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ABSTRACT.--This paper discusses the predictabili-
ty of the sequence given by outputing a constant
proportion o of the leading bits of the numbers
produced by a linear congruential generator.
First, we make the assumption that the modulus
of the generator is the only known parameter and
we prove that, almost surely, a significant pro-
portion of the bits can be predicted from the
previous ones, once the generator has been used
K times successively where K is 0(¥log m).
Next, we assume that all parameters of the gene-
rator are secret and we show how repeated observa-
tions of sequences of outputs of length K will
probably allow an opponent to cryptamalyze the
full sequence.

1. INTRODUCTION

A basic and very popular tool to generate pseu-
do-random sequences is provided by the linear con~
gruential gemerator (LCG). The LCG works as follows:
a modulus m 1is chosen as well as a multiplier a,
relatively prime to m, and an increment b, Then,
from a given seed X, ome can generate the se—

quence (xi) defined by

x = a.xi+b {mod m)

i+l
Knuth (vol. 2) containsg a thorough discussion of
these generators : some requirements have to be met
by a, m, b but it is not clear that these requi-
rements make the sequence produced by the gemerator
look really "random".

Because of the existence of many algorithms
that run in random polynomial time, it is particu-
larly important to produce from short seeds, long
sequence of bits or of numbers that behave randomly,
Problems of this kind have been greatly investiga-~
ted in the past years, especially by Shamir (1980),
Blum and Micaly (1982), Yao (1982). Therefore it
seems important to discuss the predictability of
the sequence of bits produced by a LCG.

In case all the bits of the successive Xy
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are announced, the sequence becomes exactly predic-
table even if the modulus, the multiplier and the
increment are unknown, This result is due to
Plumstead (1982). Following a suggestion of Knuth
(1980), one can use a LCG by outputing the leading
part of each of the x,'s, for example the leading
half of the bits. The = predictability of the re=~
sulting sequence has been investigated by Frieze,
Kannan and Lagarias (1984). They show that, provi-
ded both the modulus m and the multiplier a are
known, the sequence becomes completely predictable
once the leading bits corresponding to the first
few xi's have been annmounced. Actually, their al-

gorithm may fail on a set of exceptionalmultipliers
but the proportion of integers (m?d m) in this set
is shown to be as small as Of{m 5).

In order to describe our results, we need
some notation, We let n be the number of bits of
the integer m. If we output a proportion o of
the bits, we can write

X, = 2Be v, t 2, 0z < 26"
i i i i

where B = |- and where we assume implicity that
fn is an integer. We consider the sequence o
consisting of the successive bits of ¥12Tgeen and

we first ask the following question : given m, is
it possible to predict a bit of the sequence o
from the previous ones, with a small proportion of
mistakes ? We propose an algorithm A which solves
this problem and we state the main properties of our
. I
algorithm for the case a = 5
i) Almost always, the algorithm predicts the
correct value of the next bit with a proportiom of
mistakes wh}ch is asymptotically bounded by

o((log m) 2.

ii) The algorithm may fail exceptionnally. Fai-
lure depends on the {(unknown} value of a and the
proportion of multipliers a causi?g failure

is asymptotically bounded by O(m 3).

iii) Failure of the algorithm can be det?ctgd by
observing a larpe proportion of errors persisting
after the first v3 logm yi's have been announ-—

ced {i.e. the first nv3 log m bits of the sequen-
cel.




Those results should be compared to those
of Frieze, Kannan and Lagarias (1984) : they dis-

cugg the case where a is known as well as m. Of
course, because we make the hypothesis that a is
kept secret it is not surprising that our algorithm
requires more information (roughly ¢3 log m of
the yi's instead of 4).

Actually, as will be seen in the sequel,

our alpgorithm gemerally produces a polynomial P(x)
of dagree ¢3 log m (approximately) such that

P(a) = 0 (mod m)

Repeated use of algorithm A will produce a sequen-—
ce of such pelynomials P,. We then propose an al~-
gorithm B which starts - from a sequence of poly-
nomialg Pj of fixed degree such that

Pj(a) = 0 (mod m)

and outputs a multiple & of m, which quickly
decreases to m with high probability, when the
length of the sequence increases.

Finally, we indicate how to recover a,
once the correct value m of @ has been reached,
From the results of Frieze, Kannan and Lagarias,
any further use of the given gensrator is highly
insecure as the sequence of outputs can bepredicted
from its first four terms.

2, DESCRIPTION OF ALGORITHM A : PART 1.

