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1 Introduction

Let n be the modulus of an RSA key pair, i.e. a product of two large primes
p, q. Let � = |p − q| be the prime difference of n. We will assume that the
bitsizes of the primes are equal, hence equal to half the bitsize of n, so that the
prime difference is at most as large as n1/2. We note that when the primes are
generated randomly and independently, then with overwhelming probability
the prime difference will indeed be of the size of n1/2. So in practice one can
easily avoid small prime differences.

It is common knowledge amongst cryptologists that a too small prime dif-
ference makes RSA insecure. Namely, then Fermat’s factoring technique can be
applied. Standards sometimes mention this and consequently require a certain
condition on � (e.g. ANSI X9.31 Sections 4.1.2 and C.3, see [ANSI], requir-
ing that the two primes differ in the first 100 bits). On this matter the more
popular applied cryptography handbooks however are inadequate (such as
[MvOV, Note 8.8(ii)]) or even ignorant (such as [Sc, Section 19.3]), while
these books (the first one more clear than the last one) do warn against the
much more sophisticated attacks suitable for extremely large prime differenc-
es, such as elliptic curve factoring.

When � < n1/4 (in fact we mean � < cn1/4 for a c that is constant com-
pared to n, but now and in the sequel we will ignore such constants), then the
Fermat factoring technique gives an almost instantaneous result. As we did not
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find such an (almost trivial) quantitative result in the literature (however, see
[Si]), we spend a few lines on it in Section 3.

Let e, d be the public and private exponents of the RSA key pair, which we
assume to be reduced modulo φ(n) (the Euler totient function). Another well
known attack on RSA, described by Wiener [W] (see also [VvT]), uses contin-
ued fractions, and applies when the private exponent d is small. In particular,
Wiener shows that RSA is insecure if d < n1/4. This result has recently been
improved by Boneh and Durfee [BD1], [BD2], who (heuristically but practi-
cally) use LLL to show that RSA is insecure whenever d < n1−1/

√
2 = n0.292....

They conjecture that the right bound below which RSA is insecure is d < n1/2

(apart from an epsilon).
It is the main theme of this note to show that these results of Wiener and

Boneh and Durfee can easily be improved under the condition that the prime
difference� is essentially smaller than its generic size of n1/2. When the prime
difference gets as small as n1/4 (below which Fermat factoring already shows
that RSA is insecure), our bounds for d below which RSA is insecure reach the
conjectured n1/2 for Wiener’s attack, and even reach n for the Boneh and Durfee
attack. Consequently, checking the size of the prime difference becomes more
important if one wants to generate key pairs with small private exponents, e.g.
to improve performance of private key operations.

More specifically, let � = nβ for β ∈ 〈 1
4 ,

1
2 〉 (which is the proper range

for β, as argued above), and let d = nδ. In Section 4 we show how Wiener’s
attack using continued fractions is effective whenever δ < 3

4 − β (in contrast
to Wiener’s δ < 1

4 ). We feel that our improvement to Wiener’s attack will also
go through for the extended Wiener attack as described by Verheul and Van
Tilborg [VvT], but we did not investigate this in detail.

In Section 5 we show how the first result of Boneh and Durfee [BD1], that
RSA is insecure when δ < 7

6 − 1
3

√
7, can be improved to δ < 1

6(4β + 5) −
1
3

√
(4β + 5)(4β − 1). Finally in Section 6 we show how the second result of

Boneh and Durfee [BD2], that RSA is insecure when δ < 1 − 1
2

√
2, can be

improved to δ < 1 −
√

2β − 1
2 , but under the condition δ > 2 − 4β. Note

that these bounds equal the corresponding ones of Boneh and Durfee when
β = 1

2 . The second bound is better, but holds only when β > 3
8 . The first bound

approaches δ < 1 as β approaches 1
4 .

Our main result, superseding all the others, is now given some status.

