Cours n°5 Caractérisation spatio-temporelle

Manuel Joffre

www.enseignement.polytechnique.fr/profs/physique/Manuel.Joffre/dea/

$$E(x, y, \omega) = |E(x, y, \omega)| \exp(i\varphi(x, y, \omega))$$

Plan du cours

- 1. Détection aux fréquences optiques
- 2. Mesure de l'intensité
- 3. Mesure de la phase spatiale
- 4. Mesure de la phase spectrale

1. Détection aux fréquences optiques

1.1 Détection linéaire

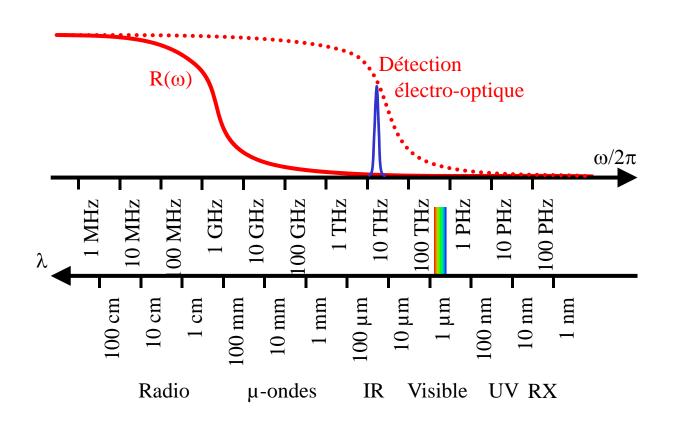
$$S(t) = R(t) \otimes E(t) = \int R(\omega)E(\omega) \exp(-i\omega t) \frac{d\omega}{2\pi}$$

1.2 Détection quadratique

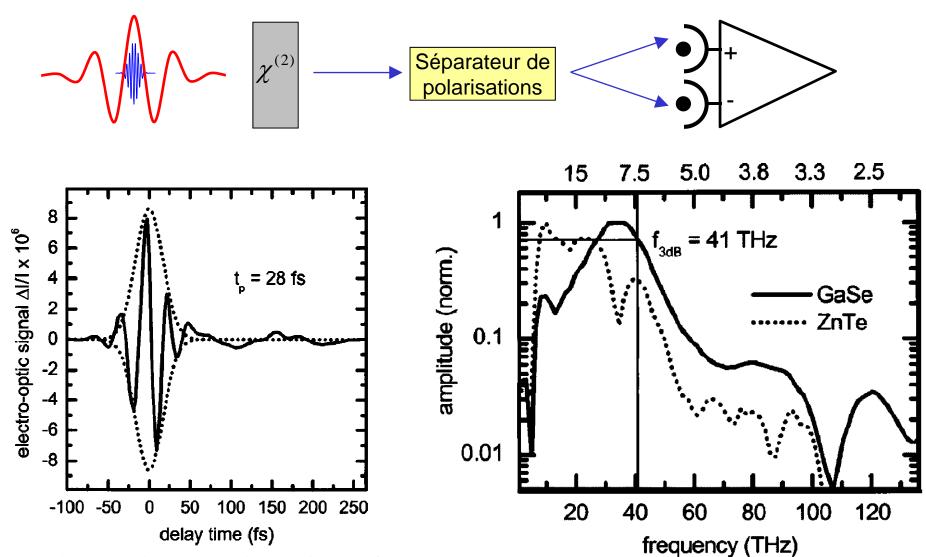
$$S(t) = \int R(\omega_1, \omega_2) E(\omega_1) E(\omega_2) \exp(-i(\omega_1 + \omega_2)t) \frac{d\omega_1}{2\pi} \frac{d\omega_2}{2\pi}$$

1.1 Détection linéaire

$$S(t) = R(t) \otimes E(t)$$
 \longrightarrow $S(\omega) = R(\omega) E(\omega)$

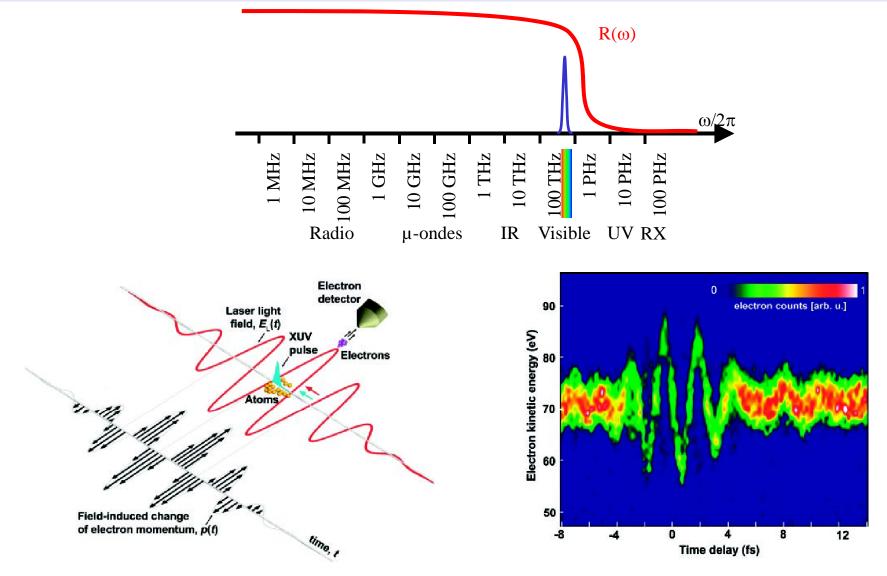


Détection électro-optique



C. Kubler, R. Huber, S. Tubel, A. Leitenstorfer *Ultrabroadband detection of multi-terahertz field transients with GaSe electro-optic sensors: Approaching the near infrared* Appl. Phys. Lett. 85, 3360-3362 (2004)