In order to describe our algorithm, we need
some more notation, We let A be the element of

23 whose coordinates are
Tisl T
Yivz T Yinn
Tie3 T Tiap
As an intermediate step, we will use a variant of
the well known algorithm of Lenstra, Lenstra and

Lovasz (1982), which finds a non trivial integer re-
lation

K
I Av. =0
. il
i=1
between K elements ViseeaaVyp of 23. This va-

Tiant can be found in a paper by Hastad, Helftich,
Lagarias and Schnorr (1986). The resulting algorithm
requires polynomial time and outputs an integer re-
lation A = (ll,...,AK) whose length does not

eXceed too much the minimal possible length A
such a relation. More precisely : s

K

Ia] <2

. of
in

D
min

We now outline the first part of our algorithm. This
part takes as imputs the first K+3 wvalues

YI:YZ,----YisYK+3

of the sequence where is a constant and

i K

outputs a polynomial P with integer coefficients
of degree at most K such that, presumably,
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B(a) = 0 (mod m)
Reasonable choices for K will be described later,
Algorithm A (part 1)

1. Use the L.L.L. algorithm in order to find a short
integer relation

K
I v, =0.
. 11
i=1
2. Let £ := max{i : Ai#o}.
Looim
3. Output the polynomial I Aix
i=1

Before we turn to the second part of the
algorithm, we shall discuss the correctmess of the
first, We need a lemma.

Lemma 1.~ There exists an integer relation
K
Iy,
i=1 Tt

4]

such that max|ui| < B where B 1is given by

3(an~+log K+1)

1 = ()
og B X3
Sketch of proof : Consider all possible linear com—
binations
K
v,
. i'i
i=1

with 0= Vs < B. By a counting argument using a

bound on the coordinates, ckeck that two distinct

linear combinations give the same result. u
We now focus on the unknown sequence Vi
defined by
103
Vi T | *ie2 T Fin
X, o = X,
i+3 i+2
It is easily seen that all vectors V, lie
on the 3-dimensional lattice L{a) generated ~ by
the vectors
1
a
2
a 0 m
. : . 2
This lattice has determinant m~, so that

the average length of its short elements is around
m2/3

an element whose length is of order m?,

. Thus, it is rather unlikely to find in L(a)
for y much

smaller than In their paper, Frieze, Kannan and

30
Lagarias have turned this remark into the following

statement.

Lemma 2.- The proportion of integers a, O<a<ml,

guch that L{a) contains a mnon zero vector of
5v-3 ‘e
length bounded by o' is an O{m ) for any

£>0.



Now if A = (ll,...,lk) is the integer re-
lation given by the algorithm, we have
X
A<, 2
min
is as above :
K

-1
fa] < B/K 2

and thus, if B

Comparing the unknown vector

K
0= ZIXU,
s |
i=1
with the (zero) vector
K
v,
: i'i
i=1
we get the following bound :
ju} < w3
Ly
where M =g 22 2P0,
Since
log M = log K + %-l +Bn+3(o&n+ll(.33 K+1)

Y6 log m :

we get, taking K to be approximately

log M = B log m + vba log m + O(/log m)

and therefore

B+5)

M= 0(m for any 6>0.

The correctness of the algorithm relies on
the fact that U is actually zero. In this case, we

get
K
L )
so that
K i
b4 Aia (xz-xl).

i=1

Hence except in the special case where Xy7X) is

not prime to m, we get
I at™! = 0 (mod ).

Regardless of this property we have, for each j,
K
ifl Ai(xi+j+l _xi+j) = 0 (mod m).

If & is the largest index i with Aiio we get

2
h
inlei X {mod m)

{where A°=D) and this equa-

Az x!.+j+l =

where @, = XA, -1,

i i Ti-l

lity will allow the cryptanalysis of the sequence of
bits generated by the LCG.

U belongs to L(2) and |U]
B+6,
L4

Now since
is bounded by O(m

K = v6x log m will yield a successful algorithm in
53 _ 5

lemma 2 shows that taking

g *+37 Ot
a proportion of cases exceeding 1-O(m )
5%;3 b
i.e. exceeding 1-0(m ). This means that,

asymptotically, the algoritlm is almost always suc-

cessful provided B<% i.e. c:>%. If & =%,

tmmCMMmgc'=%-ﬁﬂ“apmmnhnﬁhf

3
}.

Remark. In a forthcoming paper, Frieze, Hastad,
Kannan, Lagarias and Shamir (FHKLS) establish a

sharper version of Lemma 2, from which it follows
that our algorithm is asymptotically almost always

lure bounded by Of{m

1
successful as soon az a > T

3. DESCRIPTIOK OF ALGORITHM A : PART 2

We now turn to the second part of our algo—
rithm, We assume that the first part has been execu-
ted for a suitable value of K. We let Al,...,lz

dencte the coefficients of the ocutput polynomial
and we try to predict the successive bits of some

y2+j+i for &+j>R+3.