Observation Let p, q be large primes of about the same size, and let n = pq.
Let � = |p − q|. Let e, d be integers > 1 and < φ(n), satisfying ed ≡ 1
(mod φ(n)). Put � = nβ and d = nδ.
Given only n and e, the factors p, q of n and the number d can be recov-

ered efficiently whenever 2 − 4β < δ < 1 −
√

2β − 1
2 or δ < 1

6(4β + 5) −
1
3

√
(4β + 5)(4β − 1).
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The relevant regions for δ and β are visualized in Fig. 1 below. Note that
the ANSI X9.31 Standard ([ANSI]) requires β > 1

2 − 100
log2 n

and δ > 1
2 , which

is strong enough to resist our attack, but for smaller bitsizes (such as 1024, see
the big dot in Fig. 1) leaves only a small margin.

Boneh and Durfee present heuristics to support their conjecture that the
bound for δ below which RSA may be proved insecure is 1

2 . The same heuristic
argument shows in our situation that the bound for δ, as a function of β, below
which RSA may be proved insecure, is 3

2 − 2β. As this bound is an elegant
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Fig. 1. Regions for β and δ for which RSA is shown to be insecure.
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function, is 1 at β = 1
4 , and is 1

2 at β = 1
2 , we are tempted to conjecture it as

the true bound (whatever that means).
For implementations of RSA key pair generation we recommend to build

in a check for δ + 2β > 7
4 , say. This is always much stronger than the ANSI

X9.31 requirements, is very easy to implement, and will only in extremely rare
cases imply a performance loss because a key pair is to be rejected.

A suggestion for further work is to investigate whether the ideas of Copper-
smith [C2] can be used to improve on the bounds of Boneh and Durfee [BD1],
[BD2] in the situation where the high bits of p and q are known but not neces-

sarily equal. Another suggestion is to investigate the possible improvements to
our results when e = nα for an α that is less than 1. Yet another suggestion is
to investigate the effects on small private exponent attacks of p/q being close
to some rational number (other than 1) with small numerator and denominator.

2 A Lemma

A key role in all our arguments is played by the following simple lemma.

Lemma If n = pq and � = p − q then

0 < p + q − 2n1/2 <
�2

4n1/2
.

Proof. We have�2 = (p+q)2 −4n = (p+q−2n1/2)(p+q+2n1/2), hence
p + q − 2n1/2 > 0 and

p + q − 2n1/2 = �2

p + q + 2n1/2
<

�2

4n1/2
. �

3 The Fermat Factoring Attack

In this section we show that when � < n1/4 (or a bit larger than that), Fer-
mat’s method of factoring n is very efficient. To be precise, we show that the
complexity of Fermat factoring is O( �

2

n1/2 ). See also [Si].
Let n = pq withp, q primes withp > q, and with difference� = p−q <

n1/2. We assume that n is known, but that p and q are not. In Fermat factoring
we try to find positive integers x, y (other than x = n + 1, y = n − 1), such
that 4n = x2 −y2. If we succeed, then we put p = 1

2 (x+y) and q = 1
2 (x−y),

which are integers > 1 satisfying pq = n. Hence we have factored n. To find
such x, y we simply try x = 
2n1/2�, 
2n1/2�+1, 
2n1/2�+2, . . . , until x2−4n
is a square.

We study the number of values for x that have to be tried as a function of
the prime difference�. As for each x only a small computation has to be done,
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this number is a good measure for the complexity of Fermat factoring. This
number is x + 1 − 
2n1/2�, which is approximately

x − 2n1/2 = p + q − 2n1/2 <
�2

4n1/2
,

by the Lemma from Section 2. It follows immediately that when � < cn1/4

then the number of tries is at most 1
4c

2. When c is a (small) constant, this is
independent of n (and not too large), and thus factoring n is trivial if, say,
� < 1000n1/4.

4 Extending the Wiener Attack

We now proceed to study the attack formulated by Wiener [W], which ap-
plies when the private exponent d is less than n1/4, and we show that it can be
extended from δ < 1

4 to δ < 3
4 − β.

