INF539: refresher basic data structures in C

F. Morain

Laboratoire d’Informatique de I'Ecole polytechnique

L 1
O,
B/ A
og o*
INSTITUT

POLYTECHNIQUE
DE PARIS

lrrzia ~

INVENTEURS DU MONDE NUMERIQUE

September 17th, 2020 — version 1.1

14107

Plan

I. Arrays.

Il. Lists.

[ll. Trees.

IV. Hashing.

V. Graphs.

Good reading: Cormen/Leiserson/Rivest Introduction to

Algorithms; also, X lecture notes (using Java) for INF361,
INF411, INF421 (theoretical).

2/107

l. Arrays

Z) Warming up.
A) Insertion sort.

B) Eratosthenes sieve.

3/107

Z) Warming up

#include <stdio.h>

int main(int argc, char xargv[]) {
int a[l10];
int i;

for(i = 0; i < 10; i++)
a[i] = i;

printf("a =");

for(i = 0; i < 10; i++)
printf (" %d", al[il);

printf("\n");

return O;

4/107

Array: dynamic allocation

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char xargv[]) {
int *a = (int *x)malloc(1l0 * sizeof (int));
int i;

for(i = 0; i < 10; i++)
a[i] = 1i;

printf("a =");

for(i = 0; i < 10; i++)
printf (" %d", al[il);

printf ("\n");

free(a);

return O;

5/107

A) Insertion sort

Principle: we suppose that t [0. .1 [is already sorted and
we insert t [i] where it belongs.

(tfo 2 [5 [18 [4 [2 [6 [8 [10 |

6/107

A) Insertion sort

Principle: we suppose that t [0. .1 [is already sorted and
we insert t [i] where it belongs.

Program:

static void insertionSort(int[] t, int n) {
for(int i = 1; i < n; i++){
// t[0..i-1] is sorted
// we look for the right place for t[i]
int j = findPlace(t, i);
// finish
insert (t, i, j);

7/107

A) Insertion sort

Principle: we suppose that t [0. .1 [is already sorted and
we insert t [i] where it belongs.

tfo 2 [5 [18 [4 [2 [6 [8 [10 |
T

Program:

static void insertionSort (int[] t, int n) {
for(int i = 1; i < n; i++){
// t[0..i-1] is sorted
// we look for the right place for t[i]
int j = findPlace(t, 1i);
// finish
insert(t, i, 3j);

8/107

A) Insertion sort

Principle: we suppose that t [0. .1 [is already sorted and
we insert t [i] where it belongs.

el 2l 9 [5 [138 [4 [2 [6 [8 [10 |
i)

Program:

static void insertionSort(int[] t, int n) {
for(int i = 1; i < n; i++){
// t[0..i-1] is sorted
// we look for the right place for t[i]
int j = findPlace(t, i);
// £finish
insert (t, i, j);

9/107

A) Insertion sort

Principle: we suppose that t [0. .1 [is already sorted and
we insert t [i] where it belongs.

e[2] 5]9 138 [4 [2 |6 [8 [10 |

Program:

static void insertionSort(int[] t, int n) {
for(int i = 1; i1 < n; i++){
// t[0..i-1] is sorted
// we look for the right place for t[i]
int j = findPlace(t, 1i);
// finish
insert(t, i, 3j);

10/107

A) Insertion sort

Principle: we suppose that t [0. .1 [is already sorted and
we insert t [i] where it belongs.

Program:

static void insertionSort(int[] t, int n) {
for(int i = 1; i < n; i++){
// t[0..i-1] is sorted
// we look for the right place for t[i]
int j = findPlace(t, i);
// finish
insert (t, i, j);

11/107

A) Insertion sort

Principle: we suppose that t [0. .1 [is already sorted and
we insert t [i] where it belongs.

Program:

static void insertionSort (int[] t, int n) {
for(int i = 1; i < n; i++){
// t[0..i-1] is sorted
// we look for the right place for t[i]
int j = findPlace(t, 1i);
// finish
insert(t, i, 3j);

12/107

A) Insertion sort

Principle: we suppose that t [0. .1 [is already sorted and
we insert t [i] where it belongs.

