairement indépendants. Une facon d’assurer cette indépendance consiste
a choisir des états orthonormés (par exemple les états propres de B) Dans ce cas, le carré de la
norme du déterminant est égal au nombre de permutations, c’est & dire N!, d’ott I'on peut déduire

que C' = v/N!. On obtient alors, pour des états |1),) orthonormés, I’expression suivante

|1:wa1> |1:wa2> ’1:¢a3> ‘1:¢QN>
1 |251/}a1> |2:7/1042> ’2:wc¥3> ‘2:¢OZN>

) = i 2 5 5 2 (8.49)
|N:wa1> ‘N:¢az> |N:1/]043> |N:1/)OCN>

Considérons enfin comme en 8.3.3 le cas de fermions de spin 1/2, dans le cas particulier ou ’ha-
miltonien & une particule ne fait pas intervenir le spin. Notons simplement [, 1) les états propres

|thn) @ | 1) obéissant a 1’éq. 8.29. Dans le cas ot le nombre N de particule est pair, on pourra alors
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écrire I'état fondamental du systéme sous la forme du déterminant de Slater

T:pi+)  [Lipi—)  [Lighet) o0 [1idngje—)

1 12:914)  [2:91—)  [2:¢et)  oor [200Nng9—)
=Tm : : : : (8:50)

IN:p1+) [N:i1—) |[Nithot) oo [N:¢np—)

Un tel état est représenté Fig. 8.3(b). On retrouve ainsi la régle de remplissage résultant du principe
d’exclusion de Pauli, avec une particule par état quantique, ou encore — en tenant compte du spin 1/2
— deux particules par état orbital. Cette régle de remplissage joue un réle central dans la structure

électronique des atomes, des molécules et des solides.

8.4.4 Structure électronique d’un solide cristallin

Considérons a nouveau le modéle de solide cristallin & une dimension déja discuté en 2.5, associé
a un potentiel périodique de période a, comme celui représenté Fig. 2.6. Rappelons qu’en vertu du

théoréme de Bloch, les états propres d’un tel systéme peuvent s’écrire

wn,kz (.%') = eikzxun,kz (.%'), (851)

ou le vecteur d’onde k; est compris dans I'intervalle [—m/a, 7 /a] et ou la fonction wuy i, () est une
fonction périodique de période a. Les valeurs propres correspondantes, Ey, (k,), forment des bandes
d’énergies en nombre discret, chaque bande étant une fonction de la variable continue k,. Afin
de pouvoir dénombrer les états intervenant dans ce probléme, nous allons considérer un cristal de
longueur L finie, égale & un multiple M supposé pair de la période a du cristal. Pour éviter les
effets de bord, on utilisera en outre les conditions aux limites périodiques. Celles-ci supposent que
le systéme est globalement périodique de période L, ce qui pourra correspondre par exemple au cas
d’un fil électrique de longueur L et dont la sortie est reliée & 'entrée. Si L est trés grand devant
a, on peut s’attendre & ce que les conditions aux limites périodiques ne modifient pas de fagon
significative les propriétés du systéme, tout en nous évitant les complications liées aux effets de
bord. L’hypothése de périodicité permet de plus de préserver l'invariance par translation de pas a,
qui est essentielle & 'utilisation du théoréme de Bloch. L’espace de Hilbert est ainsi limité a des
fonctions d’onde périodiques, i.e. telle que 1 (z + L) = ¢(x). Cet espace de Hilbert sera muni du

produit scalaire hermitien
L/2

(Yly') = p V" ()Y (z)dz, (8.52)

qui nous permettra de normaliser les fonctions v, i, (x). D’aprés 'éq. 8.51, on peut écrire
djn,kz (37 + L) = eikx (x+L)Un,k:z (:E) = eikﬁLd)n,k’x (SL’), (853)

ot 'on a utilisé le fait que la fonction périodique wy i, (x) de période a est aussi une fonction
périodique pour la distance L = Ma, cette derniére quantité étant un multiple de a. Les conditions
aux limites périodiques imposent donc que exp(ik,L) = 1, ce qui signifie que k, L est un multiple

de 27, soit kL = k27 ou k est un entier relatif. Sachant que k, € [—7/a,7/a[, on en déduit
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que les valeurs possibles pour k sont les M entiers —M /2, —M /2 +1,--- ;M /2 — 1. Compte tenu
des conditions aux limites périodiques, les bandes d’énergie doivent donc étre remplacées par des
niveaux discrets E,(2km/L), comme représenté Fig. 8.4(a) dans le cas M = 6. Remarquons que
pour une bande n donnée, il y a exactement autant d’états que de périodes M = L/a dans le
cristal (sans compter le spin). On peut ensuite facilement remplir ces niveaux d’énergie a laide
des régles établies plus haut. Si 'on dispose de N électrons par cellule élémentaire de période a,
I'état fondamental correspondra au remplissage des N M /2 états orbitaux de plus basse énergie,
comme représenté Fig. 8.4(a) dans le cas ot N = 5. On observe que les deux premiéres bandes sont
totalement remplies, tandis que la troisiéme bande est & moitié remplie (car nous avons choisi ici

un nombre N impair).

En (k)

—m/a /a

(b)

FIGURE 8.4 — Remplissage des niveauxr d’énergie dans un cristal périodique en
supposant que l'on dispose de & électrons par site. (a) correspond & un cristal
de longueur finie L = 6a tandis que (b) correspond a la limite continue, pour
L>a.

La Fig. 8.4(b) représente la limite continue, ot l'on fait tendre M = L/a vers I'infini. Comme
dans le cas discret, les deux premiéres bandes sont complétement remplies tandis que la troisiéme
bande est & moitié remplie. Ces résultats permettent de distinguer différents types de comportements
en relation avec la conduction de I’électricité dans les cristaux périodiques. On appellera bande de
valence la derniére bande totalement remplie, a savoir la deuxiéme bande dans le cas de la Fig. 8.4,
et bande de conduction la bande immédiatement au-dessus. Dans le cas représenté ici, la bande
de conduction est a moitié remplie. En conséquence, un champ électrique méme trés faible pourra
facilement exciter un électron et rompre la symétrie de ’état fondamental, de sorte que le cristal
pourra conduire I’électricité. On a affaire & un matériau conducteur. A I'inverse, pour N pair, la
bande de conduction sera totalement vide, de sorte qu’il faudra beaucoup plus d’énergie pour exciter
le systéme - en 'occurence le gap séparant le haut de la bande de valence du bas de la bande de
conduction. On a donc affaire & un matériau isolant. Dans ce modéle unidimensionnel trés simple,
on aura donc un isolant si chaque atome fournit un nombre pair d’électrons et un conducteur si
chaque atome en fournit un nombre impair. En réalité, la situation peut étre souvent compliquée
par la nature tridimensionnelle de la structure de bande, mais la distinction qualitative entre isolant

(bande de conduction vide) et conducteur (bande de conduction partiellement remplie) demeure.
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8.5 Structure électronique des atomes

L’hamiltonien d’un atome a Z électrons s’écrit de maniére générale sous la forme

Z

R 2 ZQ
H:Z;;Ze Z :

n=1 n=1m=n+1 HT‘n Tm”

(8.54)

ou le premier terme décrit ’énergie cinétique des Z électrons et le second terme décrit 1’énergie
potentielle de chacun des Z électrons dans le puits de potentiel coulombien du noyau, comportant
Z protons. Le troisiéme terme décrit enfin la répulsion coulombienne entre les Z(Z — 1)/2 paires
d’électrons. Ce dernier terme, caractéristique d’un probléme & N corps, rend la résolution du pro-
bléme extrémement compliquée. En premiére approximation, on a souvent recours a la méthode
dite du champ moyen. Celle-ci consiste & remplacer le dernier terme de 1’éq. 8.54 par un opérateur a
une particule consistant en une énergie potentielle V(7) représentant 'effet moyen des Z — 1 autres
électrons sur I'électron considéré. Dans ’approximation du champ central, on suppose en outre que
cette grandeur ne dépend que de la distance r séparant le noyau atomique de 1’électron considéré.
Dans le cadre de cette approximation, I’électron se trouve donc plongé dans une énergie potentielle

ZQ
U@) = 25

(7), (8.55)

égale & la somme du potentiel coulombien attractif du noyau, chargé Z fois, et d’un potentiel
décrivant 'effet moyen des Z — 1 autres électrons. La Fig. 8.5 représente de maniére qualitative
lallure du potentiel U(r). A trés grande distance, pour r trés supérieur a la taille de 'atome, la
charge Zq du noyau est écrantée par les Z —1 autres électrons, de sorte que la charge totale comprise
a l'intérieur d’'une sphére de rayon r est égale & Zq — (Z — 1)q = q, ou q est la charge élémentaire.
Le théoréme de Gauss nous permet alors d’en déduire que I’énergie potentielle est en —e? /7, comme
dans le cas de I’atome d’hydrogéne. A I'inverse, lorsque r tend vers zéro, la charge a 'intérieur d’une
sphére de rayon r tend vers Zq, de sorte que le potentiel tend vers —Ze?/r (4 une constante additive
prés). On peut finalement s’attendre & ce que le potentiel U(r) évolue continiiment entre ces deux

cas extrémes.

Barriere (€ + 1)52
. centrifuge  2m,r2

\ Energie potentielle

[
V)

<

FIGURE 8.5 — Représentation qualitative du terme U(r), passant progressive-
ment de —Ze?/r & courte distance jusqu’a —e*/r & grande distance.
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Dans le cadre de I'approximation du champ central, on peut donc écrire I’hamiltonien sous la
forme H = don h(™ ou b est un hamiltonien agissant uniquement sur 1’électron n, dont la forme

générique est I’hamiltonien & une particule
2
p

h=
2me

+U#). (8.56)

D’aprés I'étude effectuée en 5.2 sur le mouvement d’une particule dans un potentiel central, on peut
en déduire que les fonctions propres de cet hamiltonien & une particule peuvent s’écrire comme le
produit d’une fonction radiale par une harmonique sphérique. En reprenant les mémes nombres
quantiques que pour '’hydrogéne, on pourra donc écrire la partie orbitale de la fonction d’onde sous

la forme

wn,é,m(r, 0, 90) = Rn,f(r)n,m (97 @)- (857)

On sait en outre qu’en raison de l'invariance par rotation, I'énergie E, , associée a ces états ne
dépend pas de m, de sorte que chaque niveau d’énergie est dégénéré 2¢ + 1 fois. Mais, comme U (r)
n’est pas un potentiel en 1/r, les différentes valeurs de ¢ ne correspondront pas a la méme valeur
de I’énergie. Par rapport au cas particulier de 'hydrogéne, on peut donc s’attendre a une levée
de dégénérescence selon les différentes valeurs de £. En raison de la barriére centrifuge représentée
Fig. 8.5, d’autant plus importante que ¢ est grand, on sait que la densité de probabilité au voisinage
immédiat du noyau est d’autant plus faible que ¢ est grand. Par rapport a un potentiel en 1/r,
on peut donc s’attendre a ce que les niveaux d’énergie soient ordonnés comme représenté Fig. 8.6,

Iénergie augmentant avec la valeur ¢ du moment cinétique orbital.

3d (L =2)
3p(L=1
3s (£ =0

n=23 i

FIGURE 8.6 — Représentation qualitative des niveaux d’énergie E,, pour une
valeur donnée de n, ici n = 3.

L’application du principe d’exclusion de Pauli permet ensuite de remplir les niveaux d’énergie
E, , pour les différents atomes de la classification périodique des éléments, comme représenté de
maniére qualitative Fig. 8.7.

Les résultats établis ci-dessus nous permettent de retrouver la plupart des régles bien connues
de remplissage des orbitales atomiques. En premier lieu, compte tenu du degré de liberté de spin,
il sera possible de mettre deux électrons pour chaque niveau orbital. Par ailleurs, le remplissage
successif des différentes couches permet de comprendre la nature périodique des propriétés physico-
chimiques des différents éléments, celles-ci étant essentiellement déterminées par la configuration de
la couche externe. Enfin, la régle de Klechkowski, stipulant que les orbitales sont remplies par ordre
de n + ¢ croissant (et par valeur croissante de n pour une valeur donnée de n + £), s’explique par
le fait que le clivage entre les différentes valeurs de ¢ devient plus important que la séparation des
niveaux entre les différentes valeurs de n, de sorte que le niveau 4s est en fait en dessous du niveau
3d, comme représenté Fig. 8.7. C’est pour cette raison que les métaux de transition (correspondant

a ¢ = 2) n’apparaissent qu’a partir de la quatriéme ligne du tableau périodique des éléments, aprés
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—H‘ﬂ— 4p°  Ga Ge As Se Br Kr

AN 3410 ScTiV Cr Mn Fe Co Ni Cu Zn
v N'N'i(sig K Ca

I A3 Alsipsclar
—N— 35> Na Mg

-2 BCNOFNe
Vs St s

15 H He

n=1 .

FIGURE 8.7 — Représentation qualitative des niveauz d’énergie E, ¢ pour les dif-
férents éléments. En réalité, les valeurs exactes des niveauzr d’énergie dépendent
fortement de ’élément considéré, méme si l'ordre des niveauz reste essentielle-
ment conforme a la représentation ci-dessus.

le remplissage de la couche 4s. De méme, les lanthanides (couche 4f, ¢ = 3) et les actinides (couche
5f, ¢ = 3), n’apparaissent qu’a partir des sixiémes et septiémes lignes, juste aprés le remplissage

des couches 6s et 7s.



Chapitre 9

Etats non stationnaires

Lors des chapitres précédents, nous nous sommes le plus souvent intéressés & un systéme isolé,
associé & un hamiltonien H indépendant du temps. Dans cette situation, nous avons alors diago-
nalisé I’hamiltonien, sachant que la connaissance des états propres et des valeurs propres associées
permettait d’en déduire ’évolution temporelle du systéme sous forme d’une superposition d’états
stationnaires. Malgré 1’élégance et la puissance de cette approche, il peut arriver qu’elle ne soit pas
appropriée. Soit parce que I'’hamiltonien est trop grand pour étre diagonalisé de maniére exacte,
soit parce qu’il dépend explicitement du temps. Une résolution directe de ’équation de Schrédinger
dépendant du temps pourra alors étre mieux & méme de résoudre le probléme, tout particuliérement
lorsque 1'un des termes de I’hamiltonien peut étre considéré comme une perturbation par rapport a
un hamiltonien principal indépendant du temps. C’est I'objet de ce chapitre d’étudier directement

I’évolution de tels états non stationnaires.

9.1 Résolution directe de I’équation de Schrodinger

On cherche a résoudre 'équation de Schrédinger

d ()
dt

ih = H(t) [4(1)) (9-1)

dans le cas ou P'hamiltonien H (t) dépend du temps. On suppose en outre que ’hamiltonien s’écrit
H(t) = Ho+ W (¢) (9.2)

ott Hy est un hamiltonien indépendant du temps dont les états propres |n) sont connus (avec
Hy |n) = hwy |n)), et ott W (t) est une perturbation pouvant éventuellement dépendre du temps. On
suppose de plus que I'état initial |1/(0)) = |i) est un état propre de Hy d’énergie fiw;. En Pabsence
de perturbation, on sait que l'état |1)(t)) s’écrit sous la forme d’'une somme d’états stationnaires,
soit

() =Y e " |n). (9-3)

135
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Comme W(t) est petit, on peut s’attendre & ce que I’état recherché soit proche de cette premiére

approximation. Il est donc naturel de chercher la solution de I’équation de Schrodinger sous la forme
= nyn(t)efi“’"t In), (9.4)
n

o les 7y, (t) sont des fonctions du temps qu’il nous appartient de déterminer. Il ne s’agit pour
I'instant que d’un changement de variable, aucune approximation n’ayant encore été effectuée a ce

stade. Remplagons cette expression de [1(t)) dans I’équation de Schrodinger

n 0L (g i) o). (9.5)

On obtient

Zih (Y — iwnYn(t)) et |n) = nyn g twnt (H’o In) + W (t) ]n>> : (9.6)

n

ol %, = dv,/dt. Sachant que Hy|n) = hwy, [n), on en déduit
> ibdne ot n) = " (t)e W (t) [n) . (9.7)
n n
Enfin, aprés projection sur I'état |k),
ihAe Rt = Z Yo (t)e™ Ot (k| W (L) |n) . (9.8)
L’équation d’évolution du coefficient v (t) s’écrit finalement sous la forme

—% S (1) W (1), (9.9)

Ol Wi = Wk — Wy, et o0l Wiy, (t) = (k| W (t) |n) est Pélément de matrice de la perturbation W (t). On

peut alors écrire le coefficient () sous la forme de la primitive de 1’équation précédente,
i ¢ _
) =0k —3 Y / A () W () dE (9.10)
h — Jo

ot 'on a utilisé la condition initiale [1/(0)) = |i) et donc y,(0) = dx;. Bien entendu, il ne s’agit pas

d’une solution explicite puisque l'intégrale fait intervenir la grandeur & déterminer, , (¢').

9.2 Meéthode des perturbations dépendant du temps

Prenons maintenant en compte le fait que W(t) est supposé petit devant ﬁo, ce qui va nous
permettre de procéder comme au chapitre 3. On effectue ainsi un développement limité de I’état du

systéme sous la forme

() = WO ®) + [V (@) + [P () + - - (9.11)
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ot [1p®)(t)) est un terme d’ordre p par rapport a la perturbation W(t) On développe de méme le

coefficient introduit plus haut,

0 1 2
W) =50+ 75O + 570+ (9.12)
Comme on a par hypothése |¢(0)) = |i), et que |i) est un terme d’ordre zéro, on a les conditions
initiales [12©(0)) = |i) et [1)®(0)) = 0 pour p > 1. On en déduit 7" (0) = &4 et v (0) = 0 pour
p > 1. L’expression donnée par I’éq. 9.10 est parfaitement adaptée a un développement perturbatif
puisque si on injecte un terme d’ordre p dans I'intégrale, la multiplication par Wy, (¢') le transforme

en un terme d’ordre p + 1. On en déduit immédiatement
W =1 Z / et Wi (¢)dt. (9.13)

Cette derniére équation est directement utilisable puisque, connaissant vy (t) a I’ordre zéro, on pourra
le calculer & 'ordre 1, puis le réinjecter dans l'intégrale pour calculer le terme d’ordre 2, et ainsi de

suite.

9.3 Reésultat au premier ordre

Le principe de la méthode des perturbations dépendant du temps étant établi, nous allons
maintenant ’appliquer afin de calculer 1’état du systéme au premier ordre en W. Pour cela, on
injecte %(go) (t') = O; dans 1'éq. 9.13 afin de calculer 'y,(gl)(t). Seul le terme n = i subsiste dans la

somme sur n, ce qui nous permet d’écrire

. t ) ,
W) = —% / R Wi (1) dt'. (9.14)
0

On peut donc écrire au premier ordre

(1) ~ e i) Zﬂm/wm ()t 1) (9.15)
Pour comprendre 'origine physique de cette expression, on peut la reformuler comme suit

() e ) hz/—w“mwmwwm» (9.16)

Il apparait alors que 1’état |¢(t)) est une superposition entre différents termes. Le terme principal

e—iwit | .

i) correspond bien entendu & I’évolution libre de I’état initial |i) sous Iaction de I'hamiltonien
non perturbé Hy. Le second terme est lui-méme une superposition (via la somme sur k) entre tous les
états |k) accessibles sous 'action de la perturbation Wy;(t'). Pour chaque état |k) intervenant dans
cette superposition, la transition entre I’état initial |é) et I'état |k) pourra intervenir a n’importe quel
instant ¢’ € [0,¢], ce qui donne lieu & une interférence entre différents chemins quantiques traduite
sous la forme de I'intégrale sur ¢'. Pour chaque terme de cette interférence, le systéme évolue d’abord

—iw;t!

pendant l'intervalle [0,#'] dans 1’état initial |é), ce qui donne lieu au facteur de phase e , puis
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I'élément de matrice Wy;(t') lui permet de passer a 'instant ¢ de 'état |i) a Iétat |k). Il lui reste

enfin & évoluer pendant l'intervalle [t',t], ce qui donne lieu au facteur de phase e~ iwn(t=t),

Dans la suite, nous nous intéresserons plus particuliérement a la transition de I’état initial |7)
vers un état final |f) donné, également état propre de I:IO. On cherchera & déterminer la probabilité
de transition P ¢(t) = | (f|lY()) |? = |e=“rty;(¢)|?, soit simplement

Pisy(t) = s (). (9.17)

A Taide de 1’éq. 9.14, la méthode des perturbations dépendant du temps au premier ordre nous

donne finalement )
L]/t
Pz%f(t) - ﬁ /0 €lwfit Wfi(tl)dt/ . (918)

9.4 Cas d’une perturbation constante

On s’intéresse ici au probléme assez fréquent otll, sachant que le systéme est initialement dans
I’état |i), on lui applique de maniére abrupte une perturbation W a linstant ¢ = 0, comme repré-
senté Fig. 9.1. Dans la mesure ot on ne s’intéresse a 1’évolution du systéme que pour ¢ > 0, cela
revient & dire que la perturbation est indépendante du temps. On aurait pu dans ce cas diagonaliser
’hamiltonien total H = Hy + W, puis décomposer ’état |i) sur les états propres de H et écrire la
solution comme une superposition d’états stationnaires (voir par exemple I'exercice C.19). Toutefois,
lorsque W est petit, il est beaucoup plus simple de résoudre directement ’équation de Schrédinger
et d’écrire la solution dans la base propre de Hy. Une telle démarche peut aussi étre plus facile &
interpréter physiquement. C’est donc cette approche que nous allons suivre ici, en nous appuyant

sur les résultats obtenus plus haut.

LA

L\ AN

0

FIGURE 9.1 — Cas ou la perturbation W (t) est appliquée a l'instant t = 0 et
garde ensuite une valeur constante W.