Wiener’s attack works as follows. By the definition of e, d there exists a
positive integer k such that ed − kφ(n) = 1. We write this as

e

φ(n)
− k

d
= 1

φ(n)d
. (1)

We know only n and e, and not p, q, φ(n), d or k. However, we do know that
φ(n) = n+ 1 − p − q, and that p, q are of the size of n1/2. So actually φ(n)
is relatively close to n, and this is what Wiener exploits: (1) shows that the
unknown fraction k

d
is a good approximation to e

φ(n)
, hence to e

n
, which we do

know. Thus we can use the continued fraction expansion of e
n

to compute good
candidates for k

d
relatively fast.

To improve on this, we first notice that the error caused by replacing φ(n)
by n is by far the dominating part of

∣∣ e
n

− k
d

∣∣. Then we notice that n+1−2n1/2

is a better approximation to φ(n) than n is. We have not found this information
used anywhere in the literature. We find this somewhat surprising, but not too
much, since in the general situation the upper bounds |n− φ(n)| < 3n1/2 and
|(n+1−2n1/2)−φ(n)| < n1/2 hold (approximately), and their difference is in
the constant only. So the improvement seems not to be too important. However,
for us it will be crucial to have the best available approximation to φ(n), as this
is where we get the improvements from.

So by n+ 1 − φ(n) = p+ q and using the Lemma from Section 2 we find

0 < (n+ 1 − 2n1/2)− φ(n) < �2

4n1/2
.

As a result we have from (1), and using e < φ(n), that∣∣∣∣ e

n+ 1 − 2n1/2
− k

d

∣∣∣∣ < e
∣∣∣∣ 1

n+ 1 − 2n1/2
− 1

φ(n)

∣∣∣∣+
∣∣∣∣ e

φ(n)
− k

d

∣∣∣∣
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< φ(n)
|(n+ 1 − 2n1/2)− φ(n)|
(n+ 1 − 2n1/2)φ(n)

+ 1

φ(n)d

<
1

φ(n)

(
�2

4n1/2
+ 1

d

)
.

Now we certainly may assume that φ(n) > 3
4n, and n > 8d. Hence, using

� = nβ and d = nδ we have∣∣∣∣ e

n+ 1 − 2n1/2
− k

d

∣∣∣∣ < 1

3
n2β−3/2 + 4

3nd
<

1

3
n2β−3/2 + 1

6n2δ
,

and when we now take 2β − 3
2 < −2δ, i.e. δ < 3

4 − β, then we obtain∣∣∣∣ e

n+ 1 − 2n1/2
− k

d

∣∣∣∣ < 1

2d2
.

So if the condition δ < 3
4 − β holds, then k

d
is a convergent from the contin-

ued fraction expansion of e
n+1−2n1/2 , and we can find it efficiently. As is well

known, knowledge of d makes it easy to factor n. This proves our claim. In the
Appendix we present an example.

5 Extending the Boneh and Durfee Attack, I

Boneh and Durfee [BD1], [BD2] describe an improvement of Wiener’s attack
that shows that RSA is insecure when δ < 1 − 1

2

√
2 = 0.292 . . . , uncondition-

ally. In [BD1] they give full details for the somewhat weaker result with the
bound δ < 7

6 − 1
3

√
7 = 0.284 . . . , which has a much simpler proof. Full details

for their stronger attack are given in [BD2].
In this section we will show how to extend the weaker result of [BD1] to

the case of small prime difference. In the next section we will do the same for
the stronger result of [BD2]. Our claim in this section is that RSA is insecure
whenever δ < 1

6(4β + 5)− 1
3

√
(4β + 5)(4β − 1).

