
INF539: refresher basic data structures in C

F. Morain

Laboratoire d’Informatique de l’École polytechnique

September 17th, 2020 – version 1.1

1/107

Plan

I. Arrays.

II. Lists.

III. Trees.

IV. Hashing.

V. Graphs.

Good reading: Cormen/Leiserson/Rivest Introduction to
Algorithms; also, X lecture notes (using Java) for INF361,
INF411, INF421 (theoretical).

2/107

I. Arrays

Z) Warming up.

A) Insertion sort.

B) Eratosthenes sieve.

3/107

Z) Warming up

#include <stdio.h>

int main(int argc, char *argv[]){
int a[10];
int i;

for(i = 0; i < 10; i++)
a[i] = i;

printf("a =");
for(i = 0; i < 10; i++)

printf(" %d", a[i]);
printf("\n");
return 0;

}

4/107

Array: dynamic allocation

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]){
int *a = (int *)malloc(10 * sizeof(int));
int i;

for(i = 0; i < 10; i++)
a[i] = i;

printf("a =");
for(i = 0; i < 10; i++)

printf(" %d", a[i]);
printf("\n");
free(a);
return 0;

}

5/107

A) Insertion sort

Principle: we suppose that t[0..i[is already sorted and
we insert t[i] where it belongs.

t 9 2 5 13 4 2 6 8 10

Program:

static void insertionSort(int[] t, int n){
for(int i = 1; i < n; i++){

// t[0..i-1] is sorted
// we look for the right place for t[i]
int j = findPlace(t, i);
// finish
insert(t, i, j);

}
}

6/107

A) Insertion sort

Principle: we suppose that t[0..i[is already sorted and
we insert t[i] where it belongs.

t 9 2 5 13 4 2 6 8 10
⇑

Program:

static void insertionSort(int[] t, int n){
for(int i = 1; i < n; i++){

// t[0..i-1] is sorted
// we look for the right place for t[i]
int j = findPlace(t, i);
// finish
insert(t, i, j);

}
}

7/107

A) Insertion sort

Principle: we suppose that t[0..i[is already sorted and
we insert t[i] where it belongs.

t 9 2 5 13 4 2 6 8 10
⇑

Program:

static void insertionSort(int[] t, int n){
for(int i = 1; i < n; i++){

// t[0..i-1] is sorted
// we look for the right place for t[i]
int j = findPlace(t, i);
// finish
insert(t, i, j);

}
}

8/107

A) Insertion sort

Principle: we suppose that t[0..i[is already sorted and
we insert t[i] where it belongs.

t 2 9 5 13 4 2 6 8 10
⇑

Program:

static void insertionSort(int[] t, int n){
for(int i = 1; i < n; i++){

// t[0..i-1] is sorted
// we look for the right place for t[i]
int j = findPlace(t, i);
// finish
insert(t, i, j);

}
}

9/107

A) Insertion sort

Principle: we suppose that t[0..i[is already sorted and
we insert t[i] where it belongs.

t 2 5 9 13 4 2 6 8 10
⇑

Program:

static void insertionSort(int[] t, int n){
for(int i = 1; i < n; i++){

// t[0..i-1] is sorted
// we look for the right place for t[i]
int j = findPlace(t, i);
// finish
insert(t, i, j);

}
}

10/107

A) Insertion sort

Principle: we suppose that t[0..i[is already sorted and
we insert t[i] where it belongs.

t 2 5 9 13 4 2 6 8 10
⇑

Program:

static void insertionSort(int[] t, int n){
for(int i = 1; i < n; i++){

// t[0..i-1] is sorted
// we look for the right place for t[i]
int j = findPlace(t, i);
// finish
insert(t, i, j);

}
}

11/107

A) Insertion sort

Principle: we suppose that t[0..i[is already sorted and
we insert t[i] where it belongs.

t 2 4 5 9 13 2 6 8 10
⇑

Program:

static void insertionSort(int[] t, int n){
for(int i = 1; i < n; i++){

// t[0..i-1] is sorted
// we look for the right place for t[i]
int j = findPlace(t, i);
// finish
insert(t, i, j);