Dans le cas ou W(t) =W est constant, le calcul de la primitive apparaissant dans ’éq. 9.14 est

immédiat. On obtient

. t
Y () = —% /0 et Wpdt! (9.19)

. t .
i [ezwﬁt’] i etwrit _q

—Wri = Wh———. (9.20)

iwf,-
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Cette expression peut étre symétrisée en mettant exp(iwy;t/2) en facteur, ce qui nous donne

iwfit/Q _ e_iwfit/Q

W 1 iwpit)2 €
t) = ——Wyesi 9.21
(1) = =3 Wrie 2iwpi/2 (6:21)
ou encore . ) /2
Wy - ¢ iwpit)2 ST W
t) = ——Wyeerits— 22
) = = W2 (922)
A Taide de I’éq. 9.17, on en déduit la probabilité de transition
|Wfi‘2 sin2 (,Ufit/2
() = 9.23
On peut encore écrire
%78 ; 2 QQ
Prss) = g 1) = Dy (9.21)
ou l'on a introduit d’une part la fonction
(w,t) = sin? wt/2 (9.25)
PET T w2y |
et d’autre part la quantité
Wy,
Q0 = 2! hf 3 (9.26)

La Fig. 9.2 représente 1’évolution temporelle de la probabilité de transition, qui correspond & une
variation sinusoidale de période 27/wy;. La figure représente également le cas limite ol wy; tend
vers zéro. Dans ce cas, on peut écrire

y(w,t) ~ ¢ (9.27)

w—0

ce qui nous donne une évolution quadratique de la probabilité de présence, en Q%tQ /4.

1.0
Qat? /4
0.8f
0.6
0.4t
021 Pis s (1)

088 02 04 06 08 10
Temps (27/0)

FIGURE 9.2 — Représentation de la probabilité de transition P;i_(t) évaluée a

laide de 1'éq. 9.24. La courbe en trait fin représente la limite dans le cas o
wri — 0.

Pour que le développement perturbatif au premier ordre soit valable, il faut que la probabilité
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calculée reste trés inférieure & 1. C’est en effet dans ce régime qu’il est légitime de remplacer
I’amplitude de probabilité apparaissant dans l'intégrale de 1'éq. 9.10 par sa valeur a l'ordre zéro.
Dans le cas étudié ici, le développement au premier ordre sera donc valable pour Qg < |wy;|, de
sorte que 'amplitude de la sinusoide, Q% /w?i, soit trés petite devant 1. On pourra vérifier avec
I'exercice C.19 que le résultat perturbatif est effectivement en bon accord avec le résultat exact
lorsque Q9 < |wyi|. A T'inverse, dans le cas ol wy; tend vers zéro, 'évolution parabolique nous

donne un résultat absurde aux temps longs, avec une probabilité qui devient supérieure a 1.

W (t)

—
T

FIGURE 9.3 — Cas ou la perturbation est appliquée de maniére constante pen-
dant une durée finie T .

On s’intéresse souvent au cas représenté Fig. 9.3 ou le systéme est soumis & une impulsion
de durée T, la perturbation étant maintenue constante pendant l'intervalle [0, 7]. Pour ¢ > T, le
systéme évolue a nouveau sous l’action de 'hamiltonien I:IO, de sorte que les populations dans les
différents états propres de H resteront constantes. La probabilité de trouver le systéme dans I’état

final aprés 'impulsion pourra donc étre évaluée directement & partir de la probabilité de transition

QQ ’W i’2
Piosy(T) = Pylwrin T) = —=5y(wsi T). (9.28)

La fonction y(w,T") apparaissant dans cette grandeur est représentée Fig. 9.4 en fonction de w. Au
facteur 72 prés il s’agit du carré de la fonction sinus cardinal, dont le premier zéro est obtenu lorsque

son argument est égal a 7, soit wy; = 27 /T.

Ay(w,T)
T2
w
0 %

FIGURE 9.4 — Représentation de la fonction y(w,T) en fonction de w.

On peut tirer deux conséquences de I’éq. 9.28. D’une part, la probabilité de transition de 1’état

initial vers I'état final est significative lorsque wy; est suffisamment proche de zéro, soit |wy;| < 7/T.
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Cela implique que la différence d’énergie AE = |E; — E;| soit de I'ordre de h/T, ou encore
AE X T ~ k. (9.29)

Cette relation implique que I’énergie de ’état final soit égale & celle de I’état initial, & une tolérance
h/T prés qui est inversement proportionnelle a la durée de I'interaction.

D’autre part, pour que la probabilité de transition soit non nulle, il faut bien entendu que
I'élément de matrice Wy; = (f| W i) soit lui-méme non nul. Des arguments de symétrie permettront

souvent d’identifier quels éléments de matrice de couplage peuvent étre nuls ou non nuls.

9.5 Cas d’une perturbation sinusoidale

Considérons maintenant le cas ol la perturbation est une fonction sinusoidale du temps, ce qui
pourra correspondre par exemple & une expérience de résonance magnétique nucléaire, aux horloges
atomiques discutées en 7.5, ou encore au probléme de I'interaction laser-matiére. On posera dans ce
cas

Wyi(t) = h§dy coswt = %QO (eiwt + e_w) , (9.30)

ou la fréquence w est supposée positive. On s’intéresse & nouveau a un créneau de durée finie T,
et on cherche & déterminer la probabilité de transition aprés 'impulsion excitatrice, a I'instant 7.
D’apreés I'éq. 9.14, on peut alors écrire

. T
ATy = =L [ ety (bt (9.31)
f B o

iQ ([T o T wrs
=—— / elwrit@ltgy 4 / ety | (9.32)
2 \Jo 0

On obtient donc deux intégrales au lieu d’une seule dans le cas étudié plus haut d’une perturbation
constante, la fréquence wy; étant ici décalée de £w. En remplagant wy; par wy; &= w dans 1'éq. 9.20,

on obtient alors

(9.33)

; i(wpitw)T _ i(wpi—w)T _
7(1)(T):—ZQ70 e' 1+e. 1
f 2 i(wpi +w) i(wp —w)

Cette expression fait apparaitre deux termes, qui seront résonnants pour des valeurs différentes de
la fréquence w. En effet, le premier terme sera résonnant pour w proche de —wy; tandis que le second
terme sera résonnant pour w proche de +wy;, lorsque le dénominateur tend vers zéro.

Dans le cas ot wy; est positif (ce qui correspond a Ey > E;), seul le second terme de I'éq. 9.33
pourra étre résonnant. Faisons I’hypothése d’une excitation proche de la résonance, correspondant
a la condition |w¢; —w| < wy;. Dans ce cas, le dénominateur du premier terme sera beaucoup plus
grand que celui du second terme, ce qui permet de négliger le premier terme devant le second. Tout
se passe comme si on avait une onde tournante, en e~** & la place du terme en coswt. C’est ce
qu’on appelle 'approximation de I'onde tournante (ou RWA pour rotating wave approximation), qui
consiste & ne garder que celle des deux ondes tournantes qui tourne dans le bon sens, et est donc
proche de la résonance. L’expression de 'y](cl)(T ) est alors similaire a celle donnée par I’éq. 9.20, a

condition de remplacer wy; par wy; —w. En remplagant de méme wy; par wy; —w dans I'éq. 9.28, on
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obtient alors )

Q
Pinss(T) = —Py(wri —w, T). (9.34)
A Dinverse, si wy; est négatif (ce qui correspond & Ey < E;), seul le premier terme de 1'éq. 9.33
pourra étre résonnant, pour w proche de —wy;. En faisant '’hypothése que |wy; + w| est trés petit
devant |wg;|, on pourra & nouveau appliquer 'approximation RWA, en ne conservant cette fois que
le premier terme de I’éq. 9.33. En remplacant wy; par wy; + w dans 1'éq. 9.28, on obtient alors
a5

’Piﬁf(T) = Zy(wﬁ +w,T). (9.35)

La Fig. 9.5 représente ces deux possibilités, avec un état |f) situé au-dessus de I’état initial |7) et

un état |f’) situé en-dessous.
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FIGURE 9.5 — FEzcitation résonnante pour un état final situé au-dessus ou

en-dessous de ’état initial. Dans le cas d’un couplage avec un champ électroma-
gnétique, les deux processus résonnants peuvent s’interpréter comme [’absorption
ou ’émission stimulée d’un photon d’énergie hw.

Gréce a la modulation sinusoidale de I’élément de matrice de transition, il est maintenant possible
d’effectuer une transition vers un état final d’énergie trés différente de celle de 1’état initial. C’est
dorénavant wy; & w qui doit étre proche de zéro (toujours a 1/7 prés). On peut interpréter ce
résultat trés simplement dans le cas ou la perturbation W(t) provient de Uinteraction avec une
onde électromagnétique de fréquence w. En effet, le processus ot le systéme passe de ’état initial,
d’énergie I;, vers un état final d’énergie E; plus grande peut s’interpréter comme ’absorption d'un
photon d’énergie hw. A l'inverse, lors de la transition vers un niveau d’énergie inférieure, un photon
sera émis par le systéme : c’est le processus d’émission stimulée. Si on fait un bilan d’énergie en

prenant en compte 1’énergie du photon, on observe en effet que
Ey~ E; £ hw. (9.36)

Remarquons que, comme discuté en 9.4, I’énergie est conservée a h/T prés, ou T est la durée de
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l'interaction.

9.6 Transition d’un état discret vers un continuum

Considérons maintenant la situation représentée Fig. 9.6 ot la transition s’effectue non pas vers
un état final spécifique mais vers un grand nombre d’états finals possibles, formant un continuum

de niveaux d’énergie.

/%) —|f)
o ——

FIGURE 9.6 — Transition d’un état discret |i) vers un continuum d’états finals.

Afin de caractériser la maniére dont sont distribués les niveaux d’énergie du continuum, nous

avons besoin d’introduire au préalable une nouvelle grandeur appelée densité d’états.

9.6.1 Notion de densité d’états

La Fig. 9.7(a) représente un quasi-continuum de niveaux d’énergie. On introduit alors la grandeur
N(E), qui représente le nombre d’états d’énergie inférieure ou égale & E. Comme le montre la
Fig. 9.7(b), cette grandeur augmente par sauts successifs d’une unité, a chaque fois que E atteint
I’énergie d’un état du systéme. Toutefois, dans le cas ol le nombre d’états est trés grand, c’est en
fait une version lissée de cette fonction, également représentée Fig. 9.7(b), qui va nous intéresser.
C’est cette fonction, ot 'on a gommeé les discontinuités associées a chaque état individuel, que nous

appellerons dorénavant N (E).

EA\ EA

dE]

(@) (b)

FIGURE 9.7 — (a) Quasi-continuum de niveauz d’énergie. (b) Représentation
du nombre d’états N (E) (axe horizontal) d’énergie inférieure ou égale & E (axe
vertical).

Considérons le nombre d’états compris dans 'intervalle [E, E + dE], égal & N(E+0E) — N(E).
Dans le cas ot JF est petit devant 1’échelle caractéristique de variation de N(E), on s’attend a ce
que ce nombre d’états soit directement proportionnel a dE. On introduit alors la densité d’états
p(FE), définie par

N(E+6F)— N(FE) = p(E)JE. (9.37)
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En faisant tendre J F vers zéro, on peut donc écrire

AN

p(E) = . (9.38)

A titre d’exemple, considérons le cas d’un oscillateur harmonique & une dimension, pour lequel les
niveaux d’énergie s’écrivent E, = (n + 1/2)hwg. Pour E > fuwwy/2, on peut donc écrire
E 1
NE)=|—+=]. 9.39
®)= |+ 3] (9.39)

Mais cette fonction n’est pas continue — et encore moins dérivable. Nous allons donc la remplacer

par une version lissée, que I’on obtient simplement en supprimant la partie entiére, soit

E 1
NE)=——+-. 9.40
(B) = o+ 5 (9.40)
La densité d’états s’écrit alors (pour E > hwg/2)
dN 1

Cette densité d’états est constante, ce qui n’est pas surprenant pour des niveaux équidistants. Sa

valeur est simplement égale & 'inverse de I’écart entre deux niveaux consécutifs.

9.6.2 Reégle d’or de Fermi

On se place ici dans le cas d’une perturbation constante comme celle discutée en 9.4, et on
s’intéresse a la probabilité P(t) que le systéme ait quitté I’état initial |¢) & un instant ¢ donné.
Par définition, on peut écrire cette probabilité en sommant sur les états finals |f) les probabilités

Pi_¢(t) d’atteindre chacun des états du continuum. En utilisant I’éq. 9.24, on obtient donc

. 2 _ .
Pt =Y Pist) =Y IWﬁgﬂl . <Ef . Ez,t> , (9.42)
f f

ou l'on a supposé ici pour simplifier que I'élément de matrice (f| W |i) = Wei(Er) ne dépendait
que de I'énergie Ef des états |f) contribuant a la somme. Faisons maintenant quelques hypothéses

supplémentaires :
e L’¢lément de matrice de Wy;(Ey) varie lentement avec I'énergie Ey,
o La densité d’état p(Ey) varie lentement avec Ey,
e Le temps t est choisi assez grand pour que la fonction y(w,t) soit trés étroite.

La troisiéme hypotheése est en fait directement liée aux deux premiéres, puisque la largeur caracté-
ristique de la fonction y(w,t) est de 'ordre de 27/t, ce qui nous donne une échelle caractéristique
2mh/t en énergie. Les deux premiéres hypothéses peuvent donc s’exprimer en disant que Wy;(Ey)
et p(Ey) peuvent étre considérées comme constantes lorsque E varie a I'intérieur d’un intervalle de

largeur 27h/t. Les différents termes intervenant dans la somme sur f ne dépendant que de 1'énergie,



9.6. TRANSITION D’UN ETAT DISCRET VERS UN CONTINUUM 145

commencons par remplacer la somme discréte par une intégrale sur I’énergie. On obtient ainsi

. 2 L.
P(t) =/|Wf“7§2Ef)| Yy <th E’,t) p(Es)dEy, (9.43)

ou l'on a pris soin de faire apparaitre la densité d’états pour compter exactement le méme nombre de
termes, p(E¢)dEy, lorsqu’on remplace la somme discréte par une intégrale. D’aprés les hypothéses
formulées plus haut, la fonction |Wp;(Ef)|?p(Ef) peut étre considérée comme constante dans I'in-
tervalle de largeur 27h/t sur lequel la fonction y((Ef — E;)/h, t) prend des valeurs non négligeables.

On pourra donc sortir I’élément de matrice et la densité d’états de l'intégrale, et écrire

P(t) = |Wfi|2p(Ef = Ei)/y (Ef_E’t) dEy, (9.44)

h? h

o Wy; est la valeur prise par 'élément de matrice pour Ey ~ E;. L’intégrale ci-dessus peut étre

calculée aisément a I'aide du changement de variable £y = E; + hw, ce qui donne

E; — E; oo
/y <fh7t> dEs = h/ y(w, t)dw = 2mht, (9.45)

—00

ou l'on a utilisée 1’éq. A.50 établie en annexe A.7. La probabilité de transition s’écrit alors
27 9
P(t) = ;’Wﬁ\ p(Er = Ej)t. (9.46)

Elle est donc directement proportionnelle au temps t. On peut encore écrire P(t) = I't on

F_dP_QW

== %|Wfi|2P(Ef = E;) (9.47)

est par définition le taux de transition. Le résultat que nous venons d’établir, & savoir que le taux

de transition est donné par 1’éq. 9.47, est connu sous le nom de régle d’or de Fermi.

Considérons maintenant la probabilité P;(t) = 1 — P(t) que le systéme soit toujours dans ’état

initial & I'instant ¢. D’aprés ce que nous venons d’établir, on peut écrire
Pi(t) =1-Tt. (9.48)

La probabilité P;(t) décroit donc de maniére linéaire, en conformité avec un taux de transition T’
indépendant du temps. Remarquons que ce résultat n’est pas valable pour ¢ petit, auquel cas on
s’attend & une évolution quadratique de P;(t) — comme dans le cas étudié plus haut ou il n'y a
qu’un petit nombre de niveaux couplés a I'état |i). Ce n’est qu’aux temps ultérieurs, lorsque 27h/t
est assez petit, que les hypothéses effectuées plus haut deviennent valides, donnant lieu & 1’évolution

linéaire décrite par 'éq. 9.48.

Mais 1’éq. 9.48 n’est pas valide non plus lorsque I't devient non négligeable devant 1, auquel cas
la méthode des perturbations finit par ne plus étre applicable. Au-dela du régime perturbatif, on

pourra se convaincre en traitant ’exercice C.20 que la probabilité décroit de maniére exponentielle,
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A Pz (t)

v <+

1/T

FIGURE 9.8 — FEwolution de la probabilité P;(t) pour un état discret couplé a
un continuum.

comme représenté Fig. 9.8. On obtient alors
Pi(t) = e T, (9.49)

ou I' est toujours donné par 1’éq. 9.47. On retrouve bien le déclin linéaire dans la limite ou I't < 1.
On obtient donc une évolution irréversible, associée & une durée de vie de 1’état initial de I'ordre de
1/T.

9.6.3 Emission spontanée

Le résultat que nous venons d’établir permet de comprendre pour quelle raison un systéme quan-
tique placé dans un état excité finira toujours par retomber dans I’état fondamental, contrairement
a ce qu’une application un peu trop littérale de la notion d’état stationnaire aurait pu laisser croire.
En effet, & moins de considérer I’état quantique de I'univers entier, un systéme quantique donné est
toujours plongé dans un environnement auquel il est couplé d’'une maniére ou d’une autre. Méme
si ce couplage peut étre réduit a l'extréme dans certaines expériences de physique quantique, il ne
peut jamais étre totalement éliminé. En conséquence, un état excité dit stationnaire ne ’est pas
vraiment et le systéme finira toujours par retomber dans son état fondamental.

A titre d’exemple, considérons un atome placé dans le vide, trés loin de tout autre systéme
physique. Méme ainsi, I’atome est couplé au champ électromagnétique qu’il faut traiter dans le cadre

de la physique quantique. Pour un atome préparé dans un état excité |e), I’état initial du systéme

complet devra s’écrire |i) = |e)®|0), o |0) représente I’état vide du rayonnement électromagnétique.
Cet état initial est couplé au continuum d’états |f) = |g) ® [1.7), ot |g) est I'¢tat fondamental de
I'atome tandis que |1. ;) représente 'état du rayonnement défini par un photon associé a un vecteur
d’onde k et & une diréction de polarisation €. Pour des vecteurs d’onde tels que I’énergie du photon
hkc est de l'ordre de la différence d’énergie hwe, entre les états excité et fondamental, on pourra
s’attendre & un couplage important entre les états |i) et | f). On est donc bien en présence d’un état
discret couplé a un continuum. Dans le cas d’une transition dipolaire électrique, un calcul d’optique

quantique (dont le détail sort du cadre de ce cours) permet de calculer le taux de transition suivant

3

= ﬁ;&' (el 2]g) |2, (9.50)

W,

ou z est 'opérateur position selon 'axe z de I'électron de notre atome. On peut montrer que ce
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taux de transition, qui décrit le processus d’émission spontanée, est du méme ordre de grandeur
pour la plupart des transitions électroniques dans les atomes et les molécules. La durée de vie 1/T°
varie typiquement entre 1 et 10 ns.

En nous appuyant sur les résultats de ce chapitre, nous pouvons maintenant comprendre 1’es-
sentiel de la physique intervenant lors du phénoméne de fluorescence, permettant & une molécule
excitée optiquement d’émettre un rayonnement de plus grande longueur d’onde. Comme représenté
Fig. 9.9, le processus fait d’abord intervenir ’absorption résonnante de lumiére de fréquence we,
comme décrit en 9.5. A partir de ce premier état excité, une désexcitation dite non radiative — avec
un taux de transition I'y — améne la molécule dans un état excité de plus basse énergie. Il s’agit de
I’évolution attendue pour un état discret couplé a un continuum, le continuum correspondant ici &
I’ensemble des modes de vibration de la molécule. Une fois dans cet état, la molécule se désexcite
par émission spontanée comme décrit plus haut, donnant lieu & ’émission d’un photon d’énergie
hw. Il s’agit alors d’une désexcitation dite radiative, car elle est associée & I’émission de rayonne-
ment. Enfin, un processus de désexcitation non radiatif similaire au premier permet & la molécule

de retomber dans son état fondamental, ou elle pourra absorber de nouveaux photons.
&

Fiwo B Fiw < hw,

Py

2

FIGURE 9.9 — Représentation schématique du processus de fluorescence.

Le processus de fluorescence a donné lieu & de nombreuses applications, par exemple dans 1’éclai-
rage oul des molécules bien choisies excitées par des LED bleues fluorescent & plus basse énergie pour
donner lieu & ’émission de lumiére blanche. On pourra également citer les applications aux bios-
ciences, avec ’essor des méthodes de microscopie de fluorescence excitée par laser, en régime linéaire

ou multiphotonique.
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Chapitre 10
La seconde révolution quantique

Outre leurs innombrables applications industrielles, les nouvelles technologies développées dans
le cadre de la premiére révolution quantique (1.5) ont rendu possibles des avancées scientifiques
majeures, notamment dans le domaine de la manipulation en laboratoire d’objets quantiques in-
dividuels. C’est ce domaine de recherche qui a été couronné par le prix Nobel de physique 2012,
décerné a Serge Haroche et David Wineland. Les systémes physiques étudiés par ces deux chercheurs
et leurs équipes étaient trés différents : des cavités supraconductrices permettant de piéger un ou
plusieurs photons microondes en interaction avec des atomes de Rydberg ) individuels dans le pre-
mier cas [19] et des ions individuels piégés dans le second cas [20]. Mais nombre de concepts étaient
communs et ont pu étre ultérieurement généralisés & une grande variété de systémes physiques, par
exemple des atomes individuels piégés [21], des défauts individuels dans le diamant [22] ou encore
des circuits quantiques supraconducteurs [23]. Ces nouvelles méthodes ont ainsi transformé en réa-
lité expérimentale les fameuses expériences de pensée qui ont marqué I’émergence de la physique

quantique.

Atome | Etat de polarisation
qubit Spin % lon d‘un photon

1)

FIGURE 10.1 — Quelques exemples de réalisation d’un bit quantique, ou qubit.