At the heart of the method of Boneh and Durfee is the idea to look at the
equation ed − kφ(n) = 1 modulo e, and to approximate φ(n) again by n (or
n+ 1). Actually Boneh and Durfee take into consideration gcd(p − 1, q − 1),
but for simplicity we will ignore that. So with A = n+ 1 as (known) approx-
imation of φ(n) and s = p + q as the (unknown) error of this approximation,
they have an upper bound |s| < e1/2 (note that e is approximately equal to n,
again we freely ignore constants), and so they want to solve the small inverse
problem

(−k)(A− s) ≡ 1 (mod e), |s| < e1/2, |k| < eδ.
Then they use LLL to solve this problem. Note that we take the signs of k and
s opposite from [BD1].
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Heuristics easily show that the small inverse problem has a unique solu-
tion when δ < 1

2 , which then can be used to break RSA. This leads Boneh
and Durfee to the belief that this is the true bound for δ below which RSA is
insecure.

As we have seen above in extending the Wiener attack, in the case of a small
prime difference we have a better approximation toφ(n), namelyn+1−
2n1/2�.
So if we take A = n+ 1 − 
2n1/2�, then we can take s = p+ q − 
2n1/2�, for
which by the Lemma of Section 2 we have the much better upper bound

|s| < �2

4n1/2
< e2β−1/2

(ignoring constants and using e ≈ n). Clearly this is trivial when β ≤ 1
4 , but in

that case we have the very efficient Fermat factoring method available. So we
assume β > 1

4 . Then we have to solve the following small inverse problem:

(−k)(A− s) ≡ 1 (mod e), |s| < e2β−1/2, |k| < eδ.
As the values of δ and β are not known, in practical applications upper

bounds for them have to be guessed.
The same heuristics used by Boneh and Durfee show that this version of

the small inverse problem has a unique solution when δ < 3
2 − 2β. This is why

we are tempted to believe that this is the true bound for δ below which RSA is
insecure.

We now briefly describe the method of Boneh and Durfee to solve the
small inverse problem. Let f (x, y) = x(A + y) − 1. Then we want to solve
f (x0, y0) ≡ 0 (mod e), |x0| < eδ, |y0| < e2β−1/2. This is done, following an
idea of Coppersmith [C1], by constructing polynomials that have (x0, y0) as
root modulo em for some m, and then to make Z-linear combinations of those
polynomials, to find a few of them with small coefficients. When the coeffi-
cients are small enough, then a result of Howgrave-Graham [HG] shows that
(x0, y0) actually is a root of f (x, y) over Z.

The polynomials to start from are the so-called x-shifts gi,k(x, y) =
xif (x, y)kem−k and y-shifts hj,k(x, y) = yjf (x, y)kem−k, for k = 0, . . . , m,
i = 0, . . . , m−k, j = 0, . . . , t , for some t . WithX = eδ, Y = e2β−1/2 we now
take the polynomials gi,k(xX, yY ), hj,k(xX, yY ), and study the lattice spanned
by their coefficient vectors. All lattice vectors now correspond to polynomials
with (x0, y0) as root modulo em, and the theory of lattice basis reduction can be
applied to yield both theoretical results about the existence of such polynomials
with small coefficients, and practical results on how to efficiently find them.
The result of [HG] now shows that this actually yields polynomials of which
(x0, y0) is a root over Z. When two such independent polynomials have been
found, their resultant will most probably have a factor x − x0 or y − y0, which
can easily be found.

All we now have to do to solve this variant of the small inverse problem is
to work through the arguments of [BD1, Section 4] with for Y the new value
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e2β−1/2. We assume that the reader has this paper available, as in the sequel
we merely indicate the changes we make to its arguments, in order to avoid
copying lots of details from Boneh and Durfee’s papers.

In order to guarantee the existence of short enough vectors in the lattice, a
condition on the determinant and the dimension has to be fulfilled. For the deter-
minant of the lattice with only x-shifts, which has dimensionw = 1

2m
2+o(m2),

we find

det x = e(
1
4 + 1

3 δ+ 1
3β+o(1))m3

,

so when we take no y-shifts at all, the condition detx < emw to be fulfilled (up
to a negligible constant) leads to the condition 1

4 + 1
3δ + 1

3β <
1
2 . This is just

δ < 3
4 − β as in Wiener’s extended attack, presented in Section 4.