Algorithm A (second part)

I. For i:=1 to & set ©;i= A ~A; , (with
AOHO).

2. Let t be the integer consisting of the first h

bits of Yorial that have been announced so far.
Let ]
X Ba__fn-1
t= ¥, .02
in E 002

PETRICHT: +1/2)2“‘h—r)/mJ [this means the closest
integer} ’

y := w{k.m+r) /A, {this means the integer
ZJ part}.

(h+¢1)-th bit of y.

The correctness of this algorithm relies on
the following fact.

3. Announce the

Fact. Provided part | of algorithm A has been suc-
cessful, one can find integers hys 0, such that :
i) whenever h is >h° the output y found
in step 2 differs from the correct = by at
n
most 2 °.

ii) n°+‘no < log M*2 where M is a above.

i+l

From the fact, we can compute a bound for
the average proportion of mistaken bits as

log M - Bnt5
] .

Using our previgus egtimates, we see that

this is equivalent to v6éa _log m/2 when K
ken to be approximately ¥

is ta-
6a log m.




4, ALGORITHM B.
As was already noticed, the output of the

first part of algorithm A ie 2 polynomial P of

degree < K such that
P{a) . (XZ_X!) = Q (mod m).

If x,-x, is prime to m, this yields
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P(a) = 0 (mod m).
Such a polynomial can be uniquely written as an in-
teger linear combination of the polynomials.

qi(X) = x-a' 1€i<K

and of the constant polynomial qo(x) = m., Hence it
belongs to the lattice MK(a,m) generated by those

pelynomials, whose determinant is m, Algorithm B

starts from a sequence of polynomials.

P, P

1’ "2
of the lattice MK(a,m) and computes the determi-

,...,Pn

o is a mul-
fi converges

nant fi of the sublattice generated.
tiple of m and when n increases,
to m.

What we need is to convert a set of penera-
tors of a lattice into a basis. This is a linear al-
gebra problem which was considered independently in
the FHKLS paper where it is solved using Hermite
normal form. Our algorithm is directly patterned after
the algorithm of Lenstra, lenstra and Lovasz (1982).
We use the sequence (P;) defined recursively by

the following property : P; is the component ortho-

* *
gonal to Pl""’Pj-l of the first element

P, .
! i(j)
of the original sequence, which does not belong to
the vector space spanned by PT,...,P;_I. We let p

be the largest value of j (i.e. the dimension of

the lattice) and I be the set of indices i(3),
1<j<p. Finally we define the coefficients ..,
I<i<n, 1<j<p, by : 1
P
P, = I u,. P
j=1 13 ]

Algorithm B.
x
1. Compute ”ij' 1<i<n, 1<j<p and iP.Iz.

2. {Test on termination},

If P.=0 for any i<n
then, output : 1 Y P

P
&= 1 |p¥|
j=1
i

3. {Exchange step}. Let be the first index such

that i1 €I and i+l €I ; let & suchthat 1 =i(r),
. =P, =T :
Piel 77 Pian 7 W, R 0
exchange Pi+l and P.1 H
*2
@dﬂe|Pﬁ and ”ﬁ’“hlg for j=1,...,p.
4. {reduction step}. For j = 2-1 down to 1 do:
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r

P : .
i

i+l M3, Py

goto 2.

Algorithm B can be analyzed much in the same way as
the L.L.L. algorithm. Progress in the reduction is
related to the quantity
: P

n 2. n [p¥

i¢1 j=1
and the algorithm uses at most 0(K3(log R+n))
arithmetical operations on O(K.log R} bits inte-
gers where R 1is a bound on the length of the gi-
ven Pi's. We note that, as soon as p coincides

with the dimension K of the lattice MK(a,m), the
bounded by RK.

In order to discuss how quickly # conwver-
m, we make the assumption that the Pi's

of length <R

output @ is a multiple of m,

ges to
are random elements of MK(a,m)

where R 1is large w.r.t. A, the supremum of the
successive minima of the lattice. We make the follo-
wing observations :

1. If p 1is <K,
a new polynomial P

then the probability that adding
does not increase p 1isex-

n+li

tremely small. Using volume computationms it canm be

estimated as O(%) provided K is small w.r.t. B

p=K

(say K = 0{log R)). Hence almost surely as

soon as n2K.

the probability that adding
ft is bounded by

Rl{
log(j;)’ that the

2, If p=K and fi>m,
anew P does not decrease

n+l
From this, we get, setting p

&)

probability that & is still >m after adding
p log p polynomials can be given the (crude) bound

(log p)*
T(p)

which is dramatically small.