(ef 2] 2] 4] 5] 913] 6 [8 [10 |

Program:

static void insertionSort(int[] t, int n) {
for(int i = 1; i < n; i++){
// t[0..i-1] is sorted
// we look for the right place for t[i]
int j = findPlace(t, i);
// £finish
insert (t, i, j);

13/107

A) Insertion sort

Principle: we suppose that t [0. .1 [is already sorted and
we insert t [i] where it belongs.

el 2] 2] 4] 5] 6[9] 18] 8 [10 |

Program:

static void insertionSort(int[] t, int n) {
for(int i = 1; i1 < n; i++){
// t[0..i-1] is sorted
// we look for the right place for t[i]
int j = findPlace(t, 1i);
// finish
insert(t, i, 3j);

14/107

A) Insertion sort

Principle: we suppose that t [0. .1 [is already sorted and
we insert t [i] where it belongs.

(e[2] 2] 4] 5] 6] 8] 9f 18] 10 |

Program:

static void insertionSort(int[] t, int n) {
for(int i = 1; i < n; i++){
// t[0..i-1] is sorted
// we look for the right place for t[i]
int j = findPlace(t, i);
// finish
insert (t, i, j);

15/107

A) Insertion sort

Principle: we suppose that t [0. .1 [is already sorted and
we insert t [i] where it belongs.

tf 2] 2] 4] 5] 6] 8] 9] 10] 13

Program:

static void insertionSort (int[] t, int n) {
for(int i = 1; i < n; i++){
// t[0..i-1] is sorted
// we look for the right place for t[i]
int j = findPlace(t, 1i);
// finish
insert(t, i, 3j);

16/107

The program (2/3)

// t[0..i-1] is sorted

// look for the place of t[i] defined by

// 3 s.t. t[j] <= t[i] < t[j+1]

static int findPlace(int[] t, int i) {
int j;

for(j = i-1; j >= 0; j—-)
if(E[3] <= t[i])
break;
// if j < 0, t[i] < t[0], we return O
// if t[3j] <= t[i] < t[j+1l], we return j+1
return (j+1);
}

17/107

The program (3/3)

static void insert (int[] t, int i, int jJj){
int tmp = t[i], k; // copy

// t10..5-1113..i-1] => £[0..3-11[]1[3+1..4i]
for(k = i; k > j; k—--)
t[k] = t[k-1];
t[j] = tmp;
}

18/107

The program (3/3)

static void insert (int[] t, int i, int jJj){
int tmp = t[i], k; // copy

// t10..5-11103..1-1] => £[0..35-11[][3+1..4i]
for(k = i; k > j; k--)
t[k] = t[k-1];
t[j] = tmp;
}

Rem. We can find a more compact code using careful
programming.

Rem. See man gsort for programs using the 1ibc version
of quicksort.

19/107

B) Eratosthenes and beyond

Eratosthenes: how do we enumerate prime numbers in
[2,X]?

It is much easier to enumerate composite numbers and then
deduce the primes as being not composite.

213456789]10

111213141516 |17 18|19 |20

Prop. A composite number C has a prime factor < v/C.

20/107

B) Eratosthenes and beyond

Eratosthenes: how do we enumerate prime numbers in
[2,X]?

It is much easier to enumerate composite numbers and then
deduce the primes as being not composite.

2314|567 8|9]10

111213141516 |17 18|19 20

Prop. A composite number C has a prime factor < +/C.

21/107

B) Eratosthenes and beyond

Eratosthenes: how do we enumerate prime numbers in
[2,X]?

It is much easier to enumerate composite numbers and then
deduce the primes as being not composite.

21314 (5(6]7]8|9]10
2

111213141516 |17 18|19 |20

Prop. A composite number C has a prime factor < v/C.

22/107

B) Eratosthenes and beyond

Eratosthenes: how do we enumerate prime numbers in
2,X]?

It is much easier to enumerate composite numbers and then
deduce the primes as being not composite.

2131451678910
2 2

111213141516 |17 18|19 20

Prop. A composite number C has a prime factor < v/C.

23/107

B) Eratosthenes and beyond

Eratosthenes: how do we enumerate prime numbers in
[2,X]?

It is much easier to enumerate composite numbers and then
deduce the primes as being not composite.

2 /314 (5(6]7]8|9]10
2 2 2

111213141516 |17 18|19 |20

Prop. A composite number C has a prime factor < v/C.