Including the y-shifts, reasoning as in [BD1, Section 4], we find for the
contribution of the y-shifts to the determinant that

det y = e(
1
4 + 1

2 δ+β)tm2+(β− 1
4 )t

2m+o(tm2).

The condition detx dety < emw, with the dimension w = 1
2m

2 + tm + o(m2),
now leads to the condition(

−1

4
+ 1

3
δ + 1

3
β

)
m2 +

(
−3

4
+ 1

2
δ + β

)
tm+

(
β − 1

4

)
t2 < 0.

The left hand side is minimal for t = 3
4 − 1

2 δ−β
2β− 1

2
m, and substituting this, we find

as condition (after clearing 4β − 1 as denominator, which is positive)

16β2 + 8β − 15 + (16β + 20)δ − 12δ2 < 0.

This is equivalent to δ < 1
6(4β + 5)− 1

3

√
(4β + 5)(4β − 1), and thus we have

proved our claim.
Note that for β = 1

2 we recover Boneh and Durfee’s result δ < 7
6 − 1

3

√
7,

which should not come as a surprise. For β ↓ 1
4 we find that our condition

approaches δ < 1, which clearly is best possible.

6 Extending the Boneh and Durfee Attack, II

In [BD2, Section B.3], Boneh and Durfee describe how they improved their
result δ < 7

6 − 1
3

√
7 to δ < 1− 1

2

√
2. We will now follow their arguments with,

as in the previous section, Y = e2β−1/2 instead of Y = e1/2, and again we only
indicate changes to the arguments of [BD2]. Our aim is to show that RSA is

insecure whenever 2 − 4β < δ < 1 −
√

2β − 1
2 .

Lemma B.5 from [BD2] can be improved to My being geometrically pro-
gressive with the obvious parameter choice (m2m, e,m, δ + 2β − 1

2 , 2β −
3
2 ,−1, 1, b) for some b. Here conditions (i), (ii) and (iii) of Definition B.1
are easily checked, but condition (iv) causes sometrouble. Namely, b should
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satisfy b(δ + 2β − 1
2 ) − 1 ≥ 0 and b(2β − 3

2 ) + 1 ≥ 0, and these conditions
are contradictory when δ < 2 − 4β. So we must assume δ > 2 − 4β, and then
we can take b = 2

3−4β .

The optimal choice for t is t = 3
2 −δ−2β

2β− 1
2
m. We have

My(k, &, k, &) = em+(δ+2β−3/2)k+(2β−1/2)&,

hence by our choice for t we have that (k, &) ∈ S if and only if & ≤ 3
2 −δ−2β

2β− 1
2
k.

It follows that

w′ = |S| =
(

3
2 − δ − 2β

4β − 1
+ o(1)

)
m2,

and thus

w =
(

1

2
+ o(1)

)
m2 + w′ =

(
1 − δ

4β − 1
+ o(1)

)
m2.

A direct but somewhat tedious computation, closely following [BD2, Section
B.3], leads to

det(L′
y) = e

(
1

12
9−4(δ+2β)2

4β−1 +o(1)
)
m3

.

A final computation then shows that the condition det(L1) = detx det(L′
y) <

emw, with detx as in the previous section, is equivalent to δ < 1 −
√

2β − 1
2 ,

which proves our claim.
We note that for β = 1

2 we recovered Boneh and Durfee’s result δ <

1− 1
2

√
2, as expected. Further, the upper bound δ < 1−

√
2β − 1

2 and the low-

er bound δ > 2 − 4β are contradictory when β ≤ 3
8 (or, equivalently, δ ≥ 1

2 ).
The exact regions for δ and β covered by the bounds of this and the previous
sections are shown in Figure 1.