}
}

12/107

A) Insertion sort

Principle: we suppose that t[0..i[is already sorted and
we insert t[i] where it belongs.

t 2 2 4 5 9 13 6 8 10
⇑

Program:

static void insertionSort(int[] t, int n){
for(int i = 1; i < n; i++){

// t[0..i-1] is sorted
// we look for the right place for t[i]
int j = findPlace(t, i);
// finish
insert(t, i, j);

}
}

13/107

A) Insertion sort

Principle: we suppose that t[0..i[is already sorted and
we insert t[i] where it belongs.

t 2 2 4 5 6 9 13 8 10
⇑

Program:

static void insertionSort(int[] t, int n){
for(int i = 1; i < n; i++){

// t[0..i-1] is sorted
// we look for the right place for t[i]
int j = findPlace(t, i);
// finish
insert(t, i, j);

}
}

14/107

A) Insertion sort

Principle: we suppose that t[0..i[is already sorted and
we insert t[i] where it belongs.

t 2 2 4 5 6 8 9 13 10
⇑

Program:

static void insertionSort(int[] t, int n){
for(int i = 1; i < n; i++){

// t[0..i-1] is sorted
// we look for the right place for t[i]
int j = findPlace(t, i);
// finish
insert(t, i, j);

}
}

15/107

A) Insertion sort

Principle: we suppose that t[0..i[is already sorted and
we insert t[i] where it belongs.

t 2 2 4 5 6 8 9 10 13

Program:

static void insertionSort(int[] t, int n){
for(int i = 1; i < n; i++){

// t[0..i-1] is sorted
// we look for the right place for t[i]
int j = findPlace(t, i);
// finish
insert(t, i, j);

}
}

16/107

The program (2/3)

// t[0..i-1] is sorted
// look for the place of t[i] defined by
// j s.t. t[j] <= t[i] < t[j+1]
static int findPlace(int[] t, int i){

int j;

for(j = i-1; j >= 0; j--)
if(t[j] <= t[i])

break;
// if j < 0, t[i] < t[0], we return 0
// if t[j] <= t[i] < t[j+1], we return j+1
return (j+1);

}

17/107

The program (3/3)

static void insert(int[] t, int i, int j){
int tmp = t[i], k; // copy

// t[0..j-1][j..i-1] -> t[0..j-1][][j+1..i]
for(k = i; k > j; k--)

t[k] = t[k-1];
t[j] = tmp;

}

Rem. We can find a more compact code using careful
programming.

Rem. See man qsort for programs using the libc version
of quicksort.

18/107

The program (3/3)

static void insert(int[] t, int i, int j){
int tmp = t[i], k; // copy

// t[0..j-1][j..i-1] -> t[0..j-1][][j+1..i]
for(k = i; k > j; k--)

t[k] = t[k-1];
t[j] = tmp;

}

Rem. We can find a more compact code using careful
programming.

Rem. See man qsort for programs using the libc version
of quicksort.

19/107

B) Eratosthenes and beyond

Eratosthenes: how do we enumerate prime numbers in
[2,X]?

It is much easier to enumerate composite numbers and then
deduce the primes as being not composite.

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

Prop. A composite number C has a prime factor ≤
√

C.

I empty sets denote primes;
I non-empty sets contain the prime factors of the

composite number.

20/107

B) Eratosthenes and beyond

Eratosthenes: how do we enumerate prime numbers in
[2,X]?

It is much easier to enumerate composite numbers and then
deduce the primes as being not composite.

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

Prop. A composite number C has a prime factor ≤
√

C.

I empty sets denote primes;
I non-empty sets contain the prime factors of the

composite number.

21/107

B) Eratosthenes and beyond

Eratosthenes: how do we enumerate prime numbers in
[2,X]?

It is much easier to enumerate composite numbers and then
deduce the primes as being not composite.

2 3 4 5 6 7 8 9 10
2

11 12 13 14 15 16 17 18 19 20

Prop. A composite number C has a prime factor ≤
√

C.

I empty sets denote primes;
I non-empty sets contain the prime factors of the

composite number.