Pour mieux mettre en évidence le dénominateur commun entre des systémes quantiques trés
divers, on parle — lorsqu’il s’agit de systémes & deux niveaux — de bits quantiques (ou qubits). A
I'instar d’un bit d’information qui peut prendre les deux valeurs 0 ou 1, un qubit est un systéme décrit
par un espace de Hilbert de dimension 2 engendré par des états notés |0) et |1). Comme lillustre la
Fig. 10.1, les réalisations physiques d’un qubit peuvent étre trés diverses. Il pourra s’agir d’un spin

1/2, des deux états de polarisation d’un photon unique, ou encore de deux niveaux spécifiques |g) et

(3 e. des atomes placés dans des états de Rydberg circulaires, comme celui représenté Fig. 5.5(b).

149
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le) d’'un atome ou d’un ion, que l'on peut isoler des autres niveaux grace a une méthode résonnante
comme la RMN ou la spectroscopie laser. Par exemple, dans le cas des expériences réalisées a l'aide
d’atomes de Rydberg circulaires, les deux niveaux du qubit peuvent étre les états |n,n — 1,n — 1)
pour deux valeurs consécutives de 'entier n [19].

Ce que l'on appelle la seconde révolution quantique [24]| concerne les recherches actuellement
menées en vue de développer de nouvelles technologies exploitant les deux aspects les plus étranges
de la physique quantique, & savoir le principe de superposition linéaire et I'intrication. Ces aspects
ont fait 'objet de nombreuses expériences de pensée, dont les plus célébres sont le chat de Schrédin-
ger et le paradoxe EPR (voir PHY3X061). Mais, les progrés effectués dans la manipulation d’objets
quantiques individuels permettent aujourd’hui de transformer certaines de ces expériences de pensée
en réalité expérimentale.

Toutes les grandes puissances scientifiques mettent actuellement en ceuvre d’ambitieux pro-
grammes de recherche visant & contribuer & cette seconde révolution quantique, avec notamment le
plan quantique en France W et le Quantum Technology Flagship pour 'Union Européenne [25]. On
distingue habituellement quatre piliers constituant ce nouveau domaine de recherche : les capteurs,
les communications, les ordinateurs et les simulateurs quantiques.

Dans la suite de ce chapitre, nous allons évoquer biévement trois exemples de ces nouvelles
technologies quantiques : les circuits quantiques supraconducteurs, les photons individuels, et les

simulateurs quantiques.

10.1 Circuits quantiques supraconducteurs

La supraconductivité est I'un des phénoménes emblématiques de la physique quantique. Dé-
couverte par Kamerlingh Onnes en 1911 [26], elle se manifeste par une disparition totale de la
résistivité dans certains matériaux — dits supraconducteurs — lorsque leur température est abaissée
en dessous d’'une température critique T,.. La théorie dite BCS [27] a permis de bien comprendre
ce phénomeéne dans le cas des matériaux supraconducteurs conventionnels comme par exemple le
plomb (7. ~ 7.2 K) ou lalliage niobium-titane (7. ~ 10 K). En revanche, la compréhension de la
supraconductivité dite non conventionnelle, donnant lieu a des températures critiques beaucoup plus
élevées (par exemple T, ~ 135 K dans certains cuprates) reste aujourd’hui encore 1'objet d’intenses
recherches. Les applications de la supraconductivité sont multiples. En particulier, la possibilité
ainsi offerte de maintenir des courants persistants sans dissipation par effet Joule reste la seule tech-
nologie permettant d’engendrer les champs magnétiques intenses utilisés notamment en imagerie
par résonance magnétique.

Les circuits supraconducteurs quantiques sont des dispositifs électroniques & base de matériaux
supraconducteurs, que 'on peut considérer comme des objets quantiques individuels. Ainsi, un
circuit LC supraconducteur peut étre considéré comme un oscillateur harmonique quantique, &
condition qu’il soit maintenu & une température T  telle que kg1 soit sensiblement inférieure au
quantum fwyg, ot wo = 1/v/LC. Pour un circuit associé a une fréquence wo/(2m) de l'ordre de
5 GHz, on obtient une température typique de hwg/kp ~ 240 mK. Sachant qu’il existe des cryostats

permettant d’abaisser la température du circuit a environ 10 mK, on peut en conclure que le

(D https: / /www.cnrs.fr/fr /cnrsinfo /la-recherche-francaise-au-coeur-du-plan-quantique
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régime quantique est effectivement accessible & ’expérience. De plus, en remplacant 'inductance du
circuit LC par une jonction Josephson, on introduit une légére anharmonicité qui permet d’exciter
sélectivement les états |0) et |1) de l'oscillateur. On obtient ainsi un systéme a deux niveaux, c’est-
a-dire un qubit. Des concepts physiques initialement démontrés & ’aide de cavités micro-ondes et
d’atomes de Rydberg [19] peuvent ainsi étre implémentés dans un systéme constitué respectivement
de circuits LC et de qubits supraconducteurs [23]|. Les circuits quantiques supraconducteurs font
actuellement ’objet de nombreux travaux scientifiques, notamment a 1’Ecole polytechnique dans

I'équipe de Landry Bretheau et Jean-Damien Pillet [28].

10.2 Photons individuels

Aprés un long débat entre les tenants de la théorie corpusculaire, comme Newton, et ceux de
la théorie ondulatoire, comme Young ou Fresnel, on sait aujourd’hui que la lumiére est elle aussi
soumise & la dualité onde-corpuscule. Le photon présente ainsi une nature & la fois corpusculaire
et ondulatoire. Il est toutefois important de souligner que, si un phénoméne comme l’effet photo-
électrique est souvent évoqué pour illustrer la notion de photon, il ne constitue pas une preuve directe
de la nature corpusculaire de la lumiére [29, 30|. On obtiendrait en effet le méme résultat physique
si la lumiére était de nature purement ondulatoire, dans le cadre d’une théorie dite semi-classique
ou seule la matiére est traitée de maniére quantique. Ainsi, 'absorption de lumiére par un systéme
a deux niveaux {|g), |e) } peut s’interpréter en termes de photons en remarquant que 1’absorption se
produit de maniére efficace lorsque I'énergie /iw des photons est voisine de la différence d’énergie hw,,
entre les deux niveaux. Mais, a 'aide de la méthode des perturbations dépendant du temps (9.5),
nous avons obtenu exactement le méme résultat en traitant la lumiére de fagon classique. Ce n’est
qu’avec l'apparition des premiéres sources de photons uniques, dans les années 1970-1980, que la
nature corpusculaire du photon a réellement été établie de maniére irréfutable. Les premiéres sources
de ce type étaient ce que 'on appelle des sources de photons uniques annoncés. De telles sources
exploitent en fait des paires de photons, obtenus soit par cascade radiative [31] soit par des effets
d’optique non-linéaire comme 1’émission paramétrique [32|. La détection — imprévisible — de 'un
des deux photons de la paire permet de savoir que 'on dispose avec certitude d’un photon unique
associé au second mode de la paire de photons. Parmi les applications de ces premiéres sources,
on peut notamment citer les travaux d’Alain Aspect et Philippe Grangier a I'Institut d’Optique
avec le test expérimental des inégalités de Bell [33] ou encore 'observation dans un méme montage
expérimental de la nature a la fois corpusculaire et ondulatoire de la lumiére [34].

On dispose aujourd’hui de sources de photons uniques @ la demande, qui permettent d’obtenir
de maniére déterministe un et un seul photon au moment requis. Ces sources reposent sur un objet
quantique individuel, comme par exemple une boite quantique, que 'on excite a l'instant souhaité
et dont la désexcitation produit un photon unique. La Fig. 10.2(a) représente un exemple d’une telle
source, développée par I’équipe de Pascale Senellart au Centre de Nanosciences et Nanotechnolo-
gies [35]. On peut vérifier la qualité de la source en séparant le faisceau en deux puis en mesurant
le taux de coincidences observé lorsque le systéme est excité par un train d’impulsions périodiques,
ici séparées d’une période T' = 12.2 ns. Les pics observés montrent la probabilité importante de

détecter un photon sur I'un des deux détecteurs un nombre entier de périodes T' aprés avoir détecté
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FIGURE 10.2 — (a) Boite quantique excitée par une impulsion laser, placée

dans une micro-cavité optique permettant une collection efficace de l’émission
spontanée. Le faisceau émis, focalisé dans une fibre optique, est ici séparé en
deur parties envoyées sur des photodétecteurs a avalanche (APD). (b) Mesure
des coincidences entre les deux photodétecteurs en fonction du retard entre éve-
nements de détection. Extrait de Somaschi et al. [35].

un photon sur 'autre détecteur. L’absence de coincidences pour un retard nul montre que cette
source émet bien ses photons un par un, puisqu’il est effectivement impossible de détecter simul-
tanément un photon sur chacun des deux détecteurs. A ’aide d’un interféromeétre approprié, cette
source permet également de produire des paires de photons indiscernables, ce qui a été vérifié a
l'aide de leffet Hong-Ou-Mandel étudié en PC8 [35].

10.3 Simulateurs quantiques

L’une des premiéres références & un ordinateur quantique remonte & une conférence du physicien

Richard Feynman en 1982, lors de laquelle ce dernier remarquait que l'effort numérique requis pour

FIGURE 10.3 — Dispositif expérimental permettant de contréler la disposition
tridimensionnelle d’atomes individuels dans un piége optique holographique. Ez-
trait de [21].
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simuler un probléme de physique quantique augmentait de maniére exponentielle avec la taille du
systéme (de méme que la taille de ’espace de Hilbert). Il en concluait que la bonne fagon de simuler
un systéme physique était d’utiliser un simulateur lui-méme quantique, pouvant ainsi bénéficier
lui aussi d’une augmentation exponentielle de sa puissance de calcul en fonction de sa taille [36].
Ce concept d’ordinateur quantique spécialisé est ce que l'on appelle aujourd’hui un simulateur
quantique, dont ’objectif est de simuler un probléme physique spécifique. A 'instar d’un simulateur
numérique classique, un tel simulateur pourrait permettre de faire varier de maniére controlée les
paramétres du probléme, ce qui permettrait notamment de comprendre les mécanismes physiques

impliqués et de faire des prédictions théoriques dans des situations hors de portée des ordinateurs

classiques.
a Hyperboloid (90 sites) M©bius strip (85 sites)
c Cg, fullerene-like (84 sites) d Cone (100 sites)
f Eiffel tower (126 sites)
FIGURE 10.4 — Quelques structures tridimensionnelles obtenues a [’aide du

montage de la Fig. 10.3. Chaque point lumineux correspond & eractement un
atome, ceuz-ci étant disposés selon un hyperboloide (a), un ruban de Mdobius
(b), un fulleréne comportant 84 atomes (c), un coéne (d), un tore (e), ou une
Tour FEiffel (f). Extrait de [21].

Il existe de nombreux systémes physiques susceptibles d’implémenter un simulateur quantique.
Nous allons ici discuter 'une de ces approches, développée par ’équipe d’Antoine Browaeys &
I'Institut d’Optique (IOGS) et reposant sur la manipulation d’atomes de Rydberg dans des piéges
optiques. La Fig. 10.3 représente le montage expérimental correspondant, comportant un faisceau
laser diffracté par un réseau de phase programmable & ’aide d’'un modulateur spatial de lumiére
(SLM). Cette méthode holographique permet de disposer d’un ensemble de pinces optiques indépen-
dantes constituant une centaine de piéges dont les positions sont programmables en 3D. Un second
faisceau laser, dont le point de focalisation est contrélé a I'aide d’'un déflecteur acousto-optique
(AOD), permet de déplacer les atomes un par un afin de s’assurer qu'il y a exactement un atome

dans chaque piége. Les autres éléments du montage permettent de visualiser les piéges ainsi que
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les atomes, dont la fluorescence est détectée a l'aide d'une caméra EMCCD. La Fig. 10.4 repré-
sente quelques exemples de structures tridimensionnelles ainsi réalisées. On observe en particulier
une structure de fulleréne a 84 atomes (c), similaire & la structure du Carbone 60. On voit ainsi
comment cette méthode permet de construire un modéle de molécule chimique. Un autre faisceau
laser permet enfin de controler le couplage entre les différents atomes, ce qui constitue I'un des
paramétres ajustables faisant I'intérét d’un tel simulateur quantique.

En résumé, le domaine des simulateurs quantiques est actuellement en plein essor et pourrait
donner lieu & moyen terme & des dispositifs fonctionnels. Ceux-ci devraient permettre de faire des
progrés majeurs dans la compréhension de problémes physiques particuliérement ardus, comme par
exemple la chimie quantique dans de grosses molécules ou la supraconductivité non conventionnelle.
De tels simulateurs seraient également extrémement intéressant pour assister I'ingénierie quantique

de nouveaux matériaux.



Annexe A

Rappels mathématiques

Cette annexe regroupe quelques rappels mathématiques. Il n’est pas utile de refaire les calculs

d’intégrales, qui sont donnés ici uniquement a titre de référence.

A.1 Fonction d’opérateur

Etant donné une fonction d’un nombre complexe a — f(a), on peut définir la fonction f(A)
de 'opérateur A de deux maniéres différentes (mais équivalentes). La premiére méthode consiste a

utiliser le développement en série entiére de la fonction f(a), donné par

X
fla) = Z f—‘ap. (A1)
=0 P
On pourra alors écrire
R )
fA)=>" FAP. (A.2)
p=0 *~

Une autre méthode consiste a se placer dans la base propre {|n)} de 'opérateur A. On a alors

Aln) = ay|n). Dans cette base, on peut simplement écrire

F(A)n) = f(an)ln) (A-3)

ce qui permet de définir la fonction d’opérateur f (121) selon la relation
FA) =" flan)n)(n| (A.4)

ou encore, sous forme matricielle dans la base {|n)}, selon I'expression

f(ao) 0 0
= o T8 e | (A5)
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A.2 Exponentielle d’opérateur

D’apres ce qui précéde, on peut définir 'exponentielle de 'opérateur A comme

+oo %
~ Ap
=) = (A.6)

p=0

Oou encore comme

el = Zea”\n)(nl (A.7)

en utilisant la base propre {|n)} de l'opérateur A. S'il n'est pas vrai de maniére générale que
I’exponentielle d’'une somme d’opérateurs est égale au produit des exponentielles, ce dernier résultat

devient correct dés lors que les opérateurs considérés commutent.

(A, B] = 0= A8 = cAeB, (A.8)

En effet, si les opérateurs Aet B commutent, on peut d’aprés 1.4.1 se placer dans une base propre

commune {|m,n,p)}, avec

Alm,n,p) = am|m,n, p) (A.9)
Blm,n,p) = by|m,n,p) (A.10)
On a alors
e“iH%]m,n,p} = ea7”+b"|m, n,p) (A.11)
= e e |m, n, p) (A.12)
= eAeB|m, n,p) (A.13)

ce qui démontre I’éq. A.8. On peut aisément étendre ce résultat au cas d’'une somme de plusieurs

opérateurs commutant deux & deux.

[Ak, Ak/] =0 Vk, k' = exp (Z Ak> = Hexp (Ak) (A.14)
k

k

A.3 Equation différentielle linéaire du 1 ordre a coefficients constants

Il est bien connu que I’équation différentielle linéaire du premier ordre

a _

o= cf (u), (A.15)

ol ¢ est une constante, associée a la condition initiale f(ug) = fo, admet la solution unique

f(u) = f(up) exp(e(u — up)). (A.16)
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Ce résultat reste vrai pour un opérateur A(u) obéissant a I'équation différentielle linéaire

=CA (A.17)

ou C est un opérateur linéaire indépendant de u. La solution s’écrit & ’aide d’'une exponentielle

d’opérateur

Au) = A(ug) exp ((u - uo)C’> , (A.18)

comme montré par exemple en B.2.

A.4 Intégrales de fonctions exponentielles

L’intégrale du produit d’un monéme d’ordre n par une exponentielle décroissante e™** (ou A

est un nombre réel positif) a pour valeur
Heo n!
I,(\) = / e Mdr = ——. (A.19)
0
On vérifie aisément cette expression pour n =0 :
oo -1 +oo 1
Io(\) = / ey = [e—ﬂ == (A.20)
0

Par ailleurs, en dérivant par rapport a A, on obtient

dr,

+oo
bn /0 (—2)e o dz = —Ips1 (V) (A21)

ce qui nous permet de vérifier par récurrence la validité de ’éq. A.19.

A.5 Intégrales de fonctions gaussiennes

On donne la fonction gaussienne

9o(x) = . Xp< x2>. (A.22)

e —
oV2m 202
ol o est un nombre réel positif. En dérivant par rapport a x, on obtient

dg —2x 1 _% T
Py (4.23)

ce qui nous donne I’équation différentielle génératrice des fonctions gaussiennes

dg

2Y%J0 A .24
1 1 ) i 0- M

Yo ( ) L ( )
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Remarquons que l'intégrale de la fonction g, (x) est égale a 'unité. En effet

+o0 22 too oo

/ e 202dxr = J:[ e 2;Lg dxdy (A.25)

+00 2
= 277/ e 222rdr (A.26)

0
7‘2 +(X)
= /27 |:—0'2€202:| =oV2r (A.27)
0
(A.28)
soit
+oo

/ go(z)dr = 1. (A.29)

On se propose d’évaluer les intégrales de la forme

1 +o00o 9 22 +oo 9
I, = e 202dx = " go(x)dw. A.30
—=/ | et (A.30)

D’aprés 1’éq. A.29, on sait déja que Ip = 1. Pour évaluer I,, pour n > 0, effectuons une intégration

par parties

+o00
In—/ 22" (294 (x)) da (A.31)
+00 d
2 2n—1%9o
- _ d A.32
o /OO x s ( )

E— <[m2nlgg(a})]f2 — /+m(2n — 1)x2"290(x)da;) (A.33)

—0o0

+o0
= (2n — 1)02/ 22 Vg (2)da (A.34)

ce qui nous donne la relation de récurrence

I, = (2n —1)o%I, (A.35)
soit
L=02n—-1)x(2n—3)---x3x 1 x 6" (A.36)
ou encore ( )
_ 2TL - 1 . 2n
Les premiers termes s’écrivent donc
In=1 I, =0 I, = 30" (A.38)

Si on interpréte la fonction g, (x) comme une densité de probabilité (ce qui est possible en vertu de

I'éq. A.29 qui nous dit que son intégrale est bien égale & 1), la relation I; = o peut s’écrire sous la
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forme

“+o0o
(z%) = / 229, (x)dr = o (A.39)

—00
En d’autres termes, o2 est la variance associée a notre distribution gaussienne et o est 'écart
quadratique moyen.

A.6 Intégrales de fonctions lorentziennes

L’intégrale d’une lorentzienne élevée & la puissance n s’écrit

M| (2n — 2)! ™
I, = /_ A en e e (A.40)
soit , i
T v T T
h=0 =35 =35 = A4l
T 27 243 37 8P 4= 1647 ( )

Pour prouver ce résultat, commencgons par établir une relation de récurrence entre I, et I,,41 en

dérivant I'intégrale par rapport & a. On obtient

dl,, +oo —2na
@~ | Gyt = 2l (A2
ou encore L ar o1
n —
it 2na da 2na? " ( )

otl nous avons utilisé la forme en 1/a?"!

proposée pour I,,. Il est aisé de vérifier que cette relation de
récurrence est bien vérifiée grace au préfacteur apparaissant dans le membre de droite de 1’éq. A.40.

Il nous reste a établir le résultat pour n = 1, ce qui est immédiat :

tee 1 [t 1 1
L= / ———dr = / s du = — [atan u] 770 = T (A.44)
o T2+a ) o u-+1 a a

A.7 Intégrale de la fonction sinus cardinal

La transformée de Fourier inverse de la fonction créneau f(t), valant 1 dans U'intervalle [-7"/2,T/2]

et 0 partout ailleurs, s’écrit

1ot 1 [T 1 [eiwt]?/? 1 sinwT/2
- t)etdt = / Wty — [ ] et T
fw) = o= [ rmetan= o [ e = —— (A45)
/

W | CV2r w/2
Rappelons que la transformée de Fourier s’écrit alors

I ot
)= — w)e” “dw. A.46
10 =—=[ 1 (.46
Ces deux expressions permettent d’écrire 'intégrale de la fonction sinus cardinal,

oo T +% gin wT'/2 Vo [T 2T s

—00 —00
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Par ailleurs, la fonction y(w,T") définie par 1’éq. 9.25 peut encore s’écrire

-2
sin® wT'/2 9
T)=——F— =2 .
e, T) = o = o ()
Le théoréme de Parseval-Plancherel nous permet alors d’écrire
+o00 400 —+o0 +T/2
/ y(w, T)dw = 27r/ |f(w)]?dw = 27r/ |f(t)dt = 277/ dt,
o — —0 —T/2

soit

+o0
/ Y(w, T)dw = 27T.

—0o0

(A.48)

(A.49)

(A.50)



Annexe B

Quelques démonstrations techniques

Cette annexe établit un certain nombre de résultats qui ont été admis dans le corps du docu-
ment. Les démonstrations correspondantes, parfois un peu techniques, constituent de bons exercices

permettant d’acquérir une maitrise plus approfondie du formalisme.

B.1 Unitarité de 'opérateur d’évolution

Pour montrer que 'opérateur d’évolution est unitaire, commengons par calculer la dérivée du
produit Uf(¢,19)U(t, o). On obtient

% (07t t0)0 (1 10) ) = Ut t0)

U (t, to) N Ut (t,to)
. ot ot

= 0141, t0) T T (1, 10) + %m(t,to)ﬁ(t)ﬁ(t,to) ~0, (B2

U(t, to) (B.1)

ou l'on a utilisé I'éq. 2.13 (et sa conjuguée hermitienne). Le produit U'(t,to)U(t, o) est donc
indépendant du temps. Comme il est évidemment égal & l'identité pour t = tp, on en déduit
Ut(t,to)U(t, t) = I, ce qui nous donne l'une des deux conditions exprimées par 1'éq. 2.14. En
multipliant & droite par U(to,t), on obtient UT(t,t0)U(t,to)U (to,t) = U(to,t). Enfin, en utilisant
les éq. 2.6 et 2.10, on en déduit

Ut(t,to) = Ulto,t) = U(t, to) " (B.3)
ce qui — aprés multiplication a droite par U (t,tp) — nous permet de retrouver 1'éq. 2.14, a savoir

Ut (t,t0)U(t, o) = Ut to)UT(t, o) = 1. (B.4)

B.2 Développement en série entiére de 'opérateur d’évolution

Partons de 1’éq. 2.20, rappelée ci-dessous

Ult,t) = exp (—ig(t - t0)> , (B.5)
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valable pour un Hamiltonien H indépendant du temps. On peut effectuer un développement en série

entiére de 'exponentielle. On obtient ainsi
“+o00

U(t,to) = Zl‘ <_Z> (t — to)? HP. (B.6)

0

En dérivant par rapport au temps ¢, on obtient

OU(t,tg) X1 [ —i\? 1
Eat o) _ sz (,;) p(t—to)’~" HP (B.7)
p=1""

soit

Ut ty) —iHX 1 <—z’
ot h = (p—1)!

p—1
h) (t —to)P~t HPL, (B.8)
En remplacant (p — 1) par p dans la somme, on reconnait la série donnée par 1’éq. B.6, ce qui nous

donne .
oU (t, to) T oan
————— = ——-HU(t,t). B.
wt0) — 01 t0) (B.9)

On retrouve ainsi I’éq. 2.12; ce qui nous permet d’affirmer que 'expression de U (t,tp) donnée par

I’éq. B.5 est bien I'unique solution de cette équation différentielle du premier ordre.