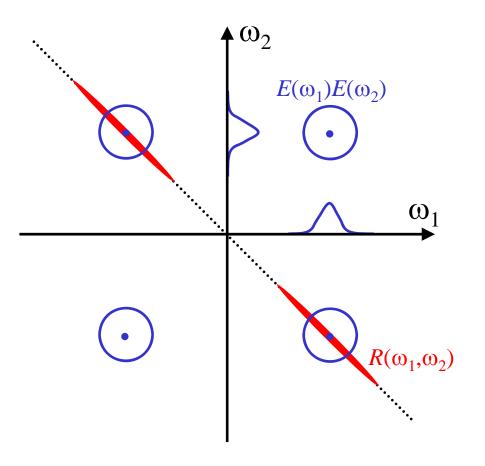
Détection d'impulsion femtosecondes visibles à l'aide d'impulsions attosecondes X-UV



E. Goulielmakis et al., Science 305, 1267 (2004)

Détection quadratique

$$S(t) = \int R(\omega_1, \omega_2) E(\omega_1) E(\omega_2) \exp(-i(\omega_1 + \omega_2)t) \frac{d\omega_1}{2\pi} \frac{d\omega_2}{2\pi}$$



a) Impulsion courte

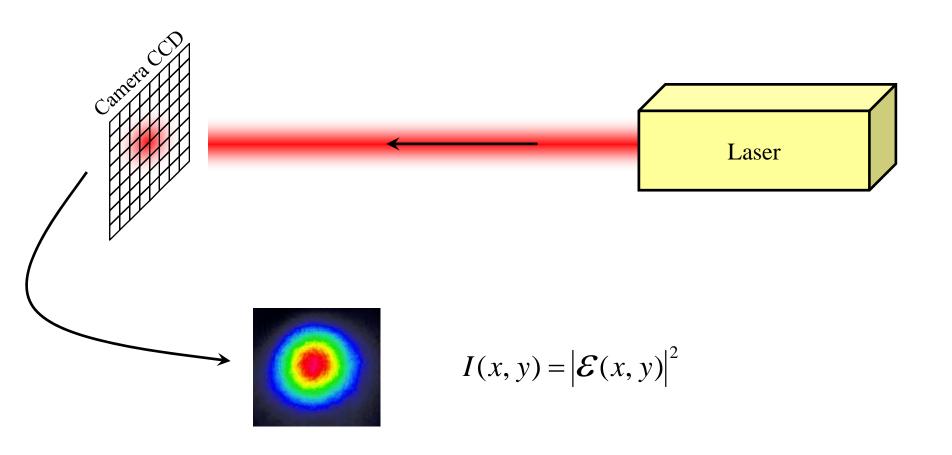
$$S = \int S(t)dt = \int R_S(\omega) |\mathcal{E}(\omega)|^2 \frac{d\omega}{2\pi}$$

b) Impulsion longue

$$S(t) = R_S(\omega_0) \big| \mathcal{E}(t) \big|^2$$

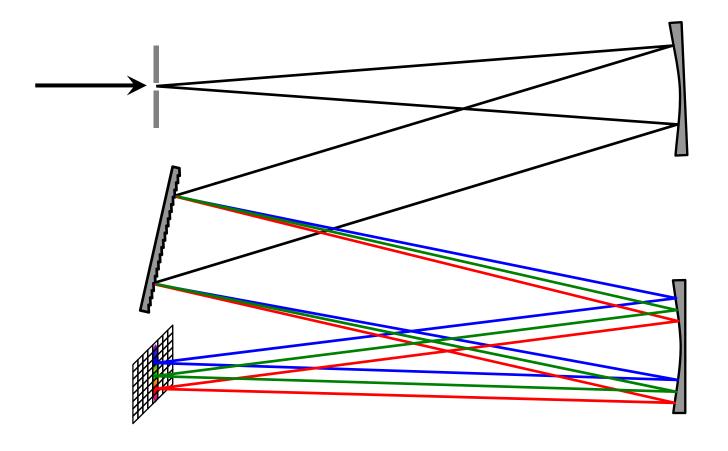
→ Un détecteur quadratique est insensible à la phase du champ.

2.1 Mesure de l'intensité spatiale



2.2 Mesure de l'intensité spectrale

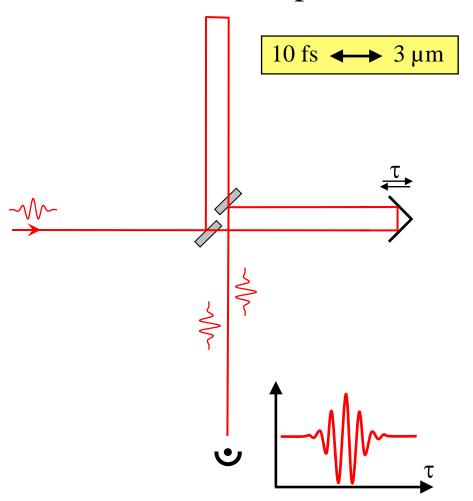
a) Utilisation d'un spectromètre à réseau



Le réseau de diffraction permet d'établir une correspondance entre composante spectrale et coordonnée spatiale, ce qui permet de mesurer le spectre $|E(\omega)|^2$ à l'aide d'une caméra CCD.