22/107

B) Eratosthenes and beyond

Eratosthenes: how do we enumerate prime numbers in
[2,X]?

It is much easier to enumerate composite numbers and then
deduce the primes as being not composite.

2 3 4 5 6 7 8 9 10
2 2

11 12 13 14 15 16 17 18 19 20

Prop. A composite number C has a prime factor ≤
√

C.

I empty sets denote primes;
I non-empty sets contain the prime factors of the

composite number.

23/107

B) Eratosthenes and beyond

Eratosthenes: how do we enumerate prime numbers in
[2,X]?

It is much easier to enumerate composite numbers and then
deduce the primes as being not composite.

2 3 4 5 6 7 8 9 10
2 2 2

11 12 13 14 15 16 17 18 19 20

Prop. A composite number C has a prime factor ≤
√

C.

I empty sets denote primes;
I non-empty sets contain the prime factors of the

composite number.

24/107

B) Eratosthenes and beyond

Eratosthenes: how do we enumerate prime numbers in
[2,X]?

It is much easier to enumerate composite numbers and then
deduce the primes as being not composite.

2 3 4 5 6 7 8 9 10
2 2 2 2

11 12 13 14 15 16 17 18 19 20
2 2 2 2 2

Prop. A composite number C has a prime factor ≤
√

C.

I empty sets denote primes;
I non-empty sets contain the prime factors of the

composite number.

25/107

B) Eratosthenes and beyond

Eratosthenes: how do we enumerate prime numbers in
[2,X]?

It is much easier to enumerate composite numbers and then
deduce the primes as being not composite.

2 3 4 5 6 7 8 9 10
2 2 2 2

11 12 13 14 15 16 17 18 19 20
2 2 2 2 2

Prop. A composite number C has a prime factor ≤
√

C.

I empty sets denote primes;
I non-empty sets contain the prime factors of the

composite number.

26/107

B) Eratosthenes and beyond

Eratosthenes: how do we enumerate prime numbers in
[2,X]?

It is much easier to enumerate composite numbers and then
deduce the primes as being not composite.

2 3 4 5 6 7 8 9 10
2 2 2 3 2

3
11 12 13 14 15 16 17 18 19 20

2 2 3 2 2 2
3 3

Prop. A composite number C has a prime factor ≤
√

C.

I empty sets denote primes;
I non-empty sets contain the prime factors of the

composite number.

27/107

B) Eratosthenes and beyond

Eratosthenes: how do we enumerate prime numbers in
[2,X]?

It is much easier to enumerate composite numbers and then
deduce the primes as being not composite.

2 3 4 5 6 7 8 9 10
2 2 2 3 2

3 5
11 12 13 14 15 16 17 18 19 20

2 2 3 2 2 2
3 5 3 5

Prop. A composite number C has a prime factor ≤
√

C.

I empty sets denote primes;
I non-empty sets contain the prime factors of the

composite number.

28/107

B) Eratosthenes and beyond

Eratosthenes: how do we enumerate prime numbers in
[2,X]?

It is much easier to enumerate composite numbers and then
deduce the primes as being not composite.

2 3 4 5 6 7 8 9 10
2 2 2 3 2

3 5
11 12 13 14 15 16 17 18 19 20

2 2 3 2 2 2
3 7 5 3 5

Prop. A composite number C has a prime factor ≤
√

C.

I empty sets denote primes;
I non-empty sets contain the prime factors of the

composite number.

29/107

B) Eratosthenes and beyond

Eratosthenes: how do we enumerate prime numbers in
[2,X]?

It is much easier to enumerate composite numbers and then
deduce the primes as being not composite.

2 3 4 5 6 7 8 9 10
2 2 2 3 2

3 5
11 12 13 14 15 16 17 18 19 20

2 2 3 2 2 2
3 7 5 3 5

Prop. A composite number C has a prime factor ≤
√

C.

I empty sets denote primes;
I non-empty sets contain the prime factors of the

composite number.

30/107

B) Eratosthenes and beyond

Eratosthenes: how do we enumerate prime numbers in
[2,X]?

It is much easier to enumerate composite numbers and then
deduce the primes as being not composite.