Appendix: Examples

An Example for the Extended Wiener Attack

As an example let us take for n the 201 digit number

n = 1 00000 00000 00000 00000 00000 00000 00000 00000 00107 67242 \
83535 54480 74805 52394 71435 44456 91504 57929 40521 29531 \
31145 92588 49187 63903 86483 43076 03736 97739 12905 05518 \
23109 11765 96502 73528 89266 92223 96247 82220 51558 89979 ,

and for e the 199 digit number
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e = 3577 28738 31168 83468 50061 72494 91494 67592 77183 21983 \
42055 05185 69067 45276 16806 40387 24497 92548 46438 84258 \
58859 31908 14322 25357 44998 46915 22809 19771 84669 56259 \
50405 61478 87159 75354 13286 66146 64695 96872 98105 35189 .

The first 200 partial quotients of e
n

are

[0, 27, 1, 20, 1, 4, 5, 1, 15, 1, 1, 1, 2, 1, 3, 1, 1, 29, 1, 2, 1, 1, 2, 1, 1,
2, 1, 2, 3, 2, 1, 3, 1, 2, 1, 1, 1, 5, 1, 2400, 7, 2, 1, 46, 1, 1, 3, 1, 1, 1,
11, 1, 16, 54, 1, 1, 1, 1, 7, 1, 1, 10, 1, 1, 1, 7, 19, 9, 1, 10, 3, 1, 3, 1, 1,
1, 1, 1, 1, 30, 1, 2, 1, 19, 5, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 5, 1, 4, 25, 1,
3, 1, 3, 1, 1, 7, 1, 14, 1, 5, 6, 8, 2, 4, 4, 5, 3, 2, 6, 1, 13, 2, 2, 1, 14,
1, 4, 1, 9, 3, 8, 7, 2, 9, 6, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 41, 2, 6, 6, 6,
3, 2, 1, 2, 1, 230, 8, 12, 5, 1, 3, 1, 1, 99, 1, 4, 5, 2, 7, 5, 4, 1, 16, 1, 4,
40, 1, 3, 4, 1, 4, 1, 2, 1, 1, 6, 1, 1, 4, 5, 4, 4, 3, 5, 2, 8, 1, 9, 1, 1, 10, . . . ],

and we see no extraordinarily large one, so Wiener’s attack as such will not give
a result here. More partial quotients are not useful, since the 200th convergent
already has a denominator that is much larger than n1/4.

The first 200 partial quotients of e
n+1−2n1/2 are

[0, 27, 1, 20, 1, 4, 5, 1, 15, 1, 1, 1, 2, 1, 3, 1, 1, 29, 1, 2, 1, 1, 2, 1, 1,
2, 1, 2, 3, 2, 1, 3, 1, 2, 1, 1, 1, 5, 1, 2400, 7, 2, 1, 46, 1, 1, 3, 1, 1, 1,
11, 1, 16, 54, 1, 1, 1, 1, 7, 1, 1, 10, 1, 1, 1, 7, 19, 9, 1, 10, 3, 1, 3, 1, 1,
1, 1, 1, 1, 30, 1, 2, 1, 19, 5, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 5, 1, 4, 25, 1,
3, 1, 3, 1, 1, 7, 1, 14, 2, 7, 1, 11, 4, 1, 3, 1, 1, 1, 3, 3, 8, 1, 4, 1, 2,
2, 2, 2, 1, 1, 1, 1, 1, 5, 22, 1, 2, 4, 1, 22, 1, 4, 2, 1, 15, 1, 1, 10, 4, 66,
6, 3, 3, 2, 2, 36, 1, 1, 1, 1, 48, 2, 2, 13, 1, 1, 1, 2, 1, 10, 2, 1, 1, 2, 5,
1,29,1,12,1,56,11,147867491,1,3, 4, 2, 1, 1, 1, 1, 6, 3, 1, 3, 1, 2, 1, 5, 1, . . . ].

Now we see a large partial quotient, namely the 183th. The 182th convergent
thus is an extremely good approximation to e

n+1−2n1/2 , and is a good candidate
for k

d
. It is

k = 125 47153 83488 39464 72356 53791 25074 48077 45478 \
97673 89403 81525 94977 41329 89005 11062 90778 92359 ,

d = 3507 44921 81144 35074 49218 11443 50744 92181 14435 \
07449 21811 44350 74492 18114 43507 44921 81144 00389 ∗,

and indeed with these k and d it is easy to factor n, as we will leave for the
reader to show as an exercise.