B.3 Unitarité de 'opérateur représentant ’effet d’une isométrie

Considérons une isométrie R quelconque comme par exemple une rotation, une symétrie ou
une translation. L’opérateur R représentant cette isométrie dans 'espace de Hilbert est alors un
opérateur unitaire. Pour montrer ce résultat, remarquons que pour deux états [11) et |¢2) arbitraires,
le produit scalaire hermitien (11 |1)2) doit étre inchangé aprés application de I'isométrie. On sait que
sous Deffet de cette transformation I'état |1h;) devient R |¢;) tandis que état [1ho) devient R [1)o).
Le bra (11| devenant (41| RY, on a alors I'égalité

(W1liha) = (1] RTR [3ps) . (B.10)

Remarquons que dans le cas de £2(R3), I’égalité ci-dessus correspond au simple changement de
variable ¥ +— Rr dans l'intégrale triple apparaissant dans le membre de droite de I’égalité. La

relation étant valable quels que soient les états [11) et [¢2), on en déduit

RR=1. (B.11)
Pour conclure la démonstration, utilisons le fait que 'opérateur R est nécessairement inversible, son
inverse B! correspondant simplement & la représentation dans l’espace de Hilbert de I’isométrie
R~1. En multipliant I'éq. B.11 a droite par R_l, on obtient RTRR~1 = R_l, soit Rt = R~1. Aprés
multiplication & gauche par R, on en déduit RRT = I. On a donc bien

RRT=R'R=1, (B.12)
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ce qui signifie que I'opérateur R est effectivement un opérateur unitaire.

B.4 Vitesse d’un électron dans un cristal

Considérons un cristal unidimensionnel décrit par des bandes d’énergie E,(k;). La vitesse

moyenne d’une particule placée dans 1'état de Bloch t, , () = e™**%u,,(x) s'écrit alors

1dE,
Vp) = ———. B.13
Pour établir ce résultat, nous aurons besoin d’évaluer & diverses reprises 'intégrale du produit d’une
fonction a-périodique, notée &(x), par une fonction notée f(z). Lorsque cette derniére fonction est
lentement variable a 1’échelle de la période a, une valeur approximative de l'intégrale peut étre

obtenue en remplacant la fonction périodique par sa valeur moyenne, soit

400 a/2 400
F@)E(2)dz ~ (1 / §(x)dx> F(z)dz. (B.14)

_ a —a/2 _

En effet,

+oo +oo a/2+na
| @@= Y [ pwgeds (B.15)

—00 ne—oo Y —a/24+na
+oo a/2+na
~ Z f(na) / &(z)dz, (B.16)
e —oo —a/2+na

ou nous avons remplacé f(z) par f(na) en négligeant, conformément a I’hypothése, la variation de
f(z) alintérieur de l'intervalle [—a/2+na, a/2+na]. L’intégrale alors obtenue est simplement égale
a l'intégrale de £(x) sur une période, grandeur indépendante de n que l'on peut donc sortir de la
somme sur n. La somme sur n restante est quant a elle une valeur approchée de U'intégrale de f(x)
divisée par a, toujours grace au fait que f(x) varie lentement a 1’échelle de a. On retrouve donc bien
I'éq. B.14.

La fonction propre v, i, () n’étant pas normalisable, considérons la comme la limite du paquet

d’ondes gaussien

P(x) = ﬁg(:p)eik”umm (x), (B.17)

o g(x) est une enveloppe gaussienne lentement variable définie par
g(z) = (2m0?) "V exp(—a?/40?), (B.18)

ol ¢ est un nombre réel trés supérieur a la période a du cristal. Pour normaliser la fonction v (z),

évaluons la grandeur

a/2 400

[tn, K, ($)2d$/ g(x)2dx, (B.19)

—00

wivh=a [ " (@), (o) 2 ~ /

—o0 —a/2

oil nous avons appliqué I'éq. B.14 avec f(z) = g(z)? et £(z) = |un, (7)]?. La gaussienne étant
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normée, on en déduit que

a/2
(Wlp) = / i, () Pz (B.20)

—a/2
Le ket |¢) sera donc bien normé & condition de supposer que la fonction périodique u, ;, (x) est
normée sur une période. Dans toute la suite, nous allons considérer ’espace de Hilbert &, constitué

des fonctions a-périodiques muni du produit scalaire hermitien

a/2
(uv) = / u*(z)v(z)de. (B.21)

—a/2

D’aprés 2.5, nous savons que |uy,) est fonction propre de I'hamiltonien f[kz, agissant dans &, et

défini par
a (ﬁac + hkz)Q
Hy, = —F—— B.22
o= L v ), (B.22)
selon la relation
I:Ikz ‘un,kz> = En(kz) |Un,kz> . (B.23)

Le systéme étant placé dans 1’état |¢), calculons maintenant la vitesse moyenne, définie par

Ax 1 “+00 . hd
<¢mw>=W=m/ V(@) ;%dm (824

En remarquant que dg/dz = —xg(z)/(20?), on obtient

W b(e) + ik 0(@) + Vag(z)eer ks (8.25)
soit
w0 m%wm)mﬁkxww+ag< e, () L (B.26)
et finalement ) too B du,,
(ve) = ihg 1 S - / ) up g, ()5 = da (B.27)

Le premier terme est imaginaire pur tandis que les deux suivants sont clairement réels. Le résultat
final devant étre réel, le premier terme est donc nécessairement nul (ce qu’on peut vérifier en appli-
quant 'éq. B.14 avec f(z) = zg(x)? et £(x) = |up, (z)[?, et en remarquant que la gaussienne est cen-
trée). Par ailleurs, en utilisant & nouveau 1'éq. B.14 avec f(x) = g(x)? et £(x) = uy, . (@) duy , /dz,

on obtient finalement

hk, 1 [Te/? B duy,
sy Bk 1 x hdung, B.28
<w‘ Vg ‘w> m + m _a/2 un,kz (.’IJ) Z d.’E €z ( )
soit . .
m
Pour conclure la démonstration, remarquons que FEy,(k;) = (up i, | Hy,, [tin g, ) et calculons
dE, (k;) dH;, d (un | 5 o d|upg,)

~ (u, L : . | iy, k) B.30
d. (| =g Nt ) 4 = Hy [ttm e ) Gt | He, = (B.30)
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Sachant que Hy, |unp,) = En(kz) |ung,) et (Unp,| Hy, = En(kz) (U, |, on en déduit

) — gy e | —2E Juy, E,(ky) | — 252l 1y, k| el B.31
) i S )+ B (G )+ (] L (B.31)
dHy, d

Or (up k, |tn,k,) = 1 est indépendant de k,, ce qui nous permet d’en déduire

dE, (ks) dH
Enfin, en dérivant I’éq. B.22 on obtient
dH,, h
© by + liky), B.34
T ) (B-34)
sore dE, (ky) h

Cette expression, associée a 1'éq. B.29, nous permet d’établir le résultat recherché.

B.5 Meéthode variationnelle linéaire

La méthode variationnelle linéaire introduite en 3.2.4 s’appuie sur deux résultats d’algebre li-
néaire démontrés dans cette annexe. Il s’agit de ’équivalence entre diagonalisation et minimisation
dans un sous-espace vectoriel, et du fait que les valeurs propres ainsi obtenues sont des bornes

supérieures des valeurs exactes, y compris pour les niveaux excités.

B.5.1 Minimisation dans un sous-espace vectoriel

Montrons que la recherche des extremums de la fonctionnelle

B(w) = ! (8.0

est équivalente a la diagonalisation de ’hamiltonien H , d’abord dans ’espace entier puis a 'intérieur
d’un sous-espace vectoriel. Pour cela, considérons un déplacement arbitraire et infinitésimal |d1))
autour du point [ et différentions I'égalité (v|i)) E = (4| H 1) déduite de I'éq. B.36. On obtient

(W) OE + (6169) E + (5vly) E = (| H 69) + (59| H |¢). (B.37)
ol 0F est le déplacement associé pour ’énergie /. On peut encore écrire
(W) 6E = (4| (H — E) |69) + c.c. (B.38)

ol c.c. représente le complexe conjugué du terme précédent. On en déduit immédiatement que si |1))

est un vecteur propre de H pour la valeur propre E, alors 6 E' = 0 pour tout |0%), ce qui revient a
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dire que la grandeur E(|1))) est bien stationnaire en ce point. Inversement, si  E' est nulle pour tout
|6¢), alors on peut par exemple choisir [6¢)) = n(H — E) 1)), ot 7 est une grandeur infinitésimale
réelle. En remplacant dans 1’éq. B.38, on obtient 7 (¢| (I:[ — E)?|¢) + c.c. = 0, ce qui peut encore
s'écrire ||(H — E)|4) || = 0. On obtient donc H |[¢)) = E|¢)), ce qui signifie que [¢)) est vecteur
propre de H pour la valeur propre E. La recherche des points stationnaires de la fonctionnelle
dans I'’ensemble de 'espace de Hilbert est donc équivalente & la recherche des vecteurs propres de

I’hamiltonien H, ce qui est en soi un théoréme important.

Mais dans le cas de la méthode variationnelle linéaire, les variations de |¢) sont confinées a
Iintérieur du sous-espace vectoriel Eqgeai- 11 est alors utile d’introduire le projecteur P sur I’espace
Eessai €6 de définir 'opérateur h = PH ]5, qui correspond & la restriction de ’hamiltonien H dans
sous-espace vectoriel Eggsai- En effet, les éléments de matrice de h entre deux vecteurs de base
appartenant a Eeggai sont identiques a ceux de H (puisque le projecteur P est alors sans effet), tandis
que les éléments de matrice entre deux vecteurs de base appartenant au sous-espace supplémentaire
orthogonal & Eegsai seront égaux a zéro. Considérons donc un vecteur [1)) € Eessai correspondant a
un extremum de la fonctionnelle E(|1))), ce qui signifie que pour tout [01)) € Eegeai 0N aura 6F = 0.
En procédant comme ci-dessus, choisissons le cas particulier [6¢)) = nP(H — E) |¢). L’application
du projecteur P nous assure que |d7)) est bien un élément de Eegsai. En remplagant dans I'éq. B.38,
on obtient

n (| (H - EYP(H — E)[¢)) + c.c. =0 (B.39)

ce que 'on peut encore écrire

~

0 (Y| P(H = E)P(H — E)P|[¢)) + c.c. = 2 (| (h = E)(h — E) [¢)) = 0 (B.40)

puisque P [)) = [¢). On en déduit ||(h — E) [¢) |2 = 0. Notre vecteur |¢) est donc bien un vecteur
propre de h pour la valeur propre E. Inversement, si [¢)) est un vecteur propre de h pour la valeur
propre E, alors on a évidemment §F = 0 pour tout [01)) € Eegsai, ce qui achéve la démonstration
du résultat annoncé plus haut. En conséquence, pour déterminer les extremums de la fonctionnelle

E(|4)), il nous suffira de diagonaliser la restriction de 'hamiltonien au sous-espace vectoriel Eegsai-

B.5.2 Majoration des valeurs propres exactes

Nous allons montrer ici que les valeurs propres de la restriction de I’hamiltonien & l'intérieur du
sous-espace vectoriel Eegsai sSont des bornes supérieures des premiéres valeurs propres de I’hamiltonien
H. Pour établir ce résultat, appelons |n) les vecteurs propres de I’hamiltonien H et E, les valeurs
propres correspondantes, soit H |n) = E,|n), avec la convention Ey < E; < Ey < --- Posons de
méme iLWJn) = €n|thn), avec €9 < €1 < €3 < -+ et |Py) € Eessai- Pour montrer que €, > E, pour
tout n inférieur ou égal a la dimension de l'espace Eegsai, introduisons un ket [¢)) € Eessai engendré

par les n + 1 premiers vecteurs propres de h:

n

|¢> = Z Cm|wm> (B.41)

m=0
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La valeur moyenne de h lorsque le systéme est placé dans 1'état |¢), résultant d’une moyenne

pondérée de €g, - - - , €, est naturellement inférieure ou égale a €, :
n n
WlhlY) = lemlPem <D lemlen = €n (B.42)
m=0 m=0

ou l'on a utilisé le fait que |¢)) était normé. Choisissons maintenant les coefficients ¢, de sorte
que |1) soit orthogonal aux n premiers vecteurs propres de H, soit (ml) =0Vm < n—1. Au
sein de l'espace vectoriel de dimension n + 1 défini par I’éq. B.41, 'ensemble des solutions du
systéme homogéne constitué par les n équations linéaires (m|y) = 0 est en effet un espace vectoriel
de dimension supérieure ou égale & 1, ot nous pourrons choisir un vecteur normé [i) approprié.

Comme 1)) € Eegsai, ON peut en outre écrire (Y|hly) = (Y|H 1), soit

(W|Rlp) = (| H|p) (B.43)
+oo

= (Y[H Y [m)(m|) (B.44)
o m=0

— Z Ep|(ml)|? (B.45)

> Z Eu[(m|)? = E, Z [(m|)|? (B.46)
On peut donc en conclure e, > (¢|h|yp) > E,, ce qui démontre le résultat annoncé.

B.6 Relations de commutation entre les composantes de J

Sachant que le moment cinétique J est défini comme le générateur infinitésimal du groupe des
rotations (éq. 4.1), il est possible d’établir de maniére générale les relations de commutation entre ses
composantes cartésiennes. Pour cela, considérons une rotation d’angle o autour du vecteur unitaire

@ = (cos¢,sin@,0) placé dans le plan zy, comme représenté Fig. B.1. On peut exprimer cette

FI1GURE B.1 — Rotation d’un angle o autour du vecteur i situé dans le plan xy.

rotation comme la composition d’une rotation autour de 'axe z d’angle —¢, qui raméne le vecteur

i selon 'axe x, suivie d’une rotation autour de I’axe = d’angle «, suivie enfin d’une rotation autour
3 5 . — < P . . ~ o -~ a a

de 'axe z d’angle +¢ qui remet le vecteur @ a sa place initiale. Ainsi Ry, = R, 4Rz oR. —4. En

exprimant les opérateurs rotation & I'aide du moment cinétique, on obtient

i Jq P2 ~i% s,

‘*\9
‘r\e

25 (B.A47)

Cb
W‘Q
W\Q

=e
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Faisons tendre « vers zéro et effectuons un développement au premier ordre en « :

I— z%j 7= e i <f - z%jx> et = — i%e_i%jz jxei%jz. (B.43)
En identifiant les termes d’ordre 1 en «, on en déduit
J = e ih: jxei%jz. (B.49)

On considére maintenant le cas ol ¢ tend également vers zéro. Le membre de gauche de 1'eq. B.49
s’écrit alors J - @ = Jy cos o+ jy sing = Jp+ ¢jy, au premier ordre en ¢. En développant de méme

a lordre 1 en ¢ le membre de droite de ’eq. B.49, on obtient

Jot o, = <f - ij) J, <f+ ;éj) =y iy ). (B.50)
En identifiant les termes d’ordre 1 en ¢, on obtient la relation de commutation [jz, jx] = ihjy. Les
deux autres relations de commutation peuvent s’obtenir soit par simple permutation circulaire, soit

en placant le vecteur @ dans le plan yz ou zz. On en déduit donc les trois relations de commutations

énoncées a 'éq. 4.5.

B.7 Dimension des espaces propres communs de J? et J,

Sachant que notre espace de Hilbert est de dimension supérieure ou égale a 1, nous savons qu’il
existe au moins un vecteur propre commun aux observables J2et J,. Appelons j(j+1)h% et moh les
valeurs propres correspondantes. Partant de ce vecteur propre, appartenant a I’espace &; ,,, nous
pouvons construire & ’aide de l'opérateur J_ une série d’éléments appartenant aux espaces &,
pour m =mg—1,mg—2,---,—j 4+ 1,—j. Le processus ne s’interrompra qu’aprés avoir atteint un
élément de 'espace &; _;, auquel cas une nouvelle application de 'opérateur J_ ne donnerait que le
vecteur nul. Nous en déduisons donc que 'espace &; _; existe. Construisons une base hilbertienne de
cet espace et notons-1a {|n,j, —j)}, ot n est un indice variant de 1 & la dimension (éventuellement
infinie) de &; ;. A partir de cette base, construisons les vecteurs notés |n, j, m) définis par la relation
de récurrence ) .

inyjym 4 1) = —— IS m) . (B.51)
V3G + 1) —m(m + D)h

En faisant varier 'indice m de —j & 7, nous allons montrer par récurrence que, pour j et m fixés,

{In,j,m)} constitue une base hilbertienne de chacun des sous-espaces &j,,. Ce résultat est par
définition vrai pour m = —j. Supposons donc que le résultat soit vérifié pour m, et cherchons a le
montrer pour m + 1. Remarquons tout d’abord que ces vecteurs forment une famille orthonormée.
En effet,

(n, g, m|J_Ji|n, j,m)

' 1n’,j 1) = :

(B.52)

Or, d’aprés 'éq. 4.15, nous savons que J_J|n/,j,m) = (j(j + 1) — m(m + 1))h2|n’, 5, m). Donc
(n,j,m+1n', j,m + 1) = (n, j,m|n’,j,m) = d, . Montrons maintenant que ces vecteurs linéai-

rement indépendants engendrent bien la totalité de I'espace &£ ,41. Pour cela, considérons un état
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|¥) quelconque dans &, +1. Nous savons alors que j_]w> appartient a I'espace &, et peut donc
s’écrire comme une combinaison linéaire des vecteurs de base de cet espace : J_|1)) = > on Cnln, Jym).

En faisant agir Jo sur cet état, on obtient

JoJ_|p) = chj+|n,j, Z Vi(G+1) —m(m + 1)hcy|n, j,m +1). (B.53)

Or nous savons d’apreés I'éq. 4.15 que J,J_ = J2— jz(jz - hf) Comme [¢) € &jm+1, 'action de ce
produit d’opérateur sur |¢)) peut étre directement remplacée par une multiplication par le scalaire
GG+ —(m+1D)(m+1-1)A%=(j(j +1) — m(m + 1))h%. On obtient donc

In, j,m + 1) (B.54)

Z\/mﬂ m(m + 1)k

d’ot 'on peut déduire que {|n, j,m+1)} constitue bien une base hilbertienne de &; y,41. Ceci conclut

la démonstration par récurrence. La dimension des espace &; ,, est donc indépendante de m.

B.8 Opérateurs différentiels associés au moment cinétique orbital

Pour déterminer I'expression de 'opérateur L, en coordonnées sphériques, considérons une ro-
tation d’angle v autour de l’axe z, transformant un point de coordonnées (x,y, z) en un point de

coordonnées (z/,y’,z'). On a alors

x 1 0 0 x x
vy | =10 cosa —sina y | .=| ycosa—zsina (B.55)
2 0 sina cosa z ysina + zcosa

Dans le cas d’une rotation infinitésimale d’angle da autour de ’axe x, on obtient donc

x x
v | = y—2zda |. (B.56)
2! yda + z

La coordonnée r étant conservée lors d’une rotation, la différentiation de 1’éq. 4.35 nous donne

dx = r cos 0 cos pdf — rsin 0 sin pdyp = 0 (B.57)
dy = 7 cos 0 sin pdl + rsin 6 cos pdp = —r cos Oda (B.58)
dz = —rsin 0df = rsin 6 sin pda (B.59)
soit df = —sin p da et
cosfcosp CoS ¥
dp = ———dbf = do B.60
Y= sinfsin ©  tan6 ( )

On en déduit

R .0 cos @ O
Ry dotb(1,0,0) = Y(r,0 — db, o — dp) = ¥(r,0, ) + smsoaigda + tanz a:ﬁ a

(B.61)
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En comparant avec R, go = I — (i/ h)Lyda, on identifie

o, COW%) : (B.62)

R h
wa(T, 0, 90) =7 <Sln 89 tan 6 880

ce qui nous redonne bien 1'éq. 4.39. Pour déterminer I’expression de 'opérateur L,, on procede de

méme avec une rotation d’angle a autour de ’axe y, associée a la transformation

x’ cosa 0 sina x xcosa+ zsina
y | = 0 1 0 y | = y (B.63)
2 —sina 0 cosa z —zsina + z cos «
Dans le cas d’une rotation infinitésimale d’angle da autour de ’axe y, on obtient donc
x x4+ zdo
y | = y (B.64)
2! —zda + z
En procédant comme plus haut, on obtient
dx = r cos 6 cos pdf — rsin 6 sin pdp = r cos Oda (B.65)
dy = r cos 6 sin pdf + rsin 0 cos pdp = 0 (B.66)
dz = —rsindf = —rsin 6 cos pda (B.67)
soit df = cos pda et dp = sm‘pda On en déduit
. 0 iny 0
Ryaatb(r.0,) = 0(r,0 = dB. p = dp) = ¥(r,6.0) ~ cospgida+ o0 lda (B68)
En comparant avec Ry 4o = I — (i/h)Lyde, on identifie
- h 81/1 sin o O
L 0 = - —_— B.69
w(nb9) =3 (COS 790 tan6 0y (B.69)
ce qui nous redonne bien 1’éq. 4.40. Connaissant Ly et f/y, on peut en déduire
. . s . . . 0 cosp +ising O
Liy=L,+ilLy,=ih ((smgp Ficosp)— 50 + W&p) (B.70)

ce qui nous permet de retrouver 1'éq. 4.42. Enfin, en utilisant 1’éq. 4.15 qui nous donne 2 =
IA/_IZJF + ﬁz(ﬁz + hf), on obtient

. » 0 O\ /(0 0 o (0
2 _ g2 -t [ _ ip B2
L* = h%e < 89+ZCOt06<,o> (ae—mcoteaw) 15 99 <8 + > (B.71)
0? Ocotd O 0 0 0? 0
Sy L - — ] - 2 )——s —1— B.72
h ( 502 i 90 9y cot9<80+zcot«98¢> (cot” 0 + )8<p2 Z&p) (B.72)

2 Ceoc2 ) win2
:—h2< 1 ﬁs 924_.1 0 —|—i1 COS.H sin 98) (B.73)

sin 6 90 90 sin? 0 0p? sin® 0 dp
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oit on a utilisé la relation 9/06sin 6 9/06 = sin @ 9 /96* + cos 0 9/00 = sin 0(9* /96% + cot § 3/D0).