2 3 4 5 6 7 8 9 10
2 2 2 3 2

3 5
11 12 13 14 15 16 17 18 19 20

2 2 3 2 2 2
3 7 5 3 5

Prop. A composite number C has a prime factor ≤
√

C.
I empty sets denote primes;
I non-empty sets contain the prime factors of the

composite number.
31/107

Eratosthenes: algorithm

Sieve:
1. Set T[x] = /0 for x ∈ [2,X];
2. for p = 2 to b

√
Xc do

if T[p] = /0 then (*p is prime *)
2.1 x := 2p;
2.2 while x≤ X do (*remove multiples of p *)

2.2.1 T[x] := T[x]∪{p};
2.2.2 x := x+p.

Postsieve: find all x ∈ [2..X] s.t. T[x] = /0.

Rem. replace 2.2 by x := p2; 2.3.2 by x := x+2p as soon as
p > 2. Some tricks are available (Brent, etc.).

32/107

II. Linked lists

Many pictures: (1, 3, 2, 4) or
-> 1 -> 3 -> 2 -> 4 -> null.

Which type of object? we store pairs (int, arrow).
An arrow is the adress of the following pair.

1

⇒ a linked list is formed with links.

Recursive definition: linked list = /0 or (link, linkedlist).

33/107

Array or list?

We use an array when:
I one knows the size (or a close upper bound) in advance;
I one needs to access the different cells in a random order

(direct access to t[i]).

We use a list when:
I one doesn’t know the size a priori;
I one doesn’t need to access the i-th element;
I one has to perform additions/suppressions of items in

head or tail;
I one wants to save space.

34/107

Definitions in C

We mimic a module with specification/implementation.

File list.h:

/* basic type */
typedef struct __list {

int c;
struct __list *next;

} __list, *list;

/* exported functions */
extern list list_alloc();
extern list_create(int);
extern list_add_first(int, list);
extern int list_length(list L);

35/107

First functions
File list.c:
#include <stdlib.h> /* standard library for malloc */
#include "list.h" /* we use our list module */

/* OUTPUT: -> */
list list_alloc(){

return (list)malloc(sizeof(__list));
}
/* OUTPUT: -> c -> NULL */
list list_create(int c){

list tmp = list_alloc();
tmp->c = c;
tmp->next = NULL;
return tmp;

}
/* returns c -> L; cost O(1) */
list list_add_first(int c, list L){

list tmp = list_alloc();
tmp->c = c;
tmp->next = L;
return tmp;

}
36/107

What happens in memory

link L = NULL; //(nil)

L = list_add_first(2, L); //0x200
L = list_add_first(3, L); //0x300
L = list_add_first(1, L); //0x400

0x200 .c .next
2 (nil)

0x300 .c .next
3 0x200

0x400 .c .next
1 0x300

37/107

What happens in memory

link L = NULL; //(nil)
L = list_add_first(2, L); //0x200

L = list_add_first(3, L); //0x300
L = list_add_first(1, L); //0x400

0x200 .c .next
2 (nil)

0x300 .c .next
3 0x200

0x400 .c .next
1 0x300

38/107

What happens in memory

link L = NULL; //(nil)
L = list_add_first(2, L); //0x200
L = list_add_first(3, L); //0x300

L = list_add_first(1, L); //0x400

0x200 .c .next
2 (nil)

0x300 .c .next
3 0x200

0x400 .c .next
1 0x300

39/107

What happens in memory

link L = NULL; //(nil)
L = list_add_first(2, L); //0x200
L = list_add_first(3, L); //0x300
L = list_add_first(1, L); //0x400

0x200 .c .next
2 (nil)

0x300 .c .next
3 0x200

0x400 .c .next
1 0x300

40/107

Other pictures

Any of:
li = (1, 3, 2)
or li -> 1 -> 3 -> 2 -> null

More abstract:

li 1 3 2• •

Closer to memory:

li -> 0x400:[1, 0x300] -> 0x300:[3, 0x200]
-> 0x200:[2, (nil)] -> (nil)