Note that in this example δ ≈ 0.443 > 1
4 , which explains why Wiener’s

attack fails, and that β ≈ 0.292 > 1
4 , indicating that also the Fermat factoring

method will be rather inefficient. But our attacksucceeds, since δ is just a little

* The repeating numbers 3507449 and 2181144 happen to be the author’s bank account numbers.
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less than 3
4 −β (we did not know this in advance). In Figure 1 a circle is drawn

at the position of (β, δ) for this example.
Note that the first 108 partial quotients of e

n+1−2n1/2 coincide with those of
e
n
, and that the first 182 (up to the large one) coincide with those of e

φ(n)
(known

only with hindsight).

An Example for the Extended Boneh and Durfee Attack

Next we take as an example for n the same 201 digit number as used above,
and for e we take this time the 200 digit number

e = 57244 79358 36564 84515 29075 96780 01067 19671 24315 73871 \
79961 08242 48083 79435 38065 30972 17276 77453 82992 30049 \
88402 98193 36998 83948 13822 94539 77463 46393 37937 81478 \
01649 75097 88795 93740 99999 17419 29447 85381 95823 58977 .

Now we have to decide on the parameters for applying the method of Boneh and
Durfee. We do not know the true values of δ and β, but the algorithm requires
as input values for X and Y , as well as for m (the highest power of e) and t
(the number of y-shifts). So we have to experiment a bit. It appears that in our
situationX = e0.56, Y = e0.085,m = 3, t = 2 gives good results, but we did not
do extensive experiments to find out optimal parameters. The choices ofX and
Y suggest that we expect a result in the neighbourhood of δ = 0.56, β = 0.29.

With these parameters and withA = n+1−
2n1/2� we built the 18-dimen-
sional lattice from the x- and y-shifts, and started looking for a reduced basis.
As programming tool we used Pari v2.0.20beta, see [BBBCO]. This program
knows about the concept of partially reduced basis, which is a type of reduced
lattice basis that is reduced in a weaker sense than LLL-reduced, but can be
computed very quickly. We found that these partially reduced bases can be used
for the Boneh and Durfee attack quite well, so this implies a substantial speedup
of their method.

In our case of an 18-dimensional lattice with parameters as set above, we
reached on our Pentium 800Mhz PC a result in only 43 seconds. To check the
speedup we also computed a reduced basis in the LLL sense, which took 6
hours.

From the result we took, as in [BD1], resultants of the polynomials cor-
responding to the first two partially reduced basis vectors, and tried to factor
these resultants. The resultant with respect to x turned out to have the linear
factor y + 15 36705 61801 37046. This suggests that s = p + q − 
2n1/2� =
15 36705 61801 37046, from which a candidate for p+ q is easily found. This
indeed leads to the factorisation of n, as we leave to the reader to show

Alternatively we could have used the resultant with respect to y, which
turned out to have the linear factor
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x+ 20 07832 06496 11816 64118 20947 08544 41560 58908 62520 47042 \
27985 53951 42154 41920 75567 76391 98360 14586 54592 06249 69194 89182 .

This suggests that this polynomial is x + k (which it indeed turns out to be),
and from knowledge of k we easily can solve the problem again.

As a check for the reader we give d:

d = 35 07449 21811 44350 74492 18114 43507 44921 81144 35074 49218 \
11443 50744 92181 14435 07449 21811 44350 74492 18114 43507 44921 81393 †.

Note that in this example δ ≈ 0.558 > 1
2 , which explains why the Boneh and

Durfee attack (as any other attack based only on δ, with the heuristic bound
δ < 1

2 ) would probably fail in this case, and that β ≈ 0.292 > 1
4 , so that

δ + β > 3
4 , indicating that also the extended Wiener attack will fail. In Figure

1 a circle is drawn at the position of (β, δ) for this example.
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