Le terme en 0/0¢ étant nul, on retrouve bien 1'éq. 4.43.

B.9 Le probléme & deux corps

Cette annexe porte sur ce que ’on appelle le probléme a deux corps, correspondant & un systéme
constitué de deux particules interagissant entre elles. L’espace de Hilbert associé & ce probléme est
le produit tensoriel £ = £2(R3) ® £L2(R?), la fonction d’onde décrivant Iétat du systéme s’écrivant
alors W(7, %), ol 7] et 7 correspondent aux positions de chacune des deux particules. L’hamiltonien
total décrivant le probléme s’écrit

~2 ~2
Hio = 51 g2 V(72 =7 (B.74)
ou V(r) est le potentiel d’interaction entre les deux particules. En raison de I'invariance par trans-
lation et par rotation du systéme, ce potentiel ne dépend que de la distance r = ||7%'2 — 7%'1|| entre les
deux particules. Comme en mécanique classique, on peut considérablement simplifier la résolution
de ce probléme en remarquant qu’il se découple en deux problémes indépendants, correspondant
d’une part au mouvement du centre de masse et d’autre part au mouvement relatif entre les deux

particules. On effectue ainsi un changement de variable en posant

- m17_"1 + MQFQ
R=—17~-_=° B.75
- (5.75)

qui correspond a la position du centre de masse, M = mj + mo étant la masse totale du systéme, et
=17y —T] (B.76)

qui correspond & la position relative de la particule 2 par rapport a la particule 1. En inversant ces

deux relations, on obtient

=R- L7 (B.77)
my
et
S
. (B.75)
ma

ot (B.79)

On peut alors introduire une nouvelle fonction d’onde @(ﬁ, ) s’exprimant en fonction des variables

R et 7, ce qui nous donne

O(R,7) =¥ (Fz - LR R+ “F) , (B.80)
mq meo
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ol 7 est une constante permettant d’assurer la normalisation de la nouvelle fonction d’onde .
Le fait de travailler dorénavant avec la nouvelle fonction d’onde @(ﬁ,f‘) revient a dire que nous
écrivons I'espace de Hilbert sous la forme d’un nouveau produit tensoriel £ = £L2(R?) ® £2(R3), ot
le premier espace correspond maintenant a la position R du centre de masse tandis que le second
espace correspond a la positiAon 7 d’une particule fictive de masse p. Il nous faut maintenant identifier
les observables impulsions P et 1%’ associées & ces deux nouvelles variables, en utilisant la définition

de 'impulsion comme générateur infinitésimal du groupe des translations. Ainsi,

o(R — da,7) = n <R—da’— P 7 R—di+ ”f) (B.81)
mi meo
, o o
- @ —pn—.dd —n—-da B.82
(R,7) Nom 40— 5= - da (B.82)

<1 - % (51 ﬂ%) -d&) (R, 7). (B.83)

Sachant que ®(R — da,7) = (1 — (i/h)P - d@)®(R,7), on en déduit que 'impulsion associée au

mouvement du centre de masse n’est autre que I'impulsion totale

1>

P = py + ph, (B.84)

3

en accord avec 1’éq. 2.75. Procédons de méme pour une translation de la variable . On obtient alors

®(R, 7 — da) = nv ( R Ly Lga Ry Lo “dd) (B.85)
mi mi mo ma
q 1 O v
— (R — Y gy Y e (B.86)

mi 8771 mgaT?g
I R Y R U B
= (1 P H (m2 ml) da) O(R,T) (B.87)

Sachant que ®(R,7 — da) = (1 — (z/h)ﬁ d(z’)@(ﬁ, 7), on en déduit que I'impulsion associée a la

variable spatiale 7 s’écrit

mimz MiPy — MeP1L  MiP2 — Mapi

5= B.88
p mi + mso mi1meo M ( )

En inversant les éq. B.84 et B.88, on peut exprimer les impulsions des deux particules en fonction

des nouvelles observables & 'aide des relations

S ({5
P1= —+

i —p et  Ph=-—P+7p. (B.89)

B

Ces expressions nous permettent de reformuler 1’énergie cinétique totale du systéme

B, _m P
+ ==+ + St —+2—,
2m1 2m2 M 2m1 2m1 M 2m1 M 2m2 2m2 M 2m2

(B.90)

() Cette constante pourrait étre facilement calculée a I’aide du jacobien associé au changement de variable, mais sa
valeur exacte n’a pas d’importance pour la suite.
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soit Y Y . Y

2%1 21:52:2];\44-5”. (B.91)
On retrouve donc le méme résultat qu’en mécanique classique (voir par exemple 4.5.2 dans le cas
P = 0), a savoir que ’énergie cinétique des deux particules peut s’écrire comme la somme de
I’énergie cinétique du centre de masse et de I’énergie cinétique d’une particule fictive dont la masse
est égale a la masse réduite p = myma/(m1 + mga). On peut alors écrire ’hamiltonien total du

systéme (éq. B.74) avec les nouvelles observables sous la forme

~ A~

ﬁtot = Hcm + H (B92)

ot Hyy = P2/(2M) correspond a hamiltonien du centre de masse et
H=—+V() (B.93)

correspond & I’hamiltonien de la particule fictive placée dans le potentiel central V(r). De plus, on
peut affirmer que les opérateurs H_ et H commutent car ils agissent dans deux espaces différents.
La diagonalisation de I'hamiltonien Hio peut donc se ramener & la recherche d’une base propre
commune des opérateurs He.n et H. En utilisant les états propres \ﬁ> de 'opérateur impulsion

totale, on peut donc écrire les fonctions propres de ’hamiltonien total sous la forme

oiP-R/h

®(R,7) = PTG

P(), (B.94)
o ¥(7) est une fonction propre de H associée a la valeur propre E. L’énergie totale sera alors égale
a P?/(2M) + E. Le mouvement du centre de masse étant ici trivial, on s’intéresse en général au

mouvement relatif gouverné par 'hamiltonien H , comme par exemple en 5.2.

B.10 Détermination des fonctions radiales de I’atome d’hydrogéne

L’objet de cette annexe est de démontrer les résultats annoncés en 5.3 sur les niveaux d’énergie
et les fonctions propres radiales de 'atome d’hydrogéne, en s’inspirant de ’exercice 6 du chapitre 11
de [1] (mais avec des notations sensiblement différentes). On considére pour cela 'équation radiale
pour I'atome d’hydrogéne associée & I’hamiltonien effectif H, défini par I'éq. 5.26, pour une valeur

donnée ¢ du moment cinétique orbital :

. n: d? 0+ 1R e
Hou(r) = <_2,ud7“2 + (2ﬁ”2) - 7“) u(r) = Bu(r). (B.95)

On utilise comme unité de longueur le rayon de Bohr a; = h%/(ue?) et, comme unité d’énergie,

I’énergie d’ionisation de I'atome d’hydrogéne

4 2
1
— K C e~ 1366V, (B.96)

B, =
= 9m2 = 24, 2
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On montre aisément que I’équation aux valeurs propres faisant intervenir les variables sans dimension
p=r/a; et e = E/E; s'écrit alors

. 2
peatp) = (5 + = 2) o) = o (B.97)

P

On introduit 'opérateur différentiel

agp=-——-——-—. (B.98)

Son adjoint s’écrit alors

ot _ B a B
Gy =57 p +dp' (B.99)

En effet, 'observable correspondant a p est I'opérateur différentiel —id/dp. Donc —id/dp est auto-
adjoint, ce qui implique que I'adjoint de d/dp soit —d/dp (résultat que 'on peut aussi établir a

laide d’une intégration par parties). Le produit &gd; s’écrit

st (L Ll dN( 1 e+l d
ey p dp) \£+1 p dp

L0 11 d 1 1P (e1d 1 d feld (41 &
S+ 12 p  L+1dp p P> p dp (+1dp p dp P2 dp?
& e+ 2, 1
o dp? p? p o (£+1)
A 1
=h
‘e
De méme
g (11 da\( 1 fe1 4
A VN P dp) \L+1 P dp
LU 11 d 1 1P (e1d 14 fe1d (41 &
S (0+1)2 p L+1dp p p? p dp (+1dp p dp p? dp?
& (5+1)(£+2)_g+ 1
dp? P> p o (L+1)
A 1
=h
f+1+(€+1)2

Intéressons nous maintenant a ’action de l'opérateur dz sur un état propre |u) de hy associé a la

valeur propre €. D’aprés ce qui précéde, la relation ﬁg|u> = €|u) peut s’écrire

(a,ga; - (Hll)g> |u) = €|u). (B.100)

En faisant agir I’opérateur &z sur cette équation, on obtient

S s 1 STy At
(agag “ U+ 1)2) aylu) = ayelu), (B.101)
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soit Ee+1&;’u> = e&}]u). Le vecteur d}\u) est donc soit nul soit vecteur propre de Ay, pour la méme

valeur propre €. De méme, la relation hy|u) = €|u) peut aussi s’écrire

g 1
(a}_lau - £2> [u) = €[u). (B.102)

En faisant agir 'opérateur a,_1 sur cette équation, on obtient

P 1Y . .
(w]azl—ﬁ)aenuw-wldm, (B.103)
soit ﬁg,lfzg,l\u) = edy_1|u). Le vecteur ay_1|u) est donc soit nul soit vecteur propre de he_y pour

la méme valeur propre €. Par ailleurs, le carré de la norme de d}|u> s’écrit

) = e 4+ — (B.104)

A T _ 5
a1 = Gl = o (7 -+ TP

1
(L+1)2
Cette grandeur étant nécessairement positive ou nulle, on en déduit

¢ > —(€+11)2. (B.105)
On peut maintenant employer un raisonnement similaire & celui utilisé par Dirac pour loscillateur
harmonique ou par Cartan pour le moment cinétique : pour une valeur donnée de ¢ < 0, 'action
successive de CALZ, dz 1 &z 4o, etc. permet de grimper dans I'échelle des valeurs de £ jusqu’a un point
ou l'inégalité ci-dessus ne sera plus valable, ce qui serait absurde. Il faut donc que ce processus
s’arréte. On en déduit qu'il existe une valeur fy,x de ¢ telle que |u) soit vecteur propre de il@max
pour la valeur propre € mais que dzmax|u> soit le vecteur nul. Le carré de la norme de ce dernier
vecteur s'écrit € + 1/(lpax + 1)2 = 0. En considérant le nombre entier défini par n = £pax + 1, on

en déduit que les seules valeurs permises des énergies des états liés vérifient la condition

1
n2’

(B.106)

€=¢€, =

Dans le cas o £ = f1nax = n—1, on peut écrire d;rl_1|u> = 0. On obtient donc I’équation différentielle

du premier ordre

(1 _ % + jp) u(p) = 0. (B.107)

n

Il s’agit d’une équation différentielle aux variables séparables, que I'on peut mettre sous la forme

d 1
du _ _ ( N ”) dp (B.108)
u nop
qui s’intégre en
Inu(p) =nlnp — Py Oste = Inp" — Py Cste (B.109)
n n

soit
Upn—1(p) x p"exp <—§) . (B.110)
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On pourrait calculer explicitement les autres fonctions radiales a 1’aide de la relation

ap—1|Un.¢)
U 1) = ot B.111
e TP T (B.111)

le dénominateur étant non-nul en raison de la relation

1 1

A . . - 1
et fun) P = (tmelaf_y e un,g) = (t e (he + 6) ) = =5+ 5 >0 (B.112)

car £ < n.

Montrons par récurrence le résultat annoncé en 5.3 avec 1'éq. 5.32, stipulant que uy,¢(p) est
“exp(—p/n).
D’apreés l'expression de wy, ,—1(p), ce résultat est bien vérifié pour £ = n — 1. Supposons donc le
“Lexp(—p/n), ou P(p) est

un polyndéme de degré n’ = n — £ — 1 ne s’annulant pas en 0. On obtient alors

le produit d’un polynéome de degré n’ = n — ¢ — 1 (ne s’annulant pas en 0) par p

résultat valable pour une valeur donnée de ¢ et posons u, ¢(p) = P(p)p

fe-rme(p) = (2 - ﬁ - ddp> P(p)p™*" exp(—p/n) (B.113)
= (PO = P = )P 4 PO ) explp/)

(B.114)

(5 +7) P - e+ 0P =% ) o expl-pm (B.115)

Le préfacteur est clairement un polynéme de degré n’ +1 = n — (¢ — 1) — 1, prenant la valeur

(204 1)P(0) # 0 en p =0, ce qui démontre bien la propriété recherchée pour w, ¢—1.

B.11 Théoréme de Helmholtz-Hodge

Le théoréme de Helmholtz-Hodge stipule que tout champ de vecteur V(f‘) peut s’écrire comme

la somme d’un rotationnel et d’un gradient, soit
V() =V x A(F) — VU (7). (B.116)

Nous allons en donner ci-dessous une démonstration simple en passant dans ’espace de Fourier.

Définissons la transformée de Fourier du champ V(7) & D'aide de I'expression

- 1 Lo N

V(k) = (2n)i2 jff V(7) exp (—zk : 7“) d’r (B.117)
On rappelle qu’on peut alors écrire la relation inverse

V() = (2;)3/2 [[f V) exp (i - 7) (B.118)
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En dérivant cette équation par rapport a x, on obtient

g‘; — (273)3/2 JJJ v Eyiks exp (iF - 7) d. (B.119)

La transformée de Fourier de OV /dz s’écrit donc ik, V (k). On en déduit de méme

VV () <2 ik - V() (B.120)
V x V() «Zs ik x V(k) (B.121)
VU(7) <2 ikU (k) (B.122)

Ecrivons maintenant 1’éq. B.116 dans 'espace de Fourier (sans nous soucier ici d’éventuels problémes

de convergence). On obtient alors
V (k) =ik x A(k) — ik U(K). (B.123)

Cette expression nous permet d’associer U(E) a la composante longitudinale (i.e. paralléle a E)
tandis que A)(lg) produira la composante transverse (i.e. perpendiculaire & /;) du champ de vecteurs
V (k). En calculant le rotationnel de V/(7), ce qui revient & un simple produit vectoriel dans 'espace

de Fourier, on obtient
ik x V(k) = ik x (ik x A(k)) = —(k - A(k))k + k*A(k). (B.124)

Cette expression sera effectivement vérifiée a condition de choisir

I N
ot £(K) est une grandeur arbitraire. Posons
Lo ik x V(K)
Ao(k) = - (B.126)
On peut alors écrire
A(F) = Ay(F) + VE@). (B.127)

On peut de méme projeter I’éq. B.123 sur le vecteur k. On obtient alors
ik -V (k) = KU (k) (B.128)
On en déduit donc, pour k # 0, la relation

Uk) = ———. (B.129)
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-,

Appelons Uy(k) la fonction prenant la valeur ci-dessus pour k # 0 et s’annulant en k¥ = 0. On peut

-, —

)
alors écrire U (k) = Up(k) + ad(k) ot a est un nombre arbitraire. On en déduit
U(7) = Uy(T) + Cste. (B.130)

Ces résultats confirment donc la validité de ’éq. B.116 et permettent de calculer explicitement les
grandeurs /T(F) et U(7) en passant dans l'espace de Fourier. Ces grandeurs ne sont toutefois pas
définies de maniére unique. D’apres I'éq. B.127, le gradient de n’importe quelle quantité £(7) peut
étre ajouté a ff(F), ce qui n’est pas surprenant puisque le rotationnel d’un gradient est nul. De

méme, la quantité U(7) est définie & une constante additive pres.

Dans le cas particulier d’'un champ de rotationnel nul (comme le champ électrique en électro-
statique), on sait que V(E) sera purement longitudinal, ce qui nous permet d’écrire simplement
V(f’) = VU (7). De méme, pour un champ de divergence nulle, comme le champ magnétique, V(E)

sera purement transverse. On pourra alors écrire V() = V x A(7).

B.12 Calcul de ’hamiltonien de structure hyperfine

Compte tenu de la démarche exposée en 7.4, nous pouvons calculer la structure hyperfine du
niveau fondamental de 'atome d’hydrogéne & ’aide de la méthode des perturbations dans le cas
dégénéré. En remplagant le vecteur unitaire @ par 7/r dans I’éq. 7.42, nous pouvons écrire 'opérateur
associé au couplage dipole-dipo6le entre le proton et 1’électron a I’aide de ’expression

) - i o - ) (fy - 7 20 5~ 2
W—’“’(“ Ao o (e T)(flp ﬁ)_“ﬁﬁe.ﬁpg(m, (B.131)

 Ar 73 7o 3

Il nous suffit maintenant de calculer la restriction de cet opérateur dans ’espace de dimension 4
engendré par les états |1,0,0) ® |o¢,0p), ot 0 = % et 0, = +. Les 16 éléments de matrice ainsi

obtenus peuvent s’écrire
((1,0,0] @ (oe, 0p) W (]1,0,0) ® |o%,, 04)) = (e, 0p| Hi |0L, 00 , (B.132)

ot Hy est un opérateur agissant dans notre espace de dimension 4, correspondant au niveau fon-
damental de Hy. D’apreés 'expression ci-dessus, I'opérateur H, peut s’écrire comme la moyenne de
W sur 7, pondérée par la densité de probabilité [¢)1,(7)|? associée & 'état orbital |1,0,0). On peut

donc écrire

r

2 L\ 5 = :’e'?? [y 7 20 5 5 =
i, = 1o <<3>MM_3<W>) - iy 6y (B33)

ol les moyennes s’entendent uniquement sur la variable 7 et non sur les degrés de liberté de spin.

Commengons par calculer la moyenne intervenant dans le second des trois termes de 1’équation
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ci-dessus. On obtient

e - ) (fip - T Lo o
<(63,§p)> = <745(:Ue:133j + feyly + flez%) (#pmx + fpyY + /Lpzz)> (B.134)

.’I,'2 y2 22
= [lexflpz <T‘> + fleyfipy < > + flezflpz <7“> (B.135)

ol nous n’avons pas conservé les produits associés & deux composantes cartésiennes différentes,
comme {xy/r®), qui sont évidemment nuls compte tenu de la symétrie de I'état 1s. Par ailleurs,

toujours par symétrie, on peut écrire
2 2 2 2 2 2
1 1/1
CN_(yN_(EN_ Ly vy L)L (B.136)
o rd rd 3 rd 3\

1~ o~ N\ 1/1\.. . . 1/1\a -
<7«5(“e - 7) (fip - 7“)> =3 <r3> (freaftpa + freyfipy + frezfipz) = 3 <7~3> fie - fp- (B.137)

d’out on déduit

Les deux premiers termes de 1’éq. B.133 sont donc exactement opposés. Ainsi, seul le terme de

contact subsiste, faisant intervenir la moyenne de la fonction de Dirac, soit

) = [ [ors@Ps)dr = [1s(0) 2. (B.138)

Sachant que l’expression correctement normalisée de la fonction d’onde du fondamental s’écrit

V15(F) = /1/(ma3) exp(—r/a1) (voir par exemple l'exercice C.11), on en déduit que (§(7)) =
1/(ma}), soit

; 2p0 = o, - 2p0 & o

iy = =201 iy (3(7) = = e iy (5.139)

Exprimons enfin les moments magnétiques en fonction des observables de spin & ’aide des relations
ﬁe = 'yege et ﬁp = ypgp, ol 7, et vy, sont respectivements les rapports gyromagnétiques de 1’électron

et du proton. On peut donc écrire

N Az 2
H = 555, (B.140)
ou 5 12
A= RO 587 eV (B.141)
3may

Il ne reste plus qu’a diagonaliser 'opérateur H 1, comme effectué en 7.4.

B.13 Construction de la base couplée dans le cas général

Dans cette annexe, nous allons mettre en ceuvre la démarche évoquée en 7.2, qui permet de
construire les états propres de J 2 et JZ, ol J J1 + Jg est le moment cinétique total d’'un systéme
composite constitué de deux sous-systémes (1) et (2). Cette démarche généralise I’addition de deux
spins 1/2 effectuée en 7.1. Comme indiqué en 7.2, une premiére base de 'espace produit tensoriel
est la base tensorielle {|n1, ji, m1) ® |ng, j2, ma)}. Dans toute la suite, nous allons nous placer dans

un espace propre commun donné de j12 et j22, associé¢ aux deux valeurs propres ji(j1 + 1)h? et
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j2(j2 + 1)A? et donc & deux valeurs données des nombres j; et jo. Nous supposerons de plus que
les nombres n; et ng sont fixés, et nous les omettrons dans toute la suite de la discussion. La base
tensorielle sera donc simplement notée {|m;) ® |m2)}, ou encore {|m;;ma)}. Les nombres m; et mg
pouvant prendre respectivement (257 + 1) et (2j2 + 1) valeurs différentes, le sous-espace considéré
est donc de dimension (271 + 1)(2j2 + 1). Comme J? et J3 commutent avec .J? et .J, il est possible
de diagonaliser ces deux derniers opérateurs & 'intérieur du sous-espace considéré, ce qui revient &

construire ce que 'on a coutume d’appeler la base couplée, notée {|j, m)} [1, 2.

m
2 2, 2,
AN
A . P
° ° % o ® - Mo = Jo
A X o
e)>< -.é\ d
2, < D)
\\—. L L > @ >
N mi
%
N
=
o~ { ] (] (] mo = —J2
my = —ji mi1=n

FIGURE B.2 — Valeurs possibles de my et mg (cas j1 =2 et jo =1).