41/107

Two basic functions

/* OUTPUT: length of the list */
int list_length(list L){

if(L == NULL)
return 0;

else
return 1 + list_length(L->next);

}

/* OUTPUT: if c is in L, return the first part of L containing c */
list list_is_in(int c, list L){

if(L == NULL || L->c == c)
return L;

return list_is_in(c, L->next);
}

42/107

Removing and freeing
void list_free(list L){

if(L != NULL){
list_free(L->next);
free(L);

}
}
/* [c, L] outputs L */
list list_remove_first(int *ptr_c, list L){

list tmp;

if(L == NULL){
ptr_c = -1; / why not? */
return L;

}
*ptr_c = L->c;
tmp = L->next;
free(L);
return tmp;

}

43/107

Complexity issues

Adding/deleting head element: O(1).
Adding/deleting tail element: O(n) if L has size n.

To do better: doubly linked list

L -> 1 <-> 3 <-> 2 <-> 4 -> NULL

Need modify the structure:

typedef struct __dlist {
int c;
struct __dlist *next, *prev;

} __dlist, *dlist;

Even better: double ended queue (dequeue) with a pointer on
the head as well as on the tail.

Ex. write allocation, insertion/deletion head or tail that cost
O(1) operations.

44/107

Complexity issues

Adding/deleting head element: O(1).
Adding/deleting tail element: O(n) if L has size n.

To do better: doubly linked list

L -> 1 <-> 3 <-> 2 <-> 4 -> NULL

Need modify the structure:

typedef struct __dlist {
int c;
struct __dlist *next, *prev;

} __dlist, *dlist;

Even better: double ended queue (dequeue) with a pointer on
the head as well as on the tail.

Ex. write allocation, insertion/deletion head or tail that cost
O(1) operations.

45/107

III. Trees

A) Introduction

Roland-Garros 2019:

ABarty

ABarty

ABarty AAnisimova

MVondroušová

MVondroušová SKenin

46/107

Another example

Representing x+ y/(2z+1)+ t:

x

y

2 z

∗ 1

+

/

+ t

+

Useful also in compilation.

47/107

Terminology

12

10 11

5 6 8

root
node

height

leaf

The tree has 6 nodes: one root (12), 1 internal node (10), 4
leaves (5, 6, 8, 11); 10 is a child of 12; the tree has height 3
(the empty tree has height 0).

All nodes except the root have a parent, the leaves have no
children.

(12, 10, 6) or (12, 11) are paths in the tree.

48/107

Terminology

12

10 11

5 6 8

root
node

height

leaf

The tree has 6 nodes: one root (12), 1 internal node (10), 4
leaves (5, 6, 8, 11); 10 is a child of 12; the tree has height 3
(the empty tree has height 0).

All nodes except the root have a parent, the leaves have no
children.

(12, 10, 6) or (12, 11) are paths in the tree.

49/107

Terminology

12

10 11

5 6 8

root
node

height

leaf

The tree has 6 nodes: one root (12), 1 internal node (10), 4
leaves (5, 6, 8, 11); 10 is a child of 12; the tree has height 3
(the empty tree has height 0).

All nodes except the root have a parent, the leaves have no
children.

(12, 10, 6) or (12, 11) are paths in the tree.

50/107

Terminology

12

10 11

5 6 8

root
node

height

leaf

The tree has 6 nodes: one root (12), 1 internal node (10), 4
leaves (5, 6, 8, 11); 10 is a child of 12; the tree has height 3
(the empty tree has height 0).

All nodes except the root have a parent, the leaves have no
children.

(12, 10, 6) or (12, 11) are paths in the tree.

51/107

Required operations

I addition (insertion), suppression;
I searching for a given node;
I printing all nodes in hierarchical order (by level);
I following a branch (e.g., list of parents).

Rem. pictures, properties may not have any relationship with
a given implementation.

52/107

B) Binary trees

Def. (recursive) T = /0 or (r,Tl,Tr).

9 r

8 2

6 7 1 0

5 4

Tl

Tr

53/107

Dynamic implementation
Close to the recursive definition: T = /0 ou (r,Tl,Tr).

File tree.h:
typedef struct