24/107

B) Eratosthenes and beyond

Eratosthenes: how do we enumerate prime numbers in
[2,X]?

It is much easier to enumerate composite numbers and then
deduce the primes as being not composite.

2314|567 8|9]10
2 2 2 2

111213141516 |17 18|19 20
2 2 2 2 2

Prop. A composite number C has a prime factor < +/C.

25/107

B) Eratosthenes and beyond

Eratosthenes: how do we enumerate prime numbers in
[2,X]?

It is much easier to enumerate composite numbers and then
deduce the primes as being not composite.

2|34 (5678910
2 2 2 2

111213141516 |17 18|19 |20
2 2 2 2 2

Prop. A composite number C has a prime factor < v/C.

26/107

B) Eratosthenes and beyond

Eratosthenes: how do we enumerate prime numbers in
2,X]?

It is much easier to enumerate composite numbers and then
deduce the primes as being not composite.

2131451678910
2 2 213 |2
3
111213141516 |17 18|19 20
2 2132 2 2
3 3

Prop. A composite number C has a prime factor < v/C.

27/107

B) Eratosthenes and beyond

Eratosthenes: how do we enumerate prime numbers in
[2,X]?

It is much easier to enumerate composite numbers and then
deduce the primes as being not composite.

2/3/4(5(6]7]8|9]10

2 2 2132

3 5
111213141516 |17 18|19 |20
2 213 |2 2 2

3 5 3 5

Prop. A composite number C has a prime factor < v/C.

28/107

B) Eratosthenes and beyond

Eratosthenes: how do we enumerate prime numbers in
[2,X]?

It is much easier to enumerate composite numbers and then
deduce the primes as being not composite.

213145167 ([8]9]10

2 2 2132

3 5
111213141516 |17 18|19 20
2 2132 2 2

3 715 3 5

Prop. A composite number C has a prime factor < +/C.

29/107

B) Eratosthenes and beyond

Eratosthenes: how do we enumerate prime numbers in
[2,X]?

It is much easier to enumerate composite numbers and then
deduce the primes as being not composite.

2,134 (5(6]7]8|9]10

2 2 2132

3 5

11 (12 (13|14 15|16 |17 |18 19|20
2 213 |2 2 2

3 715 3 5

Prop. A composite number C has a prime factor < v/C.

30/107

B) Eratosthenes and beyond

Eratosthenes: how do we enumerate prime numbers in
2,X]?

It is much easier to enumerate composite numbers and then
deduce the primes as being not composite.

21314567 [8]9]10

2 2 213 |2

3 5

11 1121314 (15]16 |17 |18 |19 20
2 2132 2 2

3 715 3 5

Prop. A composite number C has a prime factor < v/C.
» empty sets denote primes;

» non-empty sets contain the prime factors of the
composite number.
31/107

Eratosthenes: algorithm

Sieve:
1. Set T[x] =0 for x € [2,X];
2. forp=2to [vX| do
if T[p] = 0 then
2.1 x:=2p;
2.2 while x <X do
221 Tx]:=T[x|u{p};
222 x:=x+p.

(*p is prime *)

(*remove multiples of p *)

Postsieve: find all x € [2..X] s.t. T[x] = 0.

Rem. replace 2.2 by x := p?; 2.3.2 by x := x+2p as soon as
p > 2. Some tricks are available (Brent, etc.).

32/107

. Linked lists

Many pictures: (1, 3, 2, 4) or
-—> 1 —> 3 => 2 —> 4 —> null.

Which type of object? we store pairs (int, arrow).
An arrow is the adress of the following pair.

(1

= a linked list is formed with links.

Recursive definition: linked list = 0 or (link, linkedlist).

33/107

Array or list?

We use an array when:
» one knows the size (or a close upper bound) in advance;

» one needs to access the different cells in a random order
(direct access to t [11]).

We use a list when:
» one doesn’t know the size a priori;
» one doesn’t need to access the i-th element;

» one has to perform additions/suppressions of items in
head or tail;

» one wants to save space.

34/107

Definitions in C

We mimic a module with specification/implementation.