Remarquons tout d’abord que les éléments de la base tensorielle sont déja vecteurs propres de

I’observable jz = j1z + jgz, avec
jz\ml;m2> = (m1 —I—mg)h\ml;mg). (B.142)

Les valeurs propres de J. sont donc de la forme mh, avec m = my + mgo. Compte tenu des valeurs
prises par mj et mg, on a donc m € {—j; — jo,—j1 — jo + 1,--+ ,j1 + j2}. Comme lillustre la
Fig. B.2, la dégénérescence de ’espace propre &, associé & la valeur propre mh dépend de la valeur
de m considérée. Pour la plus grande valeur de m, soit m = j; + jo, il n'y a qu'un seul couple
(m1,m2) qui convienne, a savoir mj; = j; et mg = jo. L’espace Ej +j, est donc de dimension 1.
Mais pour m = j; + jo — 1 il y a deux couples possibles, a savoir (m; = jj,mg = j; — 1) et
(my = j1 — 1,ma = ja). L'espace Eji+jo—1 est donc de dimension 2. De maniére plus générale, on
montre facilement que dim &, = ji +j2 — |m|+1, relation qui n’est valide que pour |m| > |j1 —ja|. A
I'inverse, pour |m| < |j1 — jz|, la dimension de I'espace &, est indépendante de m et est simplement
égale & 2min(j1, j2) + 1, ce qui correspond a la situation ou la ligne m = Cste croise les deux grands

cOtés du rectangle de la Fig. B.2.

Considérons l'espace &j, 1, correspondant a m = ji + j2, c’est a dire a la plus grande valeur
possible de J,. Cet espace, de dimension 1, est engendré par I'état |m; = ji; ma = j2). Comme J,
commute avec J2, on peut diagonaliser cette derniére observable a l'intérieur de l'espace Ejr+ja-
Mais comme l’espace est de dimension 1, on peut en conclure que J? est déja diagonal, et donc
que |my = j1;ma = ja) est vecteur propre de J2. On sait que la valeur correspondante de j est
nécessairement supérieure ou égale & m = j; + jo, en raison de la relation générale —j7 < m < j.

Par ailleurs, si j était strictement supérieur a j; + jo, cela impliquerait qu’il existe des états propres
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de J, associés & m = J > j1 4+ J2, ce qui est exclu puisque nous avons vu plus haut que j; + jo
était la valeur maximale de m. On peut donc en déduire que I'état [m; = j1; mo = j2) est associé a

j = j1+ ja. Ce résultat peut étre vérifié directement a l’aide de 1’éq. 4.16, qui nous permet d’écrire
P ma = jrsmz = jo) = (24 B+ J_Jy )y = Gizma = ja) (B.143)

Or JA+ |my = j1;me = ja) = (j1+ + j2+) |my = j1;me = jo) = 0 car les valeurs de Ji, et Jy, sont

déja maximales dans cet état. On en déduit j_j+ |m1 = ji1;ma = j2) = 0 et donc

J?[my = jisma = jo) = (1 + J2)* + (1 + j2))B% [ma = j1;ma = ja) (B.144)
= j(j + 1R |m1 = j1;m2 = ja) (B.145)

avec j = j1 + j2, ce qui nous permet de vérifier que I'état [m; = j1; mo = j2) est un vecteur propre
commun de J?2 et J; associé & j = m = j1 + jo. On peut de plus affirmer que ce vecteur est unique
(& une phase prés) puisque dim &;, 15, = 1. Il est donc légitime d’identifier ce vecteur & un premier

élément de la base couplée, que 'on note
lj = J1+J2,m = j1+j2) = [m1 = j1;m2 = ja) . (B.146)

Ce premier état étant connu, on peut en déduire par application répétée de 'opérateur J_ (éq. 4.21)
toute la série des états |j = j1 + j2,m) pour —j1 — jo < m < j1 + ja. Ces 2(j1 + j2) + 1 états de la

base couplée correspondent & la colonne la plus a droite de la Fig. B.3. A titre d’exemple, on a

: (
ViG+1) =G -1

J1 ) ) J2 ) .
=4/ —|m1 =j1 —1yma = j2) + 4/ = —|myp = ji;me =jJ2—1
J1+Jz| ) 31+J2| )

(B.148)

1 + jos 1 + jo — 1) = S+ j2_> Iy = j1; ma = ja) (B.147)

Placons nous maintenant dans 'espace &j, 1,1, espace de dimension 2 engendré par les états
|mi1 = j1 — 1;ma = j2) et |my = ji1;me = jo — 1). Nous connaisons déja un élément de la base cou-
plée appartenant a cet espace, a savoir I'état [ji + j2,71 + jo — 1) donné par 1'éq. B.148. Comme
J? peut étre diagonalisé a l'intérieur de cet espace, nous savons que 'unique vecteur orthogonal &
Vétat |j1 + jo, j1 + jo — 1) est nécessairement un vecteur propre de J2. Ce vecteur étant par ailleurs
vecteur propre de J. pour m = ji + jo — 1, un raisonnement similaire & celui déja effectué plus haut
nous permet d’affirmer qu’il correspond a j = j; + j2 — 1 (ce que l'on pourrait vérifier en faisant

agir explicitement J? sur cet état). On peut donc poser

. . . ) J2 . . J1 L.
Jitie—1Lj+jo—1)=4/- —|m1 =Jj1 — Limo = j2) — /= — |13 J2,52 —1). (B.149
| ) J1 +J2| ) n +]2| ) ( )

Une application répétée de l'opérateur J_ nous permet alors de construire ’ensemble des états

|71 + j2 — 1,m), ce qui correspond a la deuxiéme colonne en partant de la droite de la Fig. B.3. Cette

approche itérative peut ensuite étre étendue par récurrence. Soit un nombre j donné et supposons
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FiGURE B.3 — Valeurs possibles de j et m, dans le cas j1 =2 et jo = 1.

que Pensemble des états |j', m’) a déja été construit pour j+1 < j' < j1 + 52 (avec —j' <m/ < j').
Considérons alors I'espace &;, dont la dimension est égale & ji + jo — j + 1 (si j > |j1 — jo|). Nous
connaissons déja j; + jo — j vecteurs orthogonaux de la base couplée appartenant a cet espace : les
états |5/, m = j) pour j+1 < j < ji +j2. On peut donc construire un unique vecteur de I’espace &;
orthogonal & I’espace engendré par ces j; + j2 — j vecteurs. Un raisonnement similaire a celui déja
effectué plus haut permet alors d’affirmer que ce vecteur est vecteur propre de J? pour la valeur
propre j(j + 1)A2. Nous pouvons ainsi reconnaitre 'état |7, m = j), puis en déduire les 25 + 1 états
|7, m) de la base couplée. De cette maniére, nous pourrons construire I’ensemble des états |j, m) pour
|71 — j2| < 7 < j1+Jo. Il sera impossible de continuer pour j < |j; — j2| car la dimension de Iespace
propre de J, sera alors insuffisante pour construire de nouveaux états. Cherchons maintenant a
dénombrer le nombre d’états de la base couplée ainsi construits. Sachant que chaque colonne de la

Fig. B.3 contient 25 + 1 états, on obtient au total

J1+72 272
Y @i+ =) 201—j2+k)+1) (B.150)
J=lj1—32l k=0

2j2(2j2 4 1)

=22+ 1)(2j1 —2j2+ 1) +2 5

=21 +1)(252+1). (B.151)

oll nous avons supposé que ji était supérieur a jo pour alléger les notations, mais le résultat obtenu
étant symétrique en j; et jo, il aurait bien entendu été identique dans le cas js > j;. Le nombre
d’états ainsi construit est donc exactement égal & la dimension de ’espace dans lequel nous nous
sommes placés. Nous pouvons donc en conclure que nous avons achevé la construction de la la base
couplée {|j,m)}.

En résumé, nous avons établi le résultat annoncé en 7.2, a savoir que le nombre j prenait toutes
les valeurs de ’ensemble {|j1 — jol|, |71 —j2|+ 1, -+, j1+j2}. La démarche évoquée dans cette annexe

nous donne en outre une méthode générale permettant de construire explicitement la base couplée.



Annexe C

Exercices

C.1 Base continue

On considére un opérateur auto-adjoint A dont le spectre de valeurs propres (supposées non
dégénérées) est I’ensemble des nombres réels, R. L’ensemble des vecteurs propres {|a)} constitue

une base de l'espace de Hilbert, ce qui permet d’écrire pour tout [¢) la relation
“+o00
W) = [ {alv)la)da (1)
—0oQ

Montrer que les vecteurs |a) obéissent nécessairement & la relation (ala’) = d(a — a’), et donc qu’ils

n’appartiennent pas & I'espace de Hilbert.

C.2 Calcul de quelques commutateurs

L’objet de cet exercice est de calculer quelques commutateurs utiles dans £2(R3).

1. Calculer le commutateur [T, py]
2. En déduire I'expression de [z, p2].

3. Calculer le commutateur [ps, f(&, 7, 2)].

4. Calculer le commutateur [p,, g(7)], ou r = /22 + y? + 22.

C.3 Théoréme du Viriel

k

On considére une particule placée dans un potentiel V(r) = ar®, ou k est un nombre entier. On

cherche a établir une relation entre la valeur moyenne de I’énergie cinétique T =p? /(2m) et celle de
I’énergie potentielle V = V(7) lorsque le systéme est placé dans un état propre |¢) de ’hamiltonien
H=T+V.

1. Montrer que pour tout opérateur A, on a la relation (1| [/1, I;T] [y = 0.

2. On considére Popérateur A = 2p, + Upy + 2D-. Exprimer [fl, H | en fonction de T et V.

183
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3. En déduire une relation entre (T") et (V') puis appliquer le résultat obtenu aux cas de l'oscillateur
harmonique et de 'atome d’hydrogéne. Dans ce dernier cas, on en déduira la valeur de (1/7) lorsque

le systéme est dans I'état d’énergie E, = —e?/(2n%aq).

C.4 Théoréme d’Ehrenfest

L’objet de cet exercice est d’appliquer 1'éq. 1.69 au cas de la position et de 'impulsion d’une

particule dont le mouvement & une dimension est gouverné par I’hamiltonien

. P2

1. Exprimer d{(x)/dt a aide de (p.).
2. Exprimer de méme d(p,)/dt.

3. Commenter les résultats obtenus.

C.5 Propagation d’un paquet d’ondes libre

On s’intéresse dans cet exercice a 1’étalement d’un paquet d’ondes libre pour une particule se
propageant dans un espace & une dimension.
1. En vous aidant du théoréme d’Ehrenfest généralisé, donner I'expression de d(z?)/dt.
2. Montrer que d?(x?)/dt? ne dépend pas du temps.

3. En déduire que la variance Az(t)? peut s’écrire comme une fonction quadratique du temps,

puis exprimer en fonction de Ap, le coefficient figurant devant le terme en t2.

4. On appelle Axg la valeur minimale atteinte par la fonction Az(t), et on suppose que l'origine
des temps est choisie de sorte que cette valeur soit atteinte a I'instant ¢t = 0. En déduire I’expression

de Az(t) en fonction de Azg et Ap,.

5. Interpréter le résultat obtenu, notamment dans le cas ol t — +40c0.

C.6 Inégalité de Heisenberg généralisée

On cherche & établir une relation d’incertitude pour deux grandeurs physiques associées & des
observables A et B ne commutant pas. On appelle Aa et Ab les écarts quadratiques moyens associés
a A et B, le systéme étant préparé dans un état |10) donné. On introduit les observables A =
A~ @A) et B' =B — (4| BIY)1.

1. Montrer que Aa® = <¢’A/2W> et Ab? = <¢’B/2|¢>-

2. Que dire de [A’, B']?
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3. On considére la grandeur P(\) = ||(A’ 4+ iAB’)[4)]|?, out A est un nombre réel. En étudiant le

signe de P(\), montrer que le produit AaAb admet une borne inférieure que 'on déterminera.
4. Appliquer l'inégalité obtenue au cas des observables Z et p,.

5. En appliquant I'inégalité au cas d’une particule de spin 1/2 placée dans ’état |+),, montrer

que AS, et AS, atteignent leur valeur maximale et que (S;) = (S,) = 0.

C.7 Théoréme de non clonage

On considére un systéme constitué de deux sous-systémes identiques (a) et (b). On suppose qu’a
I'instant initial le systéme est dans 'état |U(tg)) = |a : o) @|b : @), ol |¢p) est un état donné tandis

que |p) est un état arbitraire inconnu.

1. Montrer que, sans connaitre ’état |¢), il est impossible de faire évoluer le systéme pour qu’a
I'instant ¢; il soit dans I'état |¥(t1)) = |a : ¢) @b : ). Ce résultat, appelé théoréme de non clonage,
démontre I'impossibilité de cloner I’état d’un premier atome sur un second atome sans détruire 1’état

du premier atome. Pour 1’établir, on pourra considérer deux états |b : ) et |b: ¢’) bien choisis.

2. Est-il possible de faire évoluer le systéme vers I'état [ (t1)) = |a: ) @ [b: o) ?

C.8 Méthode numérique de calcul des bandes d’énergie

L’objet de cet exercice est d’étudier le principe de base de la méthode numérique utilisée pour
effectuer le calcul dont le résultat est représenté Fig. 2.7. Cette méthode s’appuie sur le théoréme de
Bloch pour calculer les bandes d’énergie associées a un potentiel périodique & une dimension V().

On cherche donc une fonction propre d’énergie E que l'on écrit selon le théoréme de Bloch
(@) = ule)e™ (C.3)
ot u(z) est une fonction périodique et k € [—m/a,m/a[. On rappelle que toute fonction périodique
comme u(z) peut étre décomposée selon une série de Fourier
“+o0o
u(x) = Z ug exp(i2rKz/a) (C.4)
K=—c

ot K est un nombre entier et ou les coefficients ux sont définis par

a/2
Ug = i/ u(z) exp(—i2n Kz /a)dz. (C.5)
—a/2

On définit de méme les coefficients de Fourier Vi associés au potentiel périodique V().

1. Retrouver I’équation a laquelle obéit la fonction périodique u(x).
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2. Montrer que les coefficients de Fourier ug obéissent a 1’équation

(27hK/a + hk)?
2m

uK—|—ZVK_K/uK/ = Fug. (CG)
K/

3. Pour un potentiel V(z) suffisamment régulier, que peut-on dire du coefficient de Fourier Vi

lorsque |K| tend vers U'infini ?

4. En déduire que le probléme peut alors se ramener de maniére approximative a la diagonalisation

d’une matrice carrée de taille finie.

5. Décrire un algorithme permettant de calculer la structure de bande représentée Fig. 2.7.

C.9 Déplacement du niveau fondamental

On considére un systéme gouverné par I’hamiltonien H = Hy+ W, oi Deffet de W peut étre
traité dans le cadre de la méthode des perturbations. On suppose que 1’état fondamental de Hy est
non dégénéré et que la valeur moyenne de W dans I’état fondamental est égale a zéro : (0]WW]0) = 0.
Que peut-on dire du déplacement du niveau fondamental au plus bas ordre pertinent de la méthode

des perturbations ?

C.10 Meéthode variationnelle appliquée a 1’oscillateur harmonique

On applique dans cet exercice la méthode variationnelle & la recherche du niveau fondamental
d’un oscillateur harmonique & une dimension, associé & 'hamiltonien
9
Py 1 2

flz——i—ﬂnw

-2
o T 5 . (C.7)

1. On utilise dans un premier temps des fonctions d’essai de forme lorentzienne, données par

I’expression

1
va(®) = 53 T (C.8)
On définit les intégrales
+00 1
I, = ———d C.9
/_m (@2 + a2 (€9

dont on donne les premiers éléments (voir éq. A.41) :

s s 3 o
h=3 b=a =3 = Tea

(C.10)

Déterminer E(a) = (pa| H |04) / {¢a]@a) puis en déduire une approximation de 1'énergie du niveau

fondamental.
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2. Procéder de méme avec des fonctions d’essai gaussiennes, définies par

_ 1 z? C
On pourra s’aider des intégrales
1 +oo 22
Ip = / 2?"e” 22 dx (C.12)
av2m J o
dont on donne les premiers éléments (voir ég. A.38)
Jo=1 Jy = a? Jo = 3at. (C.13)

3. Laquelle des deux familles de fonctions d’essai donne-t-elle le meilleur résultat 7 Commenter.

C.11 Meéthode variationnelle appliquée & ’atome d’hydrogéne

On applique dans cet exercice la méthode variationnelle & la recherche du niveau fondamental

de 'atome d’hydrogéne. L’hamiltonien s’écrit ici

H=2 _— (C.14)

ot €2 = ¢?/(4meg). On utilisera des fonctions d’essai exponentiellement décroissantes, définies par

. 1 T
0 (T) = — 3 eXD <_E) . (C.15)
On pourra s’aider des intégrales (voir éq. A.19)
+oo
I,(a) = / 2" % = nla" . (C.16)
0

1. Veérifier que les fonctions d’essai ¢, (7) sont normées.
2. Calculer (pq|1/7|@a)-

3. Pour une fonction d’onde 9 (7) = f(r) ne dépendant que de r = /a2 + y2 + 22, évaluer
|[pz [¥) || puis en déduire que

+oo
(6] 52 ) = dmh? /O () 22, (C17)

ou f'(r) =df/dr.
4. Caleuler E(a) = (@q| H |¢4).

5. En déduire une approximation de 1’énergie du niveau fondamental. Commenter le résultat
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obtenu.

6. Décrire qualitativement ce que ’on aurait obtenu dans le cas d’une fonction d’essai gaussienne

de largeur a variable.

C.12 Moment cinétique orbital

L’objet de cet exercice est de vérifier explicitement que le moment cinétique orbital, L = 7 X p),
obéit bien aux propriétés générales attendues pour un moment cinétique. On considére pour cela

une rotation d’angle « autour de l'axe z transformant le repére {a/,y, 2’} en {z,y, 2}, selon la

relation
x=1x'cosa— 1y sina ' = xcosa + ysina
y=2a'sina+y cosa  ou Yy = —xsina + ycosa (C.18)
z=12 2=z

ou l'on a exprimé les coordonnées {a/,y’,2'} a partir des coordonnées

{z,y,z} a l'aide d’une rotation d’angle —a. La rotation considérée est

/ /
schématisé par la figure ci-contre. Par définition, ’action de 'opérateur ro- 24 )
tation }?Z,a sur une fonction d’onde ¥ (z,y, z) s’écrira alors selon la relation
ci-dessous.

(Reat) @,9.2) = vy 2) (C.19)

1. En supposant que l'angle « est petit, développer 'expression ci-dessus au premier ordre en .

En déduire que L. est bien le générateur infinitésimal des rotations autour de 'axe z.

2. On rappelle que

Ly = §p. — 2py (C.20)
Ly = 2Py — P (C.21)
f/z = *’Eﬁy - gﬁx (C°22)

C.13 Construction des premiéres harmoniques sphériques

L’objet de cet exercice est de construire les premiéres harmoniques sphériques Yy, (6, ¢), no-

tamment pour £ = 0 et £ = 1. On rappelle les relations vues en cours
Yo (0,9) = Fryn(6) exp(imep) (C.23)

et

L4 (0,0) = VAT T 1) — m(m £ DY (0, 9) (C.21)
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ou

. . . , 0 0
== ) = :tZLp )
Ly=1L,+iL, = he (:I: 50 + i cot 984,0) . (C.25)

On rappelle que les fonctions Y (6, ¢) sont normalisées selon la relation

T 2T
YY) = / / Y (6, ¢)|?sin0dodp = 1. (C.26)
0 0

1. Rappeler I'équation différentielle du premier ordre dont Yy _4(6,¢) est solution. En déduire
une équation portant sur Fy _¢(#) et montrer que Fy_4(0) = ¢, sin @, ol ¢y est une constante de

normalisation.

2. Déterminer la constante de normalisation ¢y, en vous aidant de ’expression ci-dessous que 'on

admettra (et qui pourrait aisément étre démontrée par intégration par parties).

g 2££!)2
1= [ st gag — 2 20 C.27
¢ /0 ' 20+ 1)! (€.27)
3. Déterminer les fonctions Yy, (6, ¢) pour £ = 0 puis pour £ = 1.
C.14 Parité des harmoniques sphériques
On considére 'opérateur parité IT défini par I |7) = |—7). On rappelle 'action de cet opérateur
sur une fonction d’onde exprimée en coordonnées cartésiennes, IIi)(F) = ¢(—z, —y, —z), ou en

coordonnées sphériques, Iy (r, 0, ¢) = h(r,m — 0, + 7). L'objet de cet exercice est de démontrer

I’éq. 4.62 annoncée en 4.4.4, a savoir

f[Ye,m(@a 90) = Yl,m(ﬂ' -0, w+ 71-) = (_1)e}/€,m(07 @)' (0'28)

1. Exprimer [1% en fonction de Z1I.

2. Exprimer de méme ﬂﬁy en fonction de ﬁyf[

3. En déduire Pexpression des commutateurs [II, TPy et 1, L.].
4. Que peut-on dire du commutateur [f[, I:Q ?

5. Montrer que les harmoniques sphériques ont une parité bien définie (ce qui signifie que les

fonctions Yy, (0, ¢) sont des fonctions propres de 'opérateur parité).

6. Montrer que ﬁ}/g7_g(0, ©) = (=)%Y _e(0, ).

)

7. En déduire que 117, (0, ¢) = (—1) Y7, (0, ¢).
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C.15 Atomes hydrogénoides

On appelle atome hydrogénoide un ion positif constitué d’'un atome de rang Z ionisé Z — 1 fois,
comme He' ou Li™". On fera I'’hypothése que la masse réduite p peut étre prise égale a celle de

I’électron me.