2.2 Mesure de l'intensité spectrale

b) Utilisation d'un spectromètre par transformée de Fourier



$$s(\tau) = \int (E(t) + E(t - \tau))^2 dt$$
$$= Cste + 2 \int E(t)E(t - \tau)dt$$

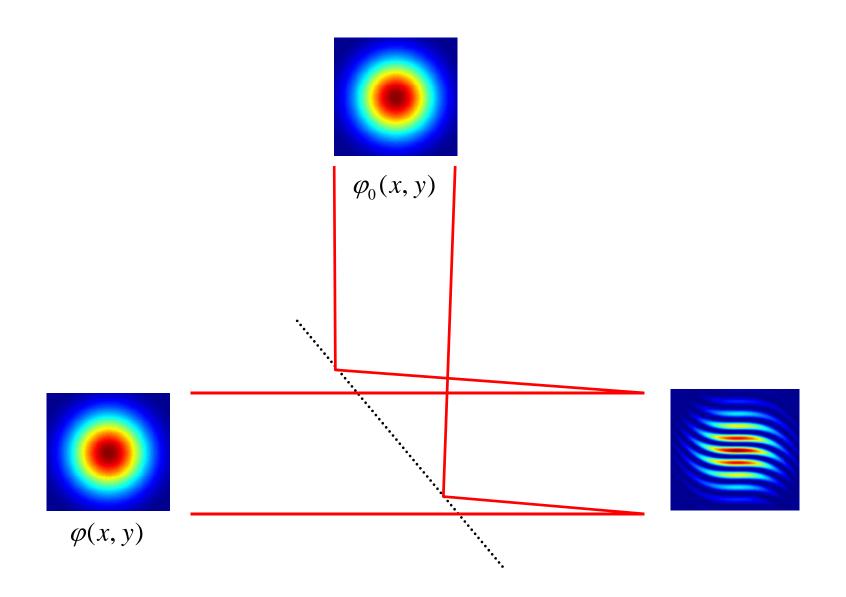
 $\left| E(\omega) \right|^2$

Autocorrélation du champ

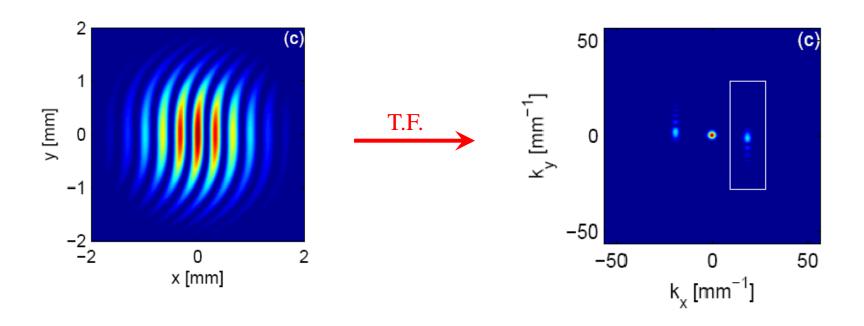
L'autocorrélation du champ (ou autocorrélation du premier ordre) fournit l'**intensité spectrale** : c'est la spectroscopie par transformée de Fourier.

- 1. Détection aux fréquences optiques
- 2. Mesure de l'intensité
- 3. Mesure de la phase spatiale
 - 3.1 Interférométrie
 - 3.2 Méthode de Shack-Hartmann
 - 3.3 Interférométrie à décalage
- 4. Mesure de la phase spectrale

3.1 Mesure de la phase spatiale : interférométrie



Traitement de Fourier des franges d'interférence



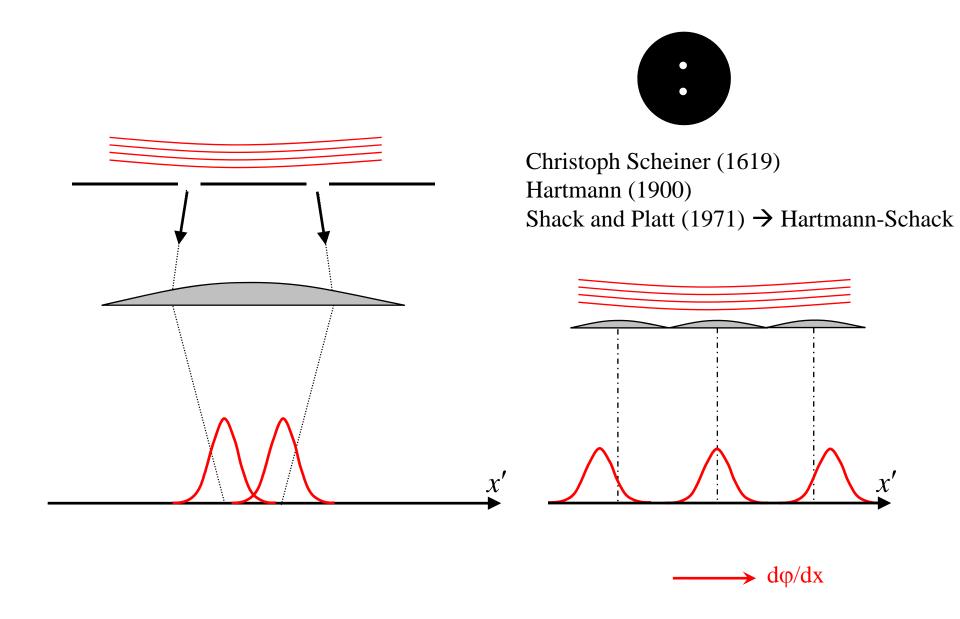
$$S(x,y) = \left| \mathcal{E}_0(x,y) + \mathcal{E}(x,y) e^{ik_{0x}x} \right|^2$$