File 1ist .h:

/* basic type */
typedef struct _ list {
int c;
struct _ list xnext;
} _ list, =xlist;

/* exported functions x*/

extern list list_alloc();

extern list_ create(int);

extern list_add first(int, 1list);
extern int list_length(list L);

35/107

First functions
File 1ist.c:

#include <stdlib.h> /* standard library for malloc
#include "list.h" /* we use our list module =*/

/* OUTPUT: —-> %/
list list_alloc() {

return (list)malloc(sizeof(__ list));
}

/* OUTPUT: -> c¢ —> NULL %/
list list_create(int c) {
list tmp = list_alloc();
tmp—>c = c;
tmp—>next = NULL;
return tmp;
}
/* returns ¢ —> L; cost O(1l) =*/
list list_add_first (int ¢, list L) {
list tmp = list_alloc();
tmp->c = c;
tmp->next = L;
return tmp;

36/107

What happens in memory

link L = NULL; //(nil)

37/107

What happens in memory

link L = NULL; //(nil)
L = list_add first (2, L); //0x200

38/107

What happens in memory

ink L = NULL; //(nil)
list_add first (2, L);

1
L
L list_add first (3, L);

//0x200
//0x300
|

What happens in memory

link L = NULL; //(nil)

L = list_add first (2, L); //0x200
L = list_add first(3, L); //0x300
L = list _add first(1l, L); //0x400

Other pictures

Any of:
li=(1,3,2)
orli —>1 —> 3 —> 2 —> null

More abstract:

15— 1 [o}—[8 e} —{2]X

Closer to memory:

1i —> 0x400:[1, 0x300] -> 0x300:[3, 0x200]
-> 0x200:[2, (nil)] —-> (nil)

41/107

Two basic functions

/* OUTPUT: length of the list x*/
int list_length(list L) {
if (L == NULL)
return O;
else
return 1 + list_length(L->next);
}

/* OUTPUT: if c is in L, return the first part of

list list_is_in(int ¢, list L) {
if(L == NULL || L->c == c)
return L;
return list_is_in(c, L->next);

42/107

Removing and freeing

void list_ free(list L) {
if (L '= NULL) {
list free (L->next);
free(L);
}
}
/* [c, L] outputs L */
list list_remove_first (int *ptr_c, 1list L) {
list tmp;

if (L == NULL) {
ptr_ ¢ = -1; / why not? x/
return L;

}

*ptr _c = L-—>c;
tmp = L->next;
free (L) ;

return tmp;

43/107

Complexity issues

Adding/deleting head element: O(1).
Adding/deleting tail element: O(n) if L has size n.

44/107

Adding/deleting head element: O(1).
Adding/deleting tail element: O(n) if L has size n.

To do better: doubly linked list
L > 1 <=> 3 <=> 2 <-> 4 —-> NULL

Need modify the structure:

typedef struct _ dlist {

int c;

struct __dlist xnext, *prev;
} _ dlist, =xdlist;

Even better: double ended queue (dequeue) with a pointer on
the head as well as on the tail.

Ex. write allocation, insertion/deletion head or tail that cost
O(1) operations.
45/107

I1l. Trees

Complexity issues

A) Introduction

Roland-Garros 2019:
ABarty

N

ABarty MVondrouSova

/NN

ABarty AAnisimova MVondrouSova SKenin

46/107

Another example

Representing x+y/(2z+ 1) +1:

+
+/\t
AN
X /
RN
y +
/N
* 1

/ N\
2 ¥4

Useful also in compilation.

47/107

Terminology

height

48/107

Terminology

height

The tree has 6 nodes: one root (12), 1 internal node (10), 4
leaves (5, 6, 8, 11); 10 is a child of 12; the tree has height 3
(the empty tree has height 0).

49/107

Terminology

height

The tree has 6 nodes: one root (12), 1 internal node (10), 4
leaves (5, 6, 8, 11); 10 is a child of 12; the tree has height 3
(the empty tree has height 0).

All nodes except the root have a parent, the leaves have no

children.

50/107

Terminology

height

The tree has 6 nodes: one root (12), 1 internal node (10), 4
leaves (5, 6, 8, 11); 10 is a child of 12; the tree has height 3
(the empty tree has height 0).

All nodes except the root have a parent, the leaves have no
children.

(12,10, 6) or (12, 11) are paths in the tree.