1. Ecrire I'hamiltonien
2. Ecrire les valeurs des niveaux d’énergie

3. Que peut-on dire du rayon de Bohr d’un ion hydrogénoide ?

C.16 Reconnaitre une orbitale atomique

La Figure ci-dessous représente une orbitale atomique 1y, ¢ (r, 6, ) de I'atome d’hydrogene,
tracée selon les conventions utilisées en cours. On a représenté une vue écorchée (a), de haut (b),
ainsi que 1’échelle de niveaux de gris permettant de coder la phase (c¢). Donner les valeurs de n, ¢

et m, en justifiant votre réponse.

2
31/2

/2

(a) (b) (c)

C.17 Invariance de jauge

En procédant comme en 6.3, on considére un changement de jauge

A7 t) = A(F,t) + V(7 1) (C.29)
(7, t) = B(7,t) — 881( (C.30)

associé a la fonction x(7,t), qui est maintenant fonction du temps. On introduit la transformation

unitaire T’ permettant de passer de |1(t)) a |¢/(t)) selon I'expression

~

W (1) = T(7,t) = exp <zQX(;t)) W(7,1). (C.31)

Vérifier que, si [1)(t)) est solution de I’équation de Schrédinger associée a ’hamiltonien H, alors

|4/ (t)) est solution de Péquation de Schrédinger associée a I'hamiltonien H' dans la nouvelle jauge.

C.18 Niveaux de Landau

On considére une particule chargée placée dans un champ magnétique uniforme orienté selon
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I’axe z. On utilisera la jauge de Landau.

1. Ecrire 'hamiltonien H du systéme.

2. Vérifier que I'hamiltonien commute avec p, et p, et en déduire sous quelle forme peuvent étre

recherchées les fonctions propres de 'hamiltonien.

3. A l'aide d’un changement de variable approprié, déterminer les valeurs propres et les fonctions

propres de H en vous ramenant au probléme de 'oscillateur harmonique & une dimension.

4. On s’intéresse maintenant au cas d’une structure semiconductrice & puits quantiques ou le

mouvement de la particule selon z est confiné dans le plan z = 0. Que dire des niveaux d’énergie ?

C.19 Evolution d’un systéme & deux niveaux

L’objet de cet exercice est de résoudre de maniére exacte le probléme d’un systéme & deux
niveaux soumis a une perturbation constante, puis de comparer avec le résultat obtenu & ’aide de
la méthode des perturbations dépendant du temps.

On écrit hamiltonien du systéme sous la forme H = Hy+ W, avec Hy = fw; |i) (i| + hwp | f) (f]
et W= (hQ0/2)(|f) (i] + i) (f]), ot Qq est une quantité réelle. On introduit la grandeur

Q= /w + 03 (C.32)

wgi = Qcosb et Qp = Qsin 6. (C.33)

et angle 0 défini par

1. Diagonaliser 'hamiltonien de maniere exacte et exprimer le résultat a I'aide de wy;, 2 et 0.

2. Sachant que le systéme est placé dans ’état |i) I'instant ¢ = 0, calculer de maniére exacte 1'état

|4(t)) pour t > 0 puis en déduire la probabilité de transition P;_, ¢(t).
3. Commenter le résultat obtenu.

4. Traiter le méme probléme & l'aide de la méthode des perturbations dépendant du temps.

Discuter le domaine de validité selon les valeurs des paramétres.

C.20 Désexcitation d’un état couplé & un continuum

On considére un systéme placé dans un état initial |i) couplé & un continuum d’états finals |f),
comme représenté ci-dessous.

%) = |f)
o m———

On fait 'hypothése que Phamiltonien s'écrit H = Hy + W, les états |i) et |f) étant des états
propres de Hy (avec Holi) = hw;|i) et Ho|f) = hwy|f)). On suppose en outre que les seuls éléments
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de matrice non nuls du terme de couplage W sont ceux faisant intervenir a la fois 1'état initial
et I'un des états finals. Comme dans le cours, ces éléments de matrice (f|W]i) = Wyi(Ey) seront
supposés ne dépendre que de I'énergie Ey de I'état final impliqué. Enfin, pour simplifier les calculs,
on supposera que la fonction g(w) = |Wy;(E; + hw)|? p(E; + hw) est paire et varie lentement avec
w (p(Ey) étant la densité d’états finals). On posera

[$(8)) = 7i(t) exp(—iwit)[i) + > v4(t) exp(—iwst)| f)- (C.34)
f

1. A laide des résultats établis en cours, rappeler les expressions de ¥;(t) et §¢(¢).

2. Etablir une équation intégro-différentielle portant sur v;(¢), que l'on exprimera a 'aide de la

fonction

+oo
o) = \/12? /_ 9(w) exp(—ict)dew (C.35)

3. Compte tenu des hypothéses effectuées sur la fonction g(w), que peut-on en conclure sur sa

transformée de Fourier g(t)?

4. On suppose que le terme de couplage est suffisamment faible pour que 1’échelle de variation de
~i(t) soit beaucoup plus lente que l'inverse de la largeur Aw de la fonction g(w). En déduire une

équation d’évolution simplifiée de ~;(¢t) faisant intervenir le taux de transition calculé en cours

27
['= f|Wfi(Ef = E)’p(Ey = E). (C.36)

5. En déduire ’évolution temporelle de la population subsistant dans ’état initial. Retrouve-t-on

le résultat du cours aux temps courts ?



Annexe D

Correction des exercices

D.1 Base continue

Projetons 1’éq. C.1 sur le bra (a|. On obtient alors

+oo
/
I R
—0o0
Si on note f(a) = (a|), on obtient donc f(a) = fj;o f(a"){ala’)da'. Cette derniére relation, valable
pour toute fonction f(a), est la définition méme de la distribution de Dirac. On peut donc en déduire
{ala’) = §(a—a') = 6(a’ —a). Cette relation vient remplacer la relation d’orthonormalité rencontrée
pour une base hilbertienne. On en déduit en particulier (ala) = §(0) = +o00. Les vecteurs propres
d’un opérateur dont le spectre est continu ne peuvent donc pas appartenir & I'espace de Hilbert, ce

que nous avons déja rencontré pour les vecteurs propres des opérateurs position et impulsion.

D.2 Calcul de quelques commutateurs

1. On a
h O

(ol 2,22l 1) = 25 2-9(@) — 2wy (a) = () = i ()

d’out [#, p] = ihl.
2. On peut éerire [, p3] = (&, pu]pe + Dol Do) = 2ihps.

3. Regardons l'action de 'opérateur p, sur le produit f(x,y, z)1¥(x,y, z), ot () est une fonction

d’onde quelconque.

ﬁ:vf(xa:% ZW(UC??J, Z) = ?;Cf(w,y,z)z/}(m,y,z)

0
= —iha—iw(x, y,2) + f(z,y, 2)D90 (2, y, 2)

193
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On en déduit

(ﬁxf(x,yv Z) - f(xa Y, Z)ﬁ:l?) @D(SE, Y, Z) = 7’Lh%¢($a Y, Z)

Ceci étant vrai pour toute fonction %, on en déduit que

e o L Of
[pxaf(l‘ayaz)] - —Zh%(lt,y, Z)'

En posant f(z,y,z) = z, on retrouve bien le résultat [Z,p,| = ihI établi plus haut.

4. 11 suffit de calculer dg/0x. On a

dg(r(z)) _ 0Og Or

ox - Orox
et
2+ y? 422 2 oz
2yt +y2+22 7

d’ou la relation R
“ N L L “
e ()] = ~ih2g'(7)

ou ¢'(r) = dg/dr.

D.3 Théoréme du Viriel

1. Ona (¢|[A, H] ) = (Y| AH |[¢) — (| HA|¢) = (0| AE|$) — (Y| EA|¢) = 0.
2. On a )
AAJ:7T:7A7A2AZB:7 )
(2P, T] = 512, Palbe = D
ot l'on a utilisé la valeur de [#, p2] obtenue & l'exercice précédent. D’ou [A,T] = ihp?/m = 2ihT.
Par ailleurs,
-2
(o, V(9] = &lpa, V(7)) = —ih—V'(7),
ou l'on a utilisée la valeur de [pg, V(7)] obtenue a l'exercice précédent. On en déduit

V'(r) = —ih#V'(7) = —ihkV (7),

car compte tenu de la forme de V(r), on a rV'(r) = kV(r). On en déduit [A, H] = ih(2T — kV/).

3. On en déduit que si le systéme est dans un état propre de I’hamiltonien, alors

Pour Doscillateur harmonique (k = 2), on trouve (T') = (V), tandis que pour un potentiel Coulom-
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bien (k = —1), on obtient (T") = — (V) /2. Dans le cas de I’hydrogéne, on en déduit

_ _ _ (V) _ e -1
On obtient donc (1/r) = 1/(n%ay).
D.4 Théoréme d’Ehrenfest
1. D’apreés le théoréme d’Ehrenfest généralisé, on a
d{z 1 o
W) _ L o) o A o)
dt ih
or 9 1 .
A T3 A p:p . . px
H frg —_— = 72 g —_—
[z, H] = [z, Zm] 5 ihpy zhm

oit 'on a utilisé la relation [#, p2] = 2ihp, établie en C.2. On en déduit la relation

2. On a de méme

APr) 2 (o) e B ()
es H] = 2, V(3)] = ~ih 5 (2)

ol I’on a utilisé I'un des résultats de ’exercice C.2. On en déduit la relation

3. La premiére relation obtenue reproduit, pour les valeurs moyennes, la relation classique

dr  pg

dt m
entre vitesse et impulsion. La seconde relation ressemble beaucoup a la relation classique

dpe _ _dV
dt dx

reliant la dérivée de 'impulsion & la force, elle méme égale & 'opposé du gradient du potentiel. Mais
on ne peut pas pour autant dire que la position moyenne d’'un paquet d’ondes obéit aux mémes

lois qu’un objet classique. En témoigne par exemple l'effet tunnel. Ce n’est que lorsque le potentiel
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varie lentement devant la taille du paquet d’ondes que ’on pourra faire I'approximation

(G )~ Gt

ce qui nous permettra de retrouver la relation classique entre accélération et force. On peut également
citer le cas particulier de l'oscillateur harmonique, pour lequel la moyenne de la force (proportionnelle
a x) est égale a la force au point moyen, ce qui donne une évolution sinusoidale en mécanique

quantique comme en mécanique classique.

D.5 Propagation d’un paquet d’ondes libre

1. D’apres le théoréme d’Ehrenfest généralisé, on peut écrire

= — () &%, H] (1))

Calculons le commutateur

ot nous avons utilisé le résultat [#, H] = ifip, /m établi a 'exercice C.4. On en déduit

d(z®) _ ()] (@hs + Pa) [(1))

dt m

2. D’aprés le théoréme d’Ehrenfest, on peut écrire

d

SO (2 + 5a) W(0) = 7 WO (850 + pud) 1] [0(0)

Or, pour une particule libre, ’hamiltonien s’écrit

- P
2m

ce qui nous permet d’écrire [p,, H] = 0. On en déduit

m
On peut écrire de méme
FPE f e B th
[pwxyH] :pm[:p,H] - 717?0
m
On en déduit p 20p2)
. A N Pz
i t i T =
0 (@ + pu) (1)) = 2

et donc
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Cette grandeur est indépendante du temps car pour une particule libre toute fonction de 'impulsion

se conserve (ce dont on peut se convaincre immédiatement & 1’aide du théoréme d’Ehrenfest puisque

[f (=), H] = 0).

3. En intégrant deux fois le résultat obtenu a la question précédente, on peut écrire

(%) (t) = %tz + Bt +C.

Par ailleurs, on sait d’aprés 'exercice C.4 que

(De)

m

(x)(t) =

t+ (z)(t = 0).

En élevant au carré, on obtient

(2)%(t) = %ta? +B't+C.

Sachant que Az? = (z%) — (z)2, on en déduit

:2ct2 —I—B//t—I—C”

Ap
2 _
Ax(t)” = 2
ott 'on a utilisé Ap? = (p2) — (ps)2.

4. D’aprés la question précédente, la fonction Axz(t)? est une parabole de courbure positive. Le
choix proposé pour l'origine des temps nous permet d’affirmer que le sommet de cette parabole
est atteint a l'instant ¢ = 0, et donc que la constante d’intégration B” est nulle. Par ailleurs, la

constante d’intégration C” est simplement égale a la valeur atteinte en ¢ = 0, soit Aw%. On en déduit

2
Ax(t) =1/ —fnp; t2 + Ax,

ce qui correspond a une variation hyperbolique de la largeur Axz(t) du paquet d’ondes.

5. On en déduit que le paquet d’ondes va s’étaler au cours du temps, ce qui est une conséquence

directe de la relation d’incertitude de Heisenberg, puisque

Ap, >

2A1‘0 .

Lorsque t tend vers I'infini, on obtient la relation approchée

As(t) ~ 2Pz

t—+oc0 m
qui correspond & ’asymptote de 'hyperbole. On peut interpréter ce résultat en remarquant que la
dispersion Ap, des impulsions constituant notre paquet d’ondes a pour conséquence une dispersion
Ap,/m des vitesses, ce qui conduit & un étalement (Ap,/m)t des positions atteintes a l'instant t.
Cette approximation est valide pour un instant ¢ tel que que I’étalement initial du paquet d’ondes,

Axg, soit négligeable devant I’étalement di & la dispersion des vitesses.
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D.6 Inégalité de Heisenberg généralisée

1. On a évidemment <A/> _ <A> . <A> =0, et de méme <B/> — 0. Par ailleurs,
(A2 = (A~ (A)) = (A7) — 2((AVA} + (AY = (A7) _ (A)? = Ac?

On retrouve les deux définitions de la variance : soit la différence entre la moyenne du carré et le
carré de la moyenne, soit la moyenne du carré de I’écart & la valeur moyenne. On a évidemment le
méme résultat avec B : Ab? = (1| B |¢).

2. Le changement d’origine ne change évidemment pas le commutateur, car 'identité commute

avec tout autre opérateur :

A B = [A— (A, B~ (B)) = [A, Bl - ()], B) - [A, (B)] + ()], (B)]) = [A, B]

3. On a

P(N) = (I(A' = iAB)(A' +ixB)w)
= (] (A7 +iNAB — BA) + B?) )
L Bl) + (A7)

= (B”)N +ix(y|[4,
A, Bl|Y)) + Aa®

= A*X? +iA(y|[A

)

On peut tout d’abord s’assurer que c¢’est un polyndéme du second degré a coeflicient réels, car 2[121, B]
est hermitien et sa valeur moyenne est donc réelle. Ce polynéme du second degré doit étre positif
pour tout A, et ne peut donc admettre de racines distinctes. Son discriminant est donc négatif ou

nul, ce qui nous donne l'inégalité
[(W[[A, B]|¢)* — 4Aa®Ab® < 0

soit

1 L
Aatb> L|(][A, BlJv)|
qui nous donne la relation d’incertitude généralisée (éq. 1.66).

4. On sait que [T, py] = ihi. Notre inégalité nous permet donc de retrouver l'inégalité de Heisen-
berg AzAp, > h/2.

5. Remarquons que

AS; = (87) — (Sz)? < (S3) = I* /4.

AS, atteint donc sa valeur maximale, 1/2, ssi (S,) = 0. Sachant que [S;, S,] = ihS., I'inégalité de
Heisenberg généralisée nous donne
h2

1 A oA h A
AS,ASy 2 312 (+HI8e, Syl = 1S+ = T
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Par ailleurs,

M\?Z r?
AS.AS, < [=) =,
Sz Sy—(z) 4

On en déduit que AS;AS, = h?/4 et donc que AS, = AS, = h/2, ce qui implique (S;) = (S,) = 0.
Les grandeurs physiques S;, S, et S, associées a des observables qui ne commutent pas, sont ainsi
incompatibles. Une connaissance parfaite de S, a pour conséquence une incertitude maximale sur
Sy et Sy. On aurait bien entendu pu retrouver directement ce résultat a l'aide d’un calcul direct
des valeurs moyennes de S, et S, lorsque le systéme est placé dans I'état [+)..

D.7 Théoréme de non clonage

1. Comme établi en cours, le produit scalaire est une grandeur conservée :
(U(2) W' (81)) = (U (to)| UT (11, 10)U (1, t0) [’ (t0)) = (¥ (k)| ¥’ (t0))
car U (t1,tp) est un opérateur unitaire. A l'instant ¢, ce produit scalaire s’écrit

(T (t0) ¥’ (o)) = (woleo) (ple) = (pl¢e") -

Si 'on pouvait avoir |¥(¢1)) = |a : @) @ |b: ¢), le produit scalaire & I'instant ¢; s’écrirait

(T ()| (1)) = (ple) (ple') = (ple).

11 suffit de choisir (p|¢’) €]0, 1] pour en conclure qu’il est impossible de réaliser un tel clonage, sauf
si l'on sait que les états |¢) possibles appartiennent & une base orthonormée. Il est donc impossible

de cloner un état quantique arbitraire.

2. Dans ce cas, le produit scalaire s’écrit

(W(t1)[¥'(t1)) = (@l¢) (polpo) = (el

ce qui conserve bien le produit scalaire. Une telle évolution est donc possible. Ce processus ot I’état

quantique est transféré de (b) vers (a) est appelé la téléportation quantique.

D.8 Meéthode numérique de calcul des bandes d’énergie

1. En remplagant ¥ (x) par son expression dans ’équation .H’QD(SU) = E(x), on obtient

1

m

(Pe + hE)*u(z) + V(z)u(x) = Bu(z),

ot 'on a utilisé I'identité pe**u(z) = e (p, + hkx)u(z) (éq. 2.95).

2. On a pyexp(i2nKz/a) = (2rhK/a) exp(i2r Kz /a). Par ailleurs,

V(z)u(zr) = Z Viug exp(i2n(K + K')x/a) = Z Vi _grugr exp(i2r Kz /a)
K,K' KK’
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L’équation aux valeurs propres s’écrit donc

2mhK /a + hk)?
y (g

UK + Z VK_K/UK/> exp(i2rKz/a) = Z Eug exp(i2nKz/a)

K K’ K

La décomposition de Fourier étant unique, on en déduit I’équation demandée.

3. On s’attend a ce que Vi tende vers zéro lorsque |K| tend vers U'infini. En pratique, la distri-
bution des coefficient Vi est d’autant plus large que V(x) varie rapidement, ce qui est 1’équivalent
de la relation d’incertitude de Heisenberg pour les séries de Fourier. Plus précisément, si on appelle
dx léchelle caractéristique la plus rapide de variation de la fonction V' (z), on sait que Vi sera
négligeable pour Kdx > a. En d’autres termes, des sinusoides de période beaucoup plus petite que

dx ne contribueront pas de maniére significative a la série de Fourier représentant V().

4. I’éq. C.6 correspond a la recherche des vecteurs propres (dont les composantes sont les coef-
ficients ug) d’une matrice de dimension infinie, pour les valeurs propres E. Dans la base choisie,
le terme d’énergie cinétique est diagonal tandis que le terme d’énergie potentielle correspond & une
matrice non diagonale dont les éléments de matrice s’écrivent (K| V |K') = Vi _g+. D’aprés la ques-
tion précédente, les éléments non négligeables de cette matrice sont proche de la diagonale. Par
ailleurs, si on cherche les niveaux de plus basse énergie, on pourra donc tronquer la matrice en ne
conservant que les valeurs de K pour lesquelles |K| < N, ou N est un nombre entier qu’il faudra

choisir selon la forme du potentiel (par exemple N ~ 10a/dx).

5. On obtient finalement I’algorithme suivant :
e Calculer les 2N + 1 coefficients de Fourier Vi et la matrice (K| V |K') = Vi_g
e Effectuer une boucle sur k variant continiment de —7/a a 7/a

e Pour chaque valeur de k, calculer la matrice de H; comme la somme d’une matrice diagonale

correspondant au terme d’énergie cinétique et de la matrice de V tabulée ci-dessus.

e Diagonaliser Hj, et conserver les premiéres valeurs propres E,, , (ne pas utiliser les plus grandes

valeurs propres qui ne sont pas exactes en raison de la troncation de la matrice).

e Représenter E, ;, en fonction de k.

D.9 Déplacement du niveau fondamental

Le niveau fondamental sera toujours décalé vers le bas. En effet, le déplacement au premier
ordre 6E™ = (0|W0) est nul. Tl faut donc aller au second ordre de la méthode des perturbations.

On obtient dans ce cas

W 2
SED — Z Igﬂ |0)| <0
" _ E

car Ey < E,, pour m # 0. Le niveau fondamental est donc décalé vers le bas.
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D.10 Meéthode variationnelle appliquée a ’oscillateur harmonique

1. Le carré de la norme de la fonction d’essai s’écrit

+o0 1 T
olpa) = ==~
{(¢alpa) /_Oo (22 + a?)? L =12

Par ailleurs,

9 “+o0o :U2
(Pal®”|0a) :/_OO mdz

+o0 .%'Z—I—CLQ +oo a2
= 5 32 d% — CEPTIvEL
oo (@24 a?) oo (@2 +a?)
v v v

=L —-ad’lh="—— ="
1m a2 a 2a 2a

Remarquons au passage que (x2) = (7/(2a))/(n/(2a%)) = a2, soit Az = a. Enfin, {¢4|p2|¢a) =
|[pzlpa)l|?, or

R hd 1 h -2z
Drpal(x) = =3

idra?+a? i (22 +a2)?
et

+o0o 4332

pelia)|I? = 72 / I

oo (2 +a?)t

— 4R2 /+Oo$2+a2_/+ooa2 d
e ($2 + CL2)4 o ($2 + (12)4

h2
= 4R%(I5 — a2I)) = —
(I —a’ly) 4ab
On peut finalement en déduire
a <‘Pa |ﬁ2 “pa> 1 2 ~9 Th? Tmw?
e = P+ o) = 4 T
ou encore, aprés division par (©q|@a),
1 1/ n
Ey(a) = T3 + §mw2a2 =3 <2ma2 + mw2a2> (D.1)

On pourrait déterminer le minimum en dérivant par rapport a a?, mais il est plus rapide de remar-
quer que la moyenne arithmétique (A + p)/2 de deux nombres A et p est minorée par la moyenne
géométrique /A (car (VA — V/It)? est positif ou nul). On peut remarquer en outre que ce minimum
est atteint lorsque A = p. En appliquant cette méthode a la moyenne arithmétique apparaissant

dans I’éq. D.1, on obtient
h? hw
Ey(a) > a2 mw2a? = 7

valeur qui sera atteinte pour api, tel que les deux termes de la moyenne soient identiques, soit

2
h _ 2 2
T = MW an;,

2maz ;.
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ou encore

Amin = Az =

V2mw

2. Sachant que Jy = 1, on peut affirmer que la fonction d’essai x,(z) est normée. Par ailleurs, la

relation J; = a? nous permet d’écrire (v?) = a? (soit ici encore Az = a). Enfin
R h—2x hx
Patpa(®) = ;@%(%) = —W%(@
et 2 2
2\ _ 115 2 _ 2y _
(pz) = [Ibzlwa)|l” = @@7 ) = 102
On en déduit
21y,
Ey(a) = Sma? + Smwa

A nouveau, le minimum sera atteint lorsque les deux termes contribuant a la moyenne seront
identique, soit h%/(4ma?) = mw?a?, c’est a dire
h

amin = Az = O

3. Méme sans avoir connaissance du résultat exact, on peut affirmer que les fonctions gaussiennes
donnent un meilleur résultat car le minimum obtenu est plus petit que celui obtenu avec des lo-
rentziennes. En effet, la méthode variationnelle donnant une borne supérieure de la valeur exacte,
plus le résultat obtenu est petit et plus il sera proche du résultat exact. De plus, sachant que la
fonction d’onde associée a I’état fondamental de 'oscillateur est une gaussienne, le second ensemble
de fonctions d’essai contient la fonction exacte, de sorte que le minimum obtenu est égal a la valeur

exacte de I’énergie du niveau fondamental, soit fiw/2.