$$= \left| \mathcal{E}_0(x,y) \right|^2 + \left| \mathcal{E}(x,y) \right|^2 + \left| \mathcal{E}_0^*(x,y) \mathcal{E}(x,y) e^{ik_{0x}x} \right| + \mathcal{E}_0(x,y) \mathcal{E}^*(x,y) e^{-ik_{0x}x}$$

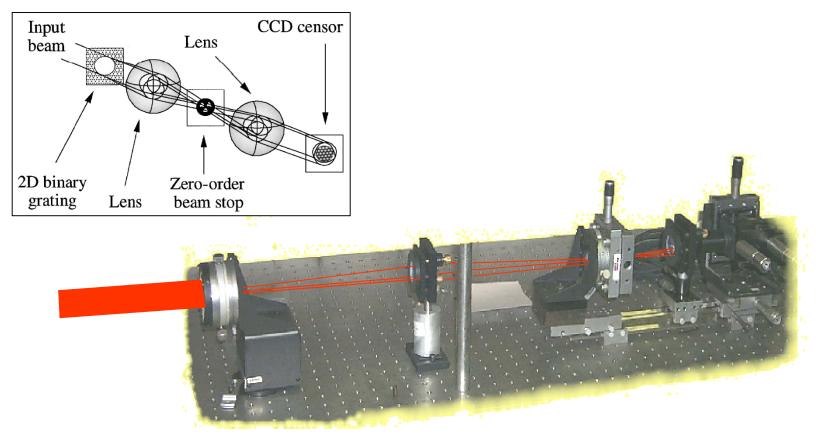
$$\longrightarrow \varphi(x,y) - \varphi_0(x,y)$$

M. Takeda, H. Ina, S. Kobayashi, J. Opt. Soc. Am. **72**, 156 (1982)

Du disque de Scheiner au Hartmann - Shack



Interférométrie à décalage

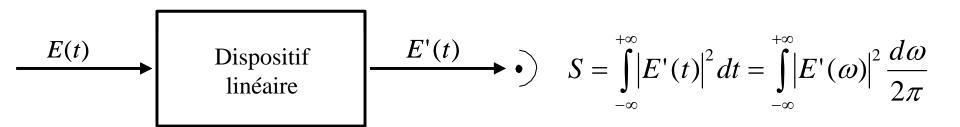


 $\varphi(x, y) - \varphi(x - \delta x, y) \longrightarrow \vec{\nabla} \varphi(x, y)$

J.-C. Chanteloup, Appl. Opt. **44**, 1559 (2005) http://www.phasicscorp.com

- 1. Détection aux fréquences optiques
- 2. Mesure de l'intensité
- 3. Mesure de la phase spatiale
- 4. Mesure de la phase spectrale
 - 4.1 Spécificité du domaine spectro-temporel
 - 4.2 Interférométrie
 - 4.3 Autocorrélation
 - 4.4 FROG
 - 4.5 SPIDER

Est-il possible de mesurer la phase d'une impulsion isolée à l'aide d'un dispositif linéaire et stationnaire ?



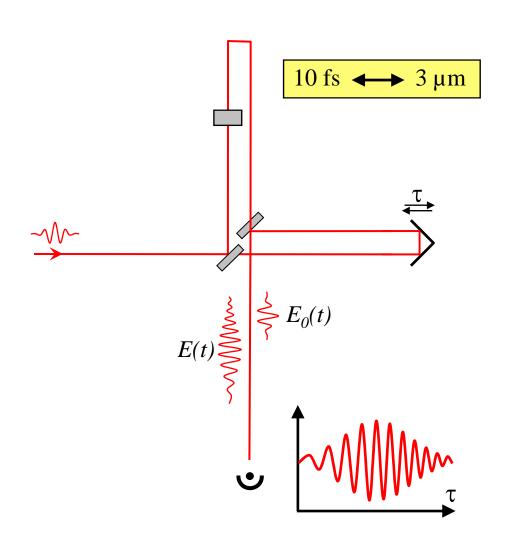
Dispositif linéaire et stationnaire :

$$E'(t) = \int_{-\infty}^{+\infty} R(t, t') E(t') dt' = \int_{-\infty}^{+\infty} R(t - t') E(t') dt' \longrightarrow E'(\omega) = R(\omega) E(\omega)$$

$$S = \int_{-\infty}^{+\infty} |R(\omega)|^2 |E(\omega)|^2 \frac{d\omega}{2\pi}$$

Réponse: NON!!

Corrélation linéaire du premier ordre



$$s(\tau) = \int (E(t) + E_0(t - \tau))^2 dt$$
$$= Cste + 2 \int E(t)E_0(t - \tau)dt$$

TF

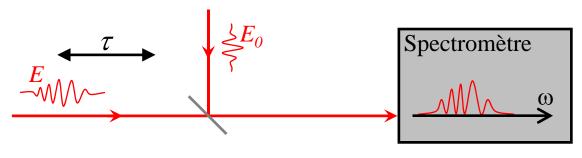
Produit de corrélation

$$f(\omega) = \mathcal{E}_0^*(\omega)\mathcal{E}(\omega)$$

Si l'impulsion de référence est connue, on peut en déduire l'amplitude et la phase spectrale de l'impulsion inconnue.

Interférométrie spectrale

Analogue spectro-temporel de l'expérience des fentes d'Young



$$S(\omega) = \left| \mathcal{E}_{0}(\omega) + \mathcal{E}(\omega) e^{i\omega\tau} \right|^{2}$$

$$= \left| \mathcal{E}_{0}(\omega) \right|^{2} + \left| \mathcal{E}(\omega) e^{i\omega\tau} \right|^{2} + \left| \mathcal{E}_{0}^{*}(\omega) \mathcal{E}(\omega) e^{i\omega\tau} + \mathcal{E}^{*}(\omega) \mathcal{E}_{0}(\omega) e^{-i\omega\tau}$$

$$= \left| \mathcal{E}_{0}(\omega) \right|^{2} + \left| \mathcal{E}(\omega) e^{i\omega\tau} \right|^{2} + f(\omega) e^{i\omega\tau} + f^{*}(\omega) e^{-i\omega\tau}$$

$$f(\omega) = \mathcal{E}_0^*(\omega)\mathcal{E}(\omega) \rightarrow f(t) = \mathcal{E}_0^*(-t)\otimes\mathcal{E}(t)$$

Produit de corrélation

C. Froehly et al., Nouv. Rev. Optique (1973)

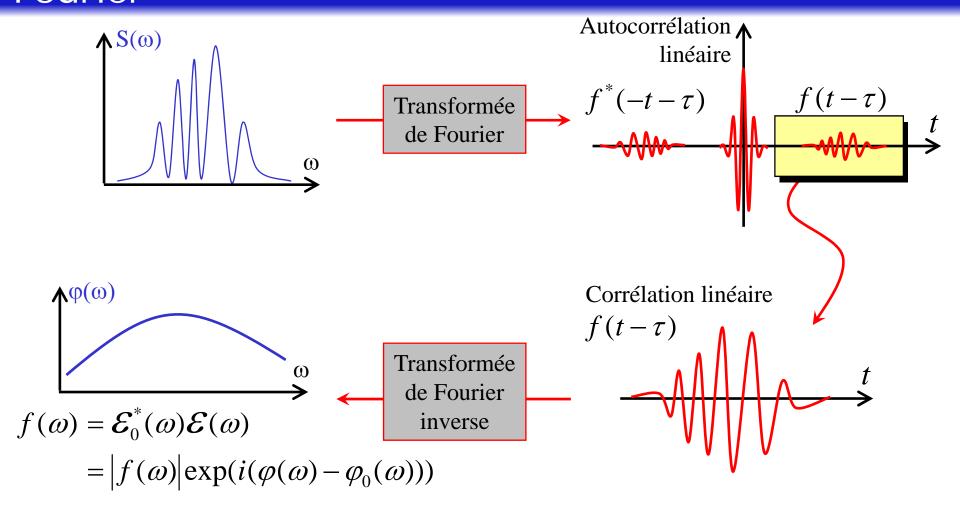
F. Reynaud et al., Opt. Lett. **14**, 275 (1989)

E. Tokunaga et al., Opt. Lett. 18, 370 (1993)

J.-P. Geindre et al., Opt. Lett. **19**, 1997 (1994)

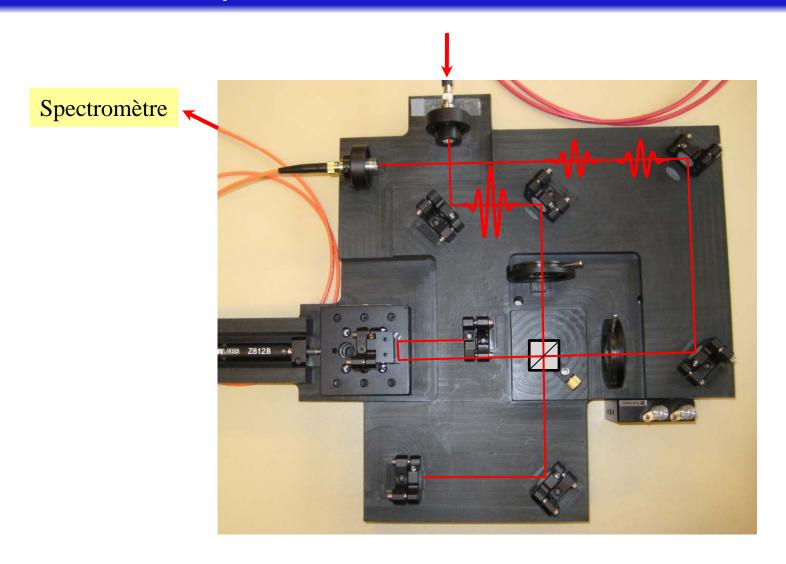
A. P. Kovacs et al., Opt. Lett. **20**, 788 (1995)

Interférométrie spectrale par transformée de Fourier



L. Lepetit, G. Chériaux, M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995)
C. Dorrer, N. Belabas, J.P. Likforman, M. Joffre, J. Opt. Soc. Am. B 17, 1795 (2000)

Illustration expérimentale



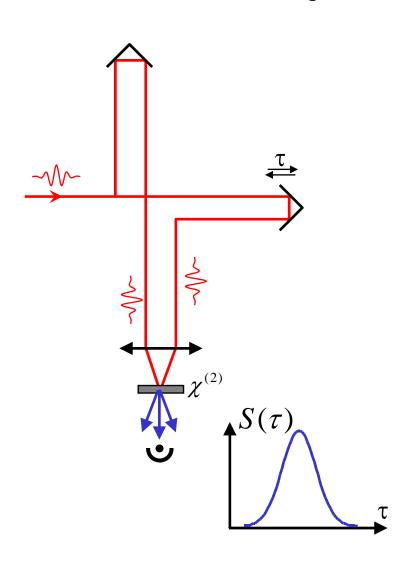
Projet scientifique collectif (X2008):

Pierre Desjardins, Amaury Dumoulin, Catherine Gasnier, Benjamin Grena, Alexandre Hudavert Encadrement LOB: Guillaume Labroille, Jean-Marc Sintès, Manuel Joffre

- 1. Détection aux fréquences optiques
- 2. Mesure de l'intensité
- 3. Mesure de la phase spatiale
- 4. Mesure de la phase spectrale
 - 4.1 Spécificité du domaine spectro-temporel
 - 4.2 Interférométrie
 - 4.3 Autocorrélation

Caractérisation d'une impulsion isolée

L'autocorrélation intensimétrique : une méthode stationnaire non-linéaire



$$P^{(2)}(t) = \varepsilon_0 \chi^{(2)} \mathcal{E}(t) \mathcal{E}(t-\tau)$$

$$S(\tau) \propto \int_{-\infty}^{+\infty} \left| P^{(2)}(t) \right|^2 dt \propto \int_{-\infty}^{+\infty} I(t)I(t-\tau)dt$$

Autocorrélation de l'intensité

Si la forme de l'impulsion est déjà connue, sa durée à mi-hauteur peut être déduite de la largeur de l'autocorrélation.

Gaussienne: facteur 1.414

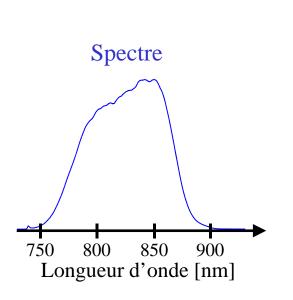
Sécante hyperbolique carrée : facteur **1.55**

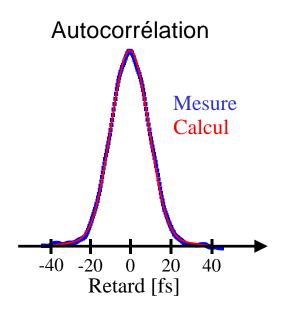
$$\int_{-\infty}^{+\infty} \tau^2 S(\tau) d\tau = \iint (t - t')^2 I(t) I(t') dt dt' = 2\Delta t^2$$

L'autocorrélation permet de déterminer la durée RMS d'une impulsion sans hypothèse préalable sur sa forme temporelle.

Caractérisation complète d'une impulsion limitée par transformée de Fourier

Impulsion limitée par transformée de Fourier de durée à mi-hauteur égale à 16 fs





Le bon accord entre l'autocorrélation mesurée et l'autocorrélation calculée à partir du spectre mesuré (en supposant une phase nulle) indique que $\Delta t^2 = \Delta t_{\omega=0}^2$.

Or, de manière générale,
$$\Delta t^2 = \Delta t_{\varphi=0}^2 + \Delta \tau_g^2$$
.

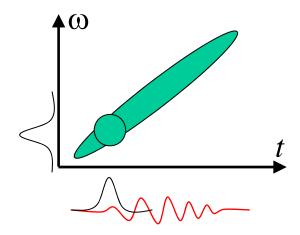
On en déduit que $\Delta \tau_{\rm g} = 0$.

→ La phase spectrale varie donc linéairement avec la fréquence.

Méthodes spectrographiques

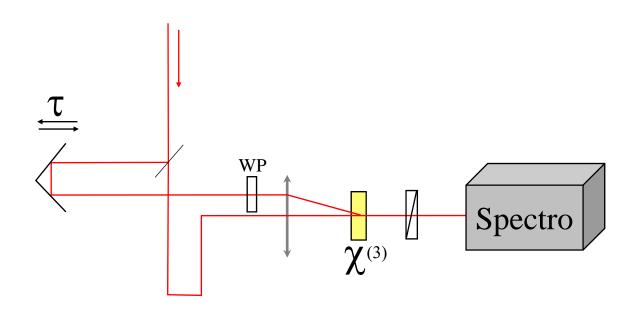
Méthodes de mesure de la phase spectrale inspirées de la méthode de Hartmann pour la phase spatiale

$$S(t,\omega) = \left| \int \mathcal{E}(t')g(t'-t) \exp(i\omega t')dt' \right|^2$$