51/107

Required operations

» addition (insertion), suppression;

» searching for a given node;

» printing all nodes in hierarchical order (by level);
» following a branch (e.g., list of parents).

Rem. pictures, properties may not have any relationship with
a given implementation.

52/107

B) Binary trees

Def. (recursive) T =0 or (r,T1,T,).

53/107

Dynamic implementation
Close to the recursive definition: T =0 ou (r,T;,T,).

File tree.h:
typedef struct node {

int c;

struct node xleft, x*right;
} node, =xtree;

extern tree tree_alloc();
extern tree tree_create_leaf (int c);

File tree.c:

tree tree_alloc() {
return (tree)malloc(sizeof (node));
}
tree tree_create_leaf (int c){
tree T = tree_alloc();
T->left = NULL; T->right = NULL; T->c
return T;

}

c;/

54/107

Tests

int main(int argc,
tree T = NULL,

char xargv[]) {
L, R, two;

L tree_create_leaf (3);
R = tree_create_leaf (4);

T = tree_join(0, L, R);
two = tree_create_leaf(2);
T = tree_join(l, T, two);
return O;

55/107

Memory picture

L = tree create leaf(3); //0x600

0x600 | .c | .left | .right
3 (nil) (nil)

56/107

Memory picture

= tree_ create_leaf(3); //0x600
= tree_create_leaf(4); //0x700

bo I o)
[

57107

Memory picture

L = tree_create_leaf(3); //0x600
tree_create_leaf(4); //0x700
T = tree_join(0, L, R); //0x500

o
]

58/107

Tree traversals

Idea: inspect all nodes once.
Applications: printing, searching for a given information, etc.

Classical traversals: on (r,7},T,)
» prefix order: traverse r, then Tj, then T, (closest to the
definition);
» infix order: traverse T}, then r, then T, (boils down to
flattening the tree);
» postfix order: traverse Tj, then T, then r.
The choice of the traversal depends on the application.

The three traversals for printing

/* r, T 1, T r %/
void tree_prefix print (tree T) {
if (T !'= NULL) {
printf (" %d", T->c);
tree_prefix_print (T->left);
tree_prefix print (T->right);

1
0 //////‘ \\\\\\ 2
3/// \\\4

The three traversals for printing

/* r, T 1, T r %/
void tree_prefix print (tree T) {
if (T != NULL) {
printf (" %d", T->c);
tree_prefix_ print (T->left);
tree_prefix print (T->right);

61/107

The three traversals for printing

/* r, T 1, T r %/
void tree_prefix print (tree T) {
if (T != NULL) {
printf (" %d", T->c);
tree_prefix print (T->left);
tree_prefix print (T->right);

=1,0

62/107

The three traversals for printing

/¥ r, T 1, T r %/
void tree_prefix print (tree T) {
if (T !'= NULL) {
printf (" %d", T->c);
tree_prefix_ print (T->left);
tree_prefix print (T->right);

63/107

The three traversals for printing

/* r, T 1, T r %/
void tree_prefix print (tree T) {
if (T != NULL) {
printf (" %d", T->c);
tree_prefix print (T->left);
tree_prefix print (T->right);

0
2
& ®

=1,0,3,4

64/107

The three traversals for printing

/* r, T 1, T r %/
void tree_prefix print (tree T) {
if (T != NULL) {
printf (" %d", T->c);
tree_prefix_ print (T->left);
tree_prefix print (T->right);

65/107

The three traversals for printing

/* r, T 1, T r %/
void tree_prefix print (tree T) {
if (T != NULL) {
printf (" %d", T->c);
tree_prefix print (T->left);
tree_prefix print (T->right);

66/107

The other two traversals

// L, r, R
void tree_infix_print (tree T) {
if (T !'= NULL) {

tree_infix print (T->left);
printf (" $d", T->c);
tree_infix print (T->right);
}
}
// L, R, r
void tree_postfix_ print (tree T) {
if (T '= NULL) {
tree_postfix print (T->left);
tree_postfix print (T->right);
printf (" %d", T->c);

67/107

IV. Hashing

Pb: we want to store a set & having N integers (say) in a
table, so that accessing any x costs as little as possible.

Ex. if £ =[1,N],use int t[N]; andt[i] = -1 if empty.