Our method, in order to cryptanalyze the
sequence (yi), is to use repeatedly algorithm A

{part 1) and to apply algorithm B to the resulting
family of polynomials, Keeping our previous choice
of K, we get the following :

K~ Yéa log m
log R ~ vY6a log m
p ~ {(6a-1}log m.

We can also consider that is of

i

order {log m)R because MK(a,m) has determinant

log X

m, Finally, the estimates that have been used in
the analysis of algorithm B are met and the algorithm
should succeed with a number of polynomials bounded
by (6a-1)log m log log m.

8till, we cannot prove formally the correct
ness of our algorithm because two hypotheses remain
questionable,

Firstly, the random behaviour of the



sequence of output polynomials cannot be established

mathematically. Nevertheless, we can give a (heuris-
tic) argument explaining why distinct polynomials
are obtained. Remember that the output of algorithm
A provides an actual relation

K
Ea,(x,. ., -x,)
4=1 * i+l i
(as opposed to a mod m relation). If the same poly-
nomial appeared all the way, then (xi) would sa-

tigfy some linear recurrence relation, But the asymp~
totic behaviour of such sequences is quite regular :
except in very special cases, they tend over to ze-
ro or infinj

Sar we have to discuss the hypothe-
gis asserting the output polynomial P satis-
fies

P(a) = 0 (mod m),
This uses the fact d=1, where
d = gcd(m,xi—xl).
Before we turn to the case where d is #1, 1let

us briefly outline an algorithm that will give the
value of a provided the correct value of m has
been reached through algorithm B. If this happens,
algorithm B actually outputs a basis of MK(a,m)
as :
Pi np+l €i<n

It is possible to design an algoritim that uses only
polynomizlly many basic transformations of the type:

P

; i Pi -0 Pj (mod m) 0€ X

and ends up with a basis Qi’ 1 €i<K, such that
Q, = x* - o, 1<i<K-1.
i i
Q =m
Once this is done, we have
al =

eK—j (mod m),

and thus we know the value of a.

We now come back to the situation where d

is #1. In this case algoritim B will probably out-
put o = % in place of and from m, we can ex-

tract the value of a = a mod m. We claim that this
will be just as good. Actually, it can be checked
that the method of Frieze, Kannan and Lagarias
(1984), applied with m, & in place of m, a will
almost always disclose the hiddem bits, provided d
5

1 -3 B~e
is not too large, say d = m i.e., for
1 ¢ . e
B=a-= 3 d <m . But this inequality is quite

likely to hold : the expected value of logd 1is
0(log log m) and i* can be shown that the probabi-

lity that d exceeds m6 is asymptotically small.
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DISCUSSTON AND POSSIBLE EXTENSIONS OF THE ALGCRITHM

We close the paper by various remarks.

5.

1) First of all, we c¢laim that the range of ap-—
plicability of the method is quite satisfactory.
For example, with n =100, the estimated proportion
of mistaken bits for algorithm A is 0.28 and the
number of consecutive observations needed is around
20. It should be said that the bound on [A] ob-
tained through lemma | together with estimates on
the output of the.L.L.L. algorithm is very crude.
Thue, our algorithms behave more micely. Furthermo=-
re, the L,L.L. algorithm usually provides more than
one short integer relation so that algorithm B will
actually require only a few extra observations.

2) In the simple case where m is a prime num-
ber, it is known that d=1 and in order to disclo-
se a it is also possible to solve the equation
P{a} =0 (mod m).

3) The case where the trailing bits of the sue-
cessive xi's are annouced in place of the leading

bits can be attacked by a similar technique, at
least if m 1is odd.

4) OQur algorithm is a special case of a family
of algorithm corresponding to working with k-dimen-
sional vectors. Thus, if only a small proportien «a
of the leading bits is announced and more generally,
if algorithm A fails, it is still possible to try
the four dimensional version of this algorithm by

replacing vy by
Yiel T Yy
Yis2 T ¥in
Yied T Y42
Yies ~ Yiey

In the analysis of this algorithm L1{a) is repla-
ced a 4-D lattice with determinant wm3. The
FHKLS paper provides the asymptotic estimates nee-
ded to analyze all these algorithms, provided m is
squarefree (or at least not highly composite).

5) The FHKLS paper alse includes an idea which
can be used in order to adapt our techniques to the
case where m is prime and a window of successive
bits of the xi's are annouced. Because some loss

of information occurs the k-dimensional version of
our algorithms will presumably be needed, with k»3.
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