D.11 Meéthode variationnelle appliquée a ’atome d’hydrogéne

1. Le carré de la norme de la fonction d’essai s’écrit

{(@alpa) = fjf |50a(7?)|2d37° = % /0+OO exp (—22) Anrdr = %12 (g) =1.

2. On obtient

1 oo . 1 Foo T 4 a 1
(el = lpa) = / ~lpa(PPdPr = — /0 exp (~20 ) dmrar = 1 () = -

—0o0
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3. On a
pap) = 20 gy < BT BT gy
On en déduit )
®2) = llpa [) |12 = B [[[ 51/ r) PP
et 2 2 2 +o00
W) = 02)+ ) + 08 = 2 [ T P = am [ )P

4. Compte tenu du choix de la fonction d’essai, on a f'(r) = —f(r)/a, soit

9 _ h2 “+o0 24 2d _ hQ
(@al P \%>—¥ o |f(r)[“4mr 7’—9‘

On en déduit
B <p2> o2 B 72 o2

2m r 2ma? o’

5. La fonction E(a) tend vers l'infini lorsque a tend vers zéro (’énergie cinétique étant alors le
terme dominant) et tend vers 0 par valeurs inférieures lorsque a tend vers I'infini (I’énergie potentielle
étant alors le terme dominant). Entre ces deux limites, la fonction admet un minimum que ’on peut

déterminer en calculant la dérivée
dE B h2 e2

da ma3  a?’

Cette dérivée s’annule pour a = a; = h?/(me?), ce qui nous donne I’énergie variationnelle

h? m2et  ,me? met

E = — = — .
() =5 i~ g2 212

Cette valeur est ’énergie exacte du niveau fondamental de I’atome d’hydrogéne car il se trouve que
la fonction d’onde du niveau fondamental — qui est bien une exponentielle décroissante — appartient

& notre espace des fonctions d’essal.

6. On aurait obtenu un comportement qualitativement similaire, avec une fonction F(a) tendant
vers I'infini pour a — 0 et équivalente & —e?/a pour a — +o0o. Mais cette fois, le minimum obtenu
aurait été strictement supérieur & la valeur exacte car I’état fondamental de I'atome d’hydrogéne

n’est pas une gaussienne mais I’exponentielle trouvée plus haut.

D.12 Moment cinétique orbital

1. Dans le cas d'un angle « petit, on a au premier ordre

¥ =zcosa+ysina~z+ ay
Yy = —zsina+ycosa~ —ax+y

2=z
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On en déduit

|Featt] (@,9,2) = 0(@', ¥ 2)) = (@ + ay, —az +y,2)
=(z,y,2) + aygi} — a:cng
=t Ly — Papy
= (1L v
Comme la relation est vérifiée pour tout état ¢, on en déduit

~ A 100 ~
Rz,a =1I- ﬁLz

2. On remarque que ¢ et p, commutent avec f/y. Donc

d’ou
(Lo, L] = —ihgpy + ihip, = ihL,

Les deux autres relations de commutation se déduisent par permutation circulaire. On obtient bien

les relations attendues pour un moment cinétique.

D.13 Construction des premiéres harmoniques sphériques

1. On sait d’aprés le cours que Yy (6, ¢) est solution de I'équation IAJ_Yg,,g = 0, soit

e~ <—8 + i cot 96> Fy_o(0)e™ ™ = he™ ™ (—8 + i(—if) cot 9) Fy(0)e ™ =0

00 Oy 00
On a donc iF, cosl
w0~ Csmgltt®)
ot dF, cos 6
FZ,—; =4 sin 6 d0

qui s’intégre selon
In Fy_ () = £Insin @ + Cste = Insin® 6 + Cste

ou encore
Fg7_g(9) =y sin® 6.



D.13. CONSTRUCTION DES PREMIERES HARMONIQUES SPHERIQUES 205

2.

(2Z€!)2 | |2

T 27 ™
(Yo _o|Ys—¢) = / / |cg|? sin® 1 0dOdy = 27T|Cg|2/ sin2t1 0dl = 27|c|? I, = dr———2—|¢y
I o Jo 0 (20+1)!

d’oll par exemple
1 (2¢+1)!
- 20 dm

Remarquons que ce coefficient de normalisation est défini & un facteur de phase prés. Si ce nombre

Ce

est toujours choisi réel, on rencontre parfois un préfacteur (—1)5 qui n’a pas d’importance tant que

les conventions choisies sont cohérentes.

On donne ici pour mémoire le calcul de Uintégrale I,.

s

o 2{,‘/ sin?~1 fcosbcostdl
Jo

I, = / sin?™1 9dh = / sin®¢ § sin 0df = [f sin* 0 cos 9} 0

J0 J0

Soit, en remplacant cos? par 1 — sin? 0,

I, =20 / sin®~10do — 20 / sin?*t10do = 201, , — 201,
JO 0

D’ou la relation de récurrence

. 20 (207 ;
T T e+
On en déduit ‘ ‘
. (20012 (2%0)?
TR+ T T

3. On a Ypo(0,9) = Fo0(8), avec Fyo(0) = cosin’® = c¢o. D’aprés le calcul vu plus haut, on a

co = 1/v/4m, ce que 'on peut redémontrer directement

T 21
(YoolYoo) = / / (o2 sin 0dfdip = Ar|co|?.
0 0

On a donc .
Yo,0(0,¢) = Vir

Par ailleurs, On sait que F _; = ¢ sinf avec

1 /30 [3
D=9V ar ~ 8T
Yi_1(6 @):\/ie*wsine

T 8

11 suffit ensuite d’appliquer 'opérateur I:+ aYi_1(0,¢):

5 w0 0 3 /3., .
L Y — - P an ) - — e Wi = JE— wp y 1 3 —1p
+Y1 _1(0,¢) = he (89+ZCOt98<p> \/;e sin @ 87rhe (cosf +icotB(—i)sinf)e

On en déduit
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soit L4 Y71 ( = \/s=hcosb. Or L Vi _4( =4/1(1 (=1)(=1+ 1)AY1,0(0, ) = V2RY7 (b,

On en dedult
Yi0(0,¢) = \/%COSQ

Appliquons une derniére fois I'opérateur I:+ :

LiYi0(0,¢) = he'? ((;99 + i cot 9) Vi cosf = \/ ﬁew —siné) \/ 5 he“p sin @

Or Ly Y10(0,¢) = /1(1+1) — 0(0 + 1)hY1 1(8, ) = V2hY7 1(0, ¢). On en déduit

Y11(0,¢) = —\/%ew sin ¢

D.14 Parité des harmoniques sphériques

1. II suffit d’appliquer le produit d’opérateurs sur une fonction d’onde,

T124)(7) = Tap(F) = —ap(—7) = —211(7)

d’ou on déduit 12 = —211. Ces deux opérateurs anticommutent.
2. On a
13, 0(7) = 1% 5 0() = 550 (-7
Par ailleurs,
BT = 5 S 0(-7) =~ 5 (),
d’ott 'on déduit f[ﬁy = —ﬁyfl. Ces deux opérateurs anticommutent également.

3. On en déduit
ip, = —&llp, = ip,IL.

p,] = 0. On aurait de méme [f[, Upz] = 0. Sachant que L,= TPy — YDz, on en déduit que

4. Les axes jouant des roles similaires, on aurait aussi [II,L,] = [[I,L,] = 0. On en déduit
[, L] = [[1, L, +iL,] = 0.

5. L’opérateur II commute avec ﬁm, ﬁy, et ﬁz, et donc avec L2. Les trois observables f[, f/Q, et
L, commutent, donc on sait qu’il est possible de construire une base propre commune & ces trois
observables. Comme II n’a pas d’effet sur la coordonnée radiale r, on peut se placer dans l’espace
des fonctions Y (6, ). Or dans cet espace, la base propre commune de L2 et L. est unique, ce qui

implique que cette base propre est constituée de vecteurs propres de II. La parité des harmoniques

sphériques est donc bien définie.

6. On sait que Yy (0, p) o< e ¥ sin® 6. Or sin(r — 0) = sinf et e “+7) = (~1)’e™". Donc

®)-
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Yo _o(m—0,0+7) = (—1)"Y,_4(0, ). On en déduit la relation demandée.

7. Les opérateurs II et f)+ commutent, donc les espaces propres de II sont stables sous I’action de
ﬁ+. L’application répétée de 'opérateur f/+ sur la fonction Yy _¢(6, ¢) nous donne donc un vecteur

14

propre de II pour la valeur propre (—1)°, ce qui correspond & la relation demandée.

D.15 Atomes hydrogénoides

1. Par rapport a I’hydrogéne, la charge de I’électron —¢q est inchangée tandis que celle du noyau

devient +Zq. L’énergie potentielle s’écrit donc

Zq? Ze?
Vir)=-——L - 2%
dmegr T
L’hamiltonien s’écrit alors
- pQ Z€2
2 r

2. Les niveaux d’énergie de 'hydrogéne sont donnés par la relation

Er

E,=-——1L
n n2

avec 4 9 9
mee h e
° —— ~ 13,6 eV.

FEr = = — =
! 2h? 2mea?  2a;

Pour un systéme hydrogénoide, il suffit de remplacer e? par Ze?. L’énergie d’ionisation devient alors

ymeet

Ei(2) = 2°5o

Elle est donc multipliée par 4 dans le cas de I'ion He™.

3. Le rayon de Bohr de I'hydrogéne s’écrit

h2
ag = ——5 = 0,053 nm
mee

Si I'on remplace €2 par Ze?, on voit que le rayon de Bohr est divisé par Z : a1(Z) = a1/Z.

D.16 Reconnaitre une orbitale atomique

On observe que la phase de la fonction d’onde varie de 0 & 47 lorsque la coordonnée azimutale
@ varie de 0 & 2w. Comme un état propre de L. varie en exp(imep), cela signifie que m = 2. Par
ailleurs, la fonction d’onde s’annule deux fois quand € varie de 0 & 7 (ces deux valeurs étant exclues).
Cela signifie que £ — |m| = 2, et donc que ¢ = 4. Enfin, la fonction d’onde radiale ne s’annule pas.
On en déduit que le nombre quantique radial n’ = 0 et donc que n =n’ + £+ 1 = 5. 1l s’agit donc

d’une représentation de I'état |5,4,2).



208 ANNEXE D. CORRECTION DES EXERCICES
D.17 Invariance de jauge

Le fait que x(7,t) dépende du temps ne change pas le raisonnement concernant le terme associé

a I’énergie cinétique dans ’hamiltonien, de sorte que l'on a toujours

5 s )2 B s AR 2
(p—q;(r,t)) W 1) = exp (iqxg’t)> (p q;;i ,t)) B0,

Par contre, la dépendance en temps de la fonction x(7,t) affecte I’énergie potentielle selon I'expres-

sion

On peut donc en déduire

A1) = B exp (qu(;t)) W(7 1) = exp (iqxf’ t>) (H g’;) O 1)

D’autre part, le calcul de la dérivée de ¢)/(7,t) par rapport au temps fait intervenir la dérivée de la

fonction x(7,t) par rapport au temps. On obtient ainsi

L0y 0 ax(M)N o
Zhﬁ h& <Z - >w(r,t)

= ihexp ( )( 17;1((9935 (m))
—exp ({20 (S - SXurin)
) (e

070~ g 5eu(r))
= H'y/ (7t

»
=

On trouve a nouveau que ¢/ (7, t) obéit a 'équation de Schrodinger associée a ’hamiltonien H' dans

la nouvelle jauge.

D.18 Niveaux de Landau

1. L’hamiltonien s’écrit ici

~ N 2
g F-dd) g by —aB2) P2
2m - 2m 2m 2m’

ot I'on a utilisé I'expression du potentiel vecteur A(7) en jauge de Landau (éq. 6.21).

2. Parmi les composantes cartésiennes de 'impulsion, seule p, ne commute pas avec ’hamiltonien
en raison de la présence du terme en . On peut donc chercher les fonctions propres sous la forme

de fonctions propres communes de H, py et p., soit

x,y, 2) = @(x)eFvyeih==
U,y 2) =
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ou ky et k. sont des nombres réels quelconques.
3. L’hamiltonien s’écrit alors
. N2
P i) Y TS Y B

2m 2m 2m 2m

ou ) )
o= P By~ B7)
W om 2m
gouverne le mouvement dans le plan zy tandis que H, = p?/(2m) correspond & un mouvement
libre selon l'axe z. On remarque que p, commute avec ﬁwy (contrairement & p,). On peut donc
chercher une base propre commune a p, et ffxy. La forme générale d’une fonction propre commune

est ¢ (x,y) = @(x) exp(ikyy). L'action de H,, sur cette fonction nous donne

~2 A i.Z ) i i.2
~mﬂmW%—C”+@yqB))wm%mwm—<“ﬂN%yqB)>MMmmmm

2m 2m 2m 2m

Léquation H,,|)) = €[¢) se rameéne donc a

~9 2 2
Ji 1 qB . hky _
@m+2m<m) (425 1o = doh

On reconnait ici 'action de 'hamiltonien d’un oscillateur harmonique & une dimension de fréquence
we = ¢B/m, centré non pas sur l'origine mais en = = hk,/(¢B). Les valeurs propres sont discrétes
et s’écrivent €, = (n + 1/2)hw,.. En résumé, les valeurs propres de ’hamiltonien H peuvent s’écrire
2.2

z

2m

h2k2
- 1/2)hw, z
(n+1/2) + T~

En,kz =€+

Ces niveaux d’énergie s’appellent les niveaux de Landau. Les fonctions propres associées s’écrivent

hk .
By 0.02) = o (1= 22 ) xp (il + £:2)

ou les fonctions ¢, (x) sont les fonctions propres de oscillateur harmonique.

4. Dans ce cas, le degré de liberté en z est gelé et les niveaux d’énergie sont quantifiés : F,, =
(n + 1/2)hw.. Ces niveaux d’énergie sont dégénérés compte tenu de la valeur arbitraire du vecteur

d’onde k,. Les fonctions d’onde associées aux niveaux de Landau a 2D s’écrivent

hky\ ik
Vnk, (T,9) = ©n (36 - qB) ey,
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D.19 Evolution d’un systéme a deux niveaux

1. Dans la base {|f),|i)}, on peut écrire 'hamiltonien sous la forme

~ h s b wy Qo _h i, M [ cos®  sind
H_Q(wf+wl)l+2<90 _wfi>—2(wf+w,)l+2 sinf —cosf )

Intéressons nous & la matrice orthogonale apparaissant dans ’expression ci-dessus,

= < cos@ sin6 >

sinf@ —cosf

La trace de cette matrice est nulle tandis que son déterminant est égal a —1. Ses valeurs propres

sont donc +1, ce qui nous permet d’en déduire les valeurs propres de H ,

h h$2
Fr=—(wr+w) £ —.
£ = 5w twi) £
L’écart entre les deux niveaux est donc £ —FE_ = hf). Comme cette quantité est supérieure ou égale

a h|wy;|, on retrouve la répulsion habituelle entre les deux niveaux sous ’action du couplage W. On
peut remarquer que M représente la matrice d’une symétrie par rapport & une droite. Comme elle
transforme le vecteur |f) en cos@|f) + sinf|i), on peut remarquer que 'axe de symeétrie, selon la
bissectrice, fait un angle /2 par rapport a |f). On peut alors en déduire les vecteurs propres |4)

associés aux valeurs propres +1 :

6 .0
) = cos 1) +sin |i)

.0 0.
|—)——Sln5|f>+cos§|z>

2. Exprimons tout d’abord les états |f) et |i) dans la base propre

1) = cos§ [+) —sin ) |-)

. .0 0
li) = sin o |+) +COS§ [—)

Sachant que [1(0)) = |i), on peut en déduire
. A 0 . 0
W)(t» — e~ iwot <e—th/2 sin§ |+> + eth/2 COS§ ’_>>
ou I'on a posé wp = (wy 4+ w;)/2. On en déduit

Piss(t) = [ {flw(®) |

A 0 0 A 0 0
= |e 8/ 2gip B cos oo /2 cog B sin 3

2
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soit

Q
Pi_s(t) = sin® O sin” 2t

9—2 0 gin? &

02 2

3. En linéarisant ’expression obtenue plus haut, on obtient

2

Q
Pi_>f(t) = 2(;) (1 — cos ).

La probabilité de transition oscille donc au cours du temps entre les deux valeurs extrémes 0 et
03/92. La fréquence angulaire (ou pulsation) de cette oscillation est la quantité Q (la fréquence

étant en fait /(27)). L’amplitude de 'oscillation est égale a

% _ %
02 "‘)]2% —{—Q%'

Sa valeur maximale, égale a 1, est atteinte lorsque wy; = 0, c’est a dire lorsque ’état final a la méme

énergie que ’état initial. Dans ce cas, la fréquence angulaire de I'oscillation a pour valeur 2 = €.

4. Larésolution du probléme est beaucoup plus rapide si on applique la méthode des perturbations

dépendant du temps. En appliquant directement 1’éq. 9.23, on obtient

02 wit
0 sin? 2L

Pisp(t) = 5

fz

Ce résultat est trés similaire au résultat exact, la grandeur € étant simplement remplacée par wy;
dans 'expression de la probabilité de transition. Cette approximation est bien justifiée dans la limite
ol Qp <K wy;, auquel cas Q = \/WF + 02 ~ wy;. Quand Q¢ commence a prendre des valeurs non
négligeables devant wy;, la méthode des perturbations sous-estime la fréquence d’oscillation (wy;
au lieu de Q = ,/w]%i + Qg) et sur-estime I'amplitude de l'oscillation. A I'extréme, la méthode des
perturbations donne le résultat absurde d’une probabilité supérieure a 1 lorsque €29 > wy; alors que

le calcul exact donne toujours une probabilité maximale inférieure ou égale a 1.

D.20 Désexcitation d’un état couplé & un continuum
1. Compte tenu de l'expression générale établie en cours
Zv e"knt (kW |n)

on obtient immédiatement

:—*Z’Yf Tent(i| W f)
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Par ailleurs, on sait qu’un état |f) donné n’est couplé qu’au seul état |i), donc

. i e -
700 = — L) 17
2. En intégrant I'équation exprimant 4¢(t), on obtient

1

w@-—A%@VW%ﬂW>

=

d’out 'on déduit
: ! - iw gt T710\ ,—iw it /2117
%@ZHZHAWMSWMNWWf%WW

i [ Ejﬂww1ww4m

1 dweg (8 —
Z‘WA””WﬂWM@WM@kﬂ““MWﬂ

1 t 400 ) ,
:—Womw{/ g(w)e™ ) hdwdt!

soit

3. Comme g(w) est réelle et paire, on peut en conclure que g(t) est également réelle et paire. Par
ailleurs, le fait que la fonction g(w) soit supposée large suggeére que la fonction g(t) sera trés étroite.
En principe, on peut simplement affirmer que les produits Aw et At sont reliés par la relation
AwAt > 1/2, mais comme les fonctions g(w) et g(t) sont réelles, et a condition qu’elles soient

suffisamment proches d’une gaussienne, on pourra supposer AwAt ~ 1.

4. D’apres les hypotheéses, la fonction g(t') est beaucoup plus étroite que 1’échelle caractéristique
de variation de 7;(¢'). On peut donc négliger la variation de +;(¢’) pour les valeurs de ¢’ pour lesquelles
g(t —t') prend des valeurs non négligeables et remplacer dans 'intégrale le produit ~;(¢')g(t — t')
par 7;(t)g(t — t'). On obtient alors

T t T t T +o0
40) = =220 [ ot~ Oy ==Y 70 [ ottt = Yty [ gttrar

ou 'on a effectué un changement de variable dans 'intégrale puis utilisé le fait que pour des valeurs
suffisamment grande de ¢ I'intégrale pouvait étre prolongée jusqu’a I'infini car I'intégrale de g(t')

pour ' > t est négligeable. Par ailleurs

+o0 +o0
A g@ﬁzl/ o(1)dt = 3\/3mglw = 0)

2) o



D.20. DESEXCITATION D’UN ETAT COUPLE A UN CONTINUUM

ou 'on a utilisé la parité de g(t) puis expression de la transformée de Fourier inverse
1 [t
w) = — t) exp(iwt)dt
o) = —= [ gtt)exlion)
pour w = 0. Enfin, sachant que g(w = 0) = |[Wy;|?p(Ef = E;), on obtient

$it) = S IWiiPo(By = Bilt) = —5i(0)

213

On obtient donc un déclin exponentiel, qui redonne bien 1 —T't en régime perturbatif (i.e. aux temps

courts).
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