We mimic this by computing for each x € & an address
h(x) €{0,1,...,M — 1} for some well chosen M. If M < N,
several elements might fall at the same address (collision).

68/107

IV. Hashing

Pb: we want to store a set & having N integers (say) in a
table, so that accessing any x costs as little as possible.

Ex. if & =[1,N],use int t[N]; andt[i] = -1 if empty.

We mimic this by computing for each x € & an address
h(x) €{0,1,...,M — 1} for some well chosen M. If M < N,
several elements might fall at the same address (collision).
Insertion of x: O(1)

» compute A(x);

> T = Th(x) U {x}

69/107

IV. Hashing

Pb: we want to store a set & having N integers (say) in a
table, so that accessing any x costs as little as possible.

Ex. if £ =[1,N],use int t[N]; andt[i] = -1 if empty.

We mimic this by computing for each x € & an address
h(x) € {0,1,...,M — 1} for some well chosen M. If M < N,
several elements might fall at the same address (collision).
Insertion of x: O(1)

» compute A(x);

> T = T ULx}
Searching x: O(1)

» compute A(x);

> return x € Jj,)?

70/107

Example

Hash function: i(z) = z mod M.

Ex. & ={11,59,32,44,301,26,199}; M = 10; .7 is an array of
lists:

71/107

Example

Hash function: /(z) = z mod M.

Ex. & ={11,59,32,44,301,26,199}; M = 10; .7 is an array of
lists:

i 01|23 14|5|6|7]|8]9
T 11

I11=1x10+1=11mod 10 =1

72/107

Example

Hash function: 7(z) =z mod M.

Ex. & ={11,59,32,44,301,26,199}; M = 10; .7 is an array of
lists:

o123 14]5|6|7]8]9
T 11 59

59=5x10+9=59mod 10=9

73/107

Example

Hash function: /(z) = z mod M.

Ex. & ={11,59,32,44,301,26,199}; M = 10; .7 is an array of
lists:

i 01|23 14|5|6|7]|8]9
T 11132 59

32=3x104+2=32mod 10 =2

74/107

Example

Hash function: 7(z) =z mod M.

Ex. & ={11,59,32,44,301,26,199}; M = 10; .7 is an array of
lists:

i 01|23 1415|6789
T 11132 44 59

44=4x10+4=44mod 10 =4

75/107

Example

Hash function: /(z) = z mod M.

Ex. & ={11,59,32,44,301,26,199}; M = 10; .7 is an array of
lists:

i |0 1 213 (4567|8109
T 11,301 | 32 44 59

301 =30x10+4+1=-301 mod 10 =1

collision!

76/107

Example

Hash function: i(z) = z mod M.

Ex. & ={11,59,32,44,301,26,199}; M = 10; .7 is an array of
lists:

i |0 1 213 (41516789

Example

Hash function: /(z) = z mod M.

Ex. & ={11,59,32,44,301,26,199}; M = 10; .7 is an array of
lists:

i |0 1 213145 16|78 9

7, 11,301 | 32 44 26 59 T 11,301 | 32 44 26 59,199
collision!
771107 78/107
Example Handling collisions using lists

Hash function: i(z) = z mod M.

Ex. & ={11,59,32,44,301,26,199}; M = 10; .7 is an array of
lists:

i |0 1 2345 [6]7]8 9
T 11,301 | 32 44 26 59,199

Rem. We cannot avoid collisions, but if % is well chosen, the
lists do not explode.

Rem. We can hash every object we want, since we can map
any object to a string then to an integer.

79/107

#define HMAX 256
##define HMOD 256

/* fast way of computing x mod 2%n x/
#define h(x) ((x) & (HMOD-1))

extern void hash_init (list H[]);

extern void hash_ insert (list H[], int n);
extern int hash is in(list H[], int n);
extern void hash_print (list HI[]);

80/107

hash.c

void hash_init (list H[]) {
int i;

for(i = 0; i < HMOD; i++)
H[i] = NULL;

81/107

hash.c

void hash_init (list H[]) {
int i;

for(i = 0; i < HMOD; i++)
H[i] = NULL;
}

void hash_insert (list H[], int n){
int hn = h(n);

if(list_4is_in(n, H[hn]) == NULL)
H[hn] = list_add first(n, H[hn]);

82/107

hash.c
void hash_init (list H[]) {

int i;

for(i = 0; i < HMOD; i++)
H[i] = NULL;
}

void hash_insert (list H[], int n) {
int hn = h(n);

if(list_is_in(n, H[hn]) == NULL)

H[hn] = list_add_first(n, H[hn]);
}

int hash is_in(list H[], int n){
int hn = h(n);

return list_is_in(n, H[hn]) != NULL;

83/107

hash.c (cont'd)

void hash_print (1ist H[]) {

int i;
for(i = 0; i < HMOD; i++)
if(H[i] !'= NULL) {

printf ("H[%d]=", 1i);
list_print (H[i]);
printf ("\n");

84/107

Example

#include <stdio.h>
#include <stdlib.h>
#include "list.h"
#include "hash.h"

int main(int argc, char *xargv([]) {
list tabh[HMAX];
int i;
hash_init (tabh);
for(i = 0; i < 100; i++)
hash_insert (tabh, abs(random()) % 1000);
hash_print (tabh);

H[9]= —> 777
H[1ll]= —> 11
H[1l2]= —> 12
H[14]= -> 526 —-> 782

85/107

V. Graphs

YO

» Modelling networks: metro, train, electricity, INTERNET,
etc.

» Representing logical links: ecosystems; dependency
graph between source files, heritance diagram, etc.

» Ressource allocation: minimal cost, etc.

86/107

Representing graphs

Abstraction: ¥ = (7,&).
. set of vertices, e.g., [0..n—1].

&': set of edges, e.g., array of lists.

Ex.

L[O0] = (1, 2)
L[1] ()
L[2] (3)
L[3] (2, 4)
L[4] = ()

87/107

When 7 is small: adjacency matrix

For a simple graph ¢, matrix n x n s.t.

Mi,jZ{ 1 if (i,j) € &,

0 otherwise.
///,O
1 / 4
2 3

Graph with weights: M, ; =v(i,j).

Ex.

S O = = O
SO OO =
SO O~ O
—_ o O O O
o= O O O

88/107

Comparing both implementations

| type || memory | utilisation |
matrix || O(n?) dense graph
lists O(|&|+n) | sparse graph

89/107

Traversals (1/2)

Principle: starting from a vertex s, we traverse a subset of ¢,
the neighbours of s. Incrementally, we choose the next vertex
in the frontier of the graph.

Def. The frontier #(T) of T C ¥ is the set of vertices of ¥ — T
that are adjacent to one of the vertices of T.

90/107

Traversals (2/2)

Def. A traversal of ¢ = (¥,&) (connex) starting from s is a list
of vertices L s.t.

» the first vertex of L is s;
» each vertex in ¥ appears only once in L;

» each verextin L (except s) is adjacent in ¢ to at least a
vertex preceding in L.

91/107

Traversals (2/2)

Def. A traversal of 4 = (7,&) (connex) starting from s is a list
of vertices L s.t.

» the first vertex of L is s;
» each vertex in ¥ appears only once in L;

» each verextin L (except s) is adjacent in ¢ to at least a
vertex preceding in L.

Rem. There is no canonical (nor best) traversal.

Rem. The two most frequently used traversals are depth
search first (DFS), and breadth first search (BFS).

92/107

IV. DFS

(Depth First Search) the next vertex to be traversed is the
most recent vertex of type beingexplored.

function dfs (G, s)
0. forall vertex t do

state[t] <- unexplored;
1. dfsRec (G, s, state);

function dfsRec (G, s, state)
if state[s] == unexplored then
state[s] <- beingexplored;
forall t adjacent to s
dfsRec (G, t, state);
state[s] <- explored;

Thm. if all list operations cost O(1), then the complexity of
DFSis O(|7|+|&]) = O(n+m).

93/107

Example

94/107

Example

95/107

Example

O
295

96/107

Example Example
a — C (&
N O S
0'0 b (F)-id b
(O (<
Example Example
D D
f—d—b fo—d— b

99/107

100/107

Example Example
D D
f—d—b f—d—b
| |
g/e/ g
Example Example
D D
f—d—»b

103/107

104/107

oYero

Example

\b
oYo
0120

Example

Example