Frequency – resolved optical gating (FROG)

✓ Polarization-gating FROG



$$S(\tau,\omega) = \left| \int \mathcal{E}(t) |\mathcal{E}(t-\tau)|^2 \exp(i\omega t) dt \right|^2 \quad \text{Algorithme iteratif} \quad \phi(\omega)$$

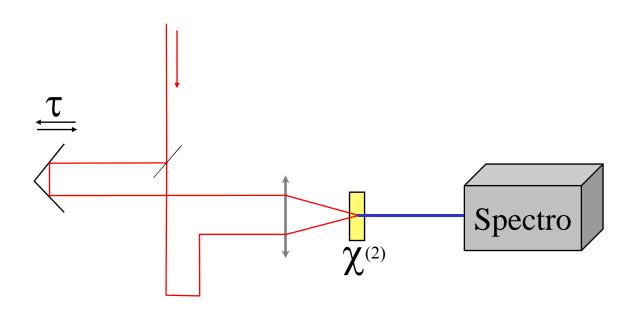
R. Trebino, D.J. Kane

Using phase retrieval to measure the intensity and phase of ultrashort pulses - frequency-resolved optical gating J. Opt. Soc. Am. A 10, 1101-1111 (1993)

R. Trebino *et al.*, Rev. Sci. Instr. **68**, 3277-3295 (1997)

Frequency – resolved optical gating (FROG)

✓ SHG FROG (second harmonic generation)



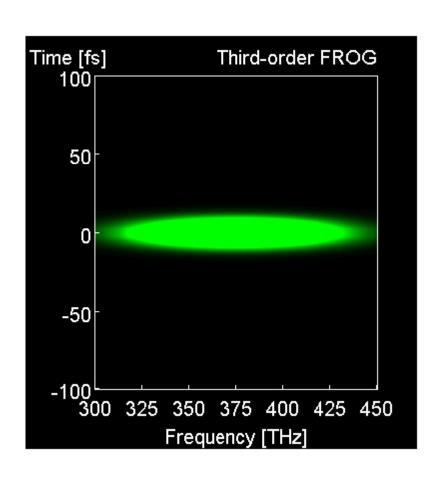
$$S(\tau,\omega) = \left| \int \mathcal{E}(t)\mathcal{E}(t-\tau) \exp(i\omega t) dt \right|^2 \qquad \text{Algorithme iteratif} \qquad \phi(\omega)$$

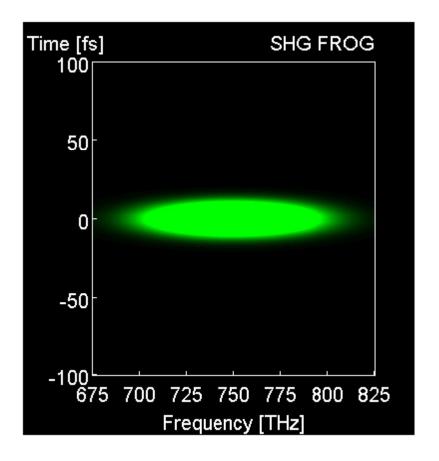
J. Paye, M. Ramaswamy, J.G. Fujimoto, E.P. Ippen Measurement of the amplitude and phase of ultrashort light-pulses from spectrally resolved autocorrelation Opt. Lett. **18**, 1946 (1993)

R. Trebino *et al.*, Rev. Sci. Instr. **68**, 3277-3295 (1997)

Quelques exemples de traces FROG

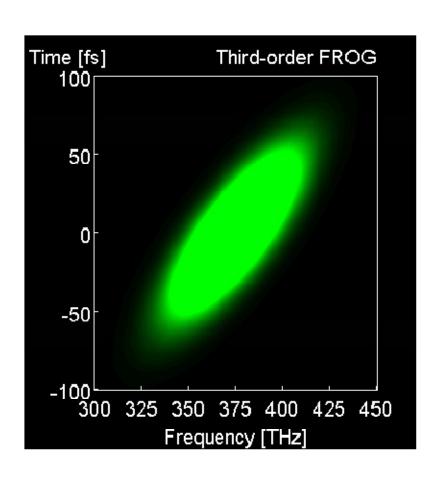
Impulsion limitée par transformée de Fourier de durée 10 fs.

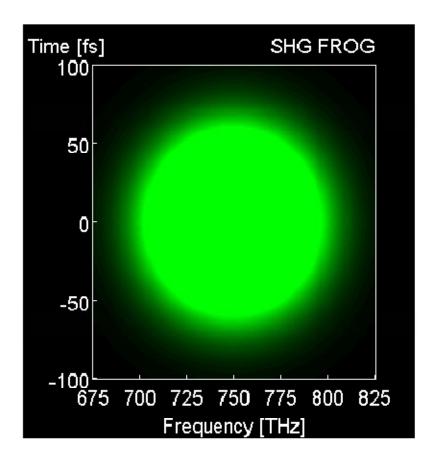




Quelques exemples de traces FROG

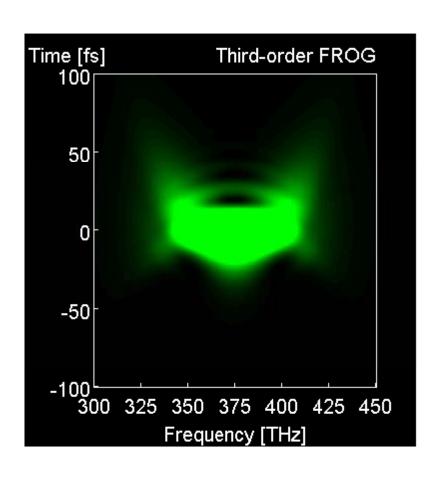
Impulsion présentant une phase spectrale quadratique $\phi^{(2)} = 200 \text{ fs}^2$.

