Exercices: zonotopes and constrained zonotopes

General properties and examples

We recall the definition of zonotopes below:

Definition 1 (Zonotope) An n-dimensional zonotope \mathcal{Z} with center $c \in \mathbb{R}^n$ and a vector $G = [g_1 \dots g_p] \in \mathbb{R}^{n,p}$ of p generators $g_j = (g_{ij})_{i=1,\dots,n} \in \mathbb{R}^n$ for $j = 1,\dots,p$ is defined as $\mathcal{Z} = \langle c,G \rangle = \{c + G\varepsilon \mid ||\varepsilon||_{\infty} \leq 1\}.$

In other words, for every dimension $1 \le i \le n$ we have the *i*th coordinate z_i of points $z \in \mathcal{Z}$ that belongs to the set:

$$z_i = \{c_i + \sum_{j=1}^p \boldsymbol{g}_{ij} \varepsilon_j \mid \varepsilon \in [-1, 1]^p\}$$

We now introduce constrained zonotopes, as zonotopes with linear constraints on the noise symbols ε_i :

Definition 2 (Constrained Zonotope) An n-dimensional constrained zonotope CZ with center $c \in R^n$, a vector $G = [g_1 \dots g_p] \in \mathbb{R}^{n,p}$ of p generators $g_j \in \mathbb{R}^n$ for $j = 1, \dots, p$ and q constraints given by $H \in \mathbb{R}^{q,p}$ and $d \in \mathbb{R}^q$ is defined as $CZ = \langle c, G, H, d \rangle = \{c + G\varepsilon \mid ||\varepsilon||_{\infty} \leq 1, H\varepsilon \leq d\}$.

In other words, a constrained zonotope is a zonotope with q constraints on the p noise symbols. These constraints can be used to refine the precision of the abstraction. Given that $H = (h_{ij})_{i=1,\dots,q;j=1,\dots,p}$, these constraints can be written as, for all $1 \le k \le q$:

$$\sum_{j=1}^{p} h_{kj} \varepsilon_j \le d_k$$

Question 1 Represent geometrically the zonotope

$$\mathcal{Z} = \langle c, G \rangle = \left\langle \left(\begin{array}{c} 0 \\ 1/4 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 1/2 & 1/4 \end{array} \right) \right\rangle$$

in the (z_1, z_2) plane.

Question 2 Represent geometrically, also in the (z_1, z_2) plane, the constrained zonotope

$$C\mathcal{Z} = \langle c, G, H, d \rangle = \left\langle \left(\begin{array}{c} 0 \\ 1/4 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 1/2 & 1/4 \end{array} \right), \left(\begin{array}{cc} 1/2 & -1/4 \\ -1/2 & -1/4 \end{array} \right), \left(\begin{array}{cc} 1/4 \\ 1/4 \end{array} \right) \right\rangle$$

Hint: you should translate the constraints $H\varepsilon \leq d$ on the noise symbols ϵ_1 and ϵ_2 into constraints on the coordinates (z_1, z_2) of points $z \in CZ$.

Question 3 Is a constrained zonotope a polyhedra? If yes, what is the constraint representation of the constrained zonotope CZ of Question 2? In that case also, what is the generator representation, as a polyhedron, of the constrained zonotope CZ?

Question 4 How can we compute, for a given constrained zonotope $CZ = \langle c, G, H, d \rangle = \{c + G\varepsilon \mid ||\varepsilon||_{\infty} \leq 1, H\varepsilon \leq d\}$, its projection onto coordinate z_i , $i = 1, \ldots, n$? This requires only a very brief answer.

Consider the concretization γ of constrained zonotopes $C\mathcal{Z} = \langle c, G, H, d \rangle$ to be

$$\gamma(CZ) = \{c + G\varepsilon \mid \|\varepsilon\|_{\infty} \le 1, \ H\varepsilon \le d\}$$

Question 5 Can two different constrained zonotopes have the same concretization? If you think so, please provide a small counter-example, otherwise, please write down a short argument.

Given a set S in \mathbb{R}^n , is there always an abstraction of S as a constrained zonotope with minimal concretization? If you think so, please write down a short argument, otherwise please provide a small counter-example.

Affine transforms

We recall that zonotopes are closed under affine transformations: for $A \in \mathbb{R}^{m,n}$ and $b \in \mathbb{R}^m$ we can define $A\mathcal{Z} + b = \langle Ac + b, AG \rangle$ as the m-dimensional resulting zonotope.

Question 6 Can affine transformations be also interpreted in an exact manner in contrained zonotopes? In that case, please define the affine transform of a constrained zonotope, otherwise give an short argument why this would not be the case.

ReLU transforms

Different abstractions can be defined for the ReLU transform, among which the following one that we used in the course: let $[l_x, u_x]$ be the range reachable by component \hat{x} of the input zonotope of the ReLU layer. When $l_x \leq 0$ and $u_x \geq 0$, we define the zonotope transformer for $\hat{y} = max(0, \hat{x})$ by

$$\hat{y} = \lambda \hat{x} - \frac{\lambda l_x}{2} - \frac{\lambda l_x}{2} \varepsilon_{new} \text{ with } \lambda = \frac{u_x}{u_x - l_x}.$$
 (1)

Question 7 Consider $x_1 \in [-1,1]$, what is the zonotope abstraction of (x_1, x_2) for $x_2 = ReLU(x_1)$ using the abstraction of Equation (1)?

Question 8 Consider again the contrained zonotope of Question 2. Is it a correct abstraction for $x_2 = ReLU(x_1)$ for $x_1 \in [-1,1]$? Please give a short argument supporting your answer.

Is it the best refinement, as a constrained zonotope, of the zonotope of Question 7? By refinement, we mean the following: CZ is a refinement of Z if CZ has Z as underlying zonotope (hence just adding extra constraints).

Question 9 In view of the example of Question 8, define a ReLU transformer for constrained zonotopes refining the ReLU transformer for zonotopes by the addition of new constraints. Is it possible to make the transformer exact?

Analyzing a small network

Consider the toy network of Figure 1, where for simplicity all biases are taken equal to zero, and the weights are represented on the edges:

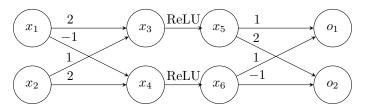


Figure 1: Toy network

Question 10 We are interested in the local robustness of the network of Figure 1 around input (1,1).

Using interval computations, is $[1-1/8, 1+1/8] \times [1-1/8, 1+1/8]$ a locally robust neighborhood of (1,1)? For this neighborhood, we say that its radius (around (1,1), for the max distance) is 1/8.

What is the maximal robustness radius around (1,1) that can be proved for this neural net, using the interval abstraction?

Question 11 Compute the zonotope for each layer of the network of Figure 1 obtained using the zonotope abstraction with input domain $(x_1, x_2) \in [2/3, 4/3] \times [2/3, 4/3] \wedge 3x_2 \leq 4x_1$. As this input domain is not a zonotope, we are obliged to compute with, the input zonotope being given by the square $[2/3, 4/3] \times [2/3, 4/3]$.

Can you use the zonotopic analysis to prove or disprove the property that for this input domain, we always have on the outputs $o_2 \ge o_1$?

Question 12 Now same question as Question 11, with constrained zonotopes instead of zonotopes.