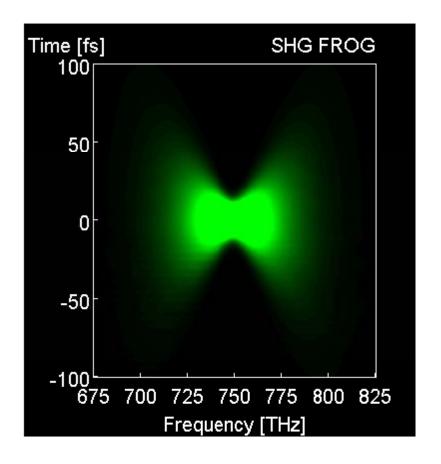




Quelques exemples de traces FROG

Impulsion présentant une phase spectrale cubique $\phi^{(3)} = 2000 \text{ fs}^3$.

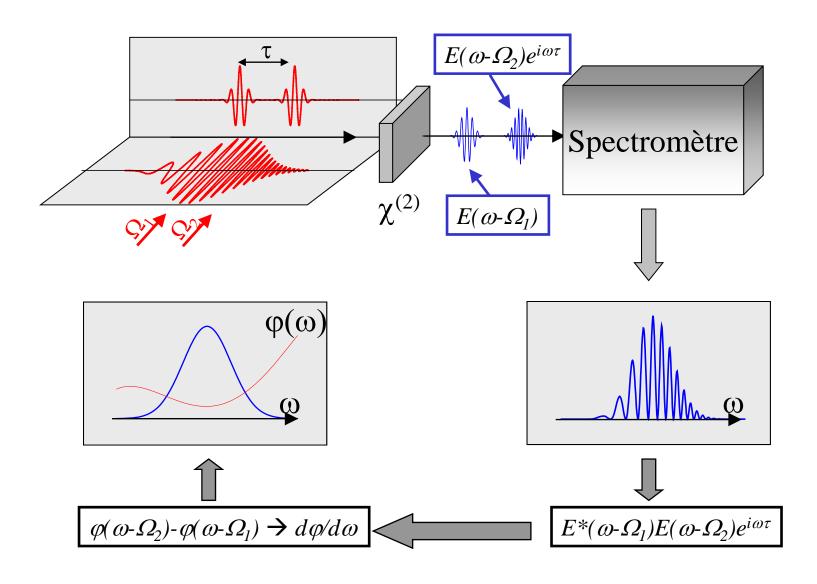




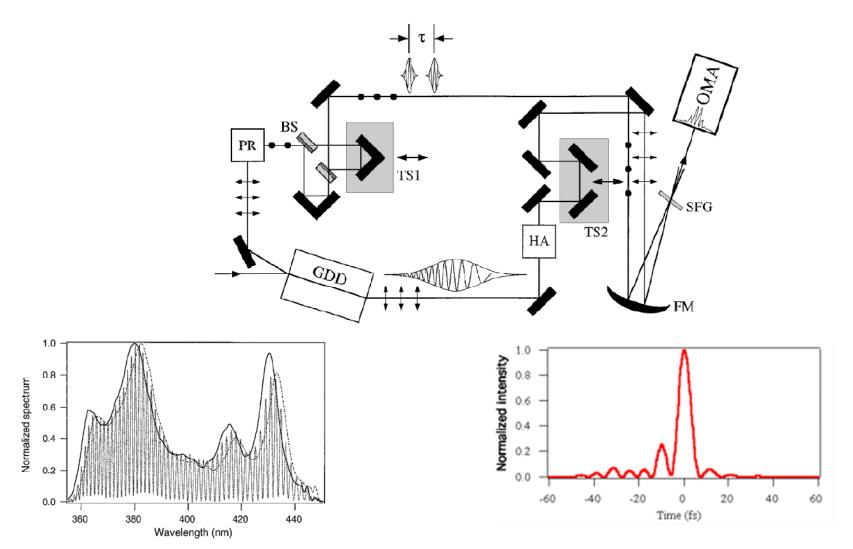
4.5 SPIDER

non itératif!

Interférométrie spectrale à décalage (SPIDER)



SPIDER: mesure d'une impulsion de 6 fs



L. Gallmann, D.H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, I.A. Walmsley *Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction* Opt. Lett. **24**, 1314 (1999)

Conclusion

- La photodétection aux fréquences optiques se fait le plus souvent à l'aide d'un détecteur quadratique, qui n'est pas sensible à la phase.
- La phase peut être mesurée par interférométrie entre le champ à mesurer et un champ de référence, dans le domaine spatial comme dans le domaine spectral.
- Dans le cas où un champ de référence n'est pas disponible, on utilise une méthode auto-référencée.
 - Dans le domaine spatial : Hartmann-Shack ou interférométrie à décalage
 - Dans le domaine spectral : FROG ou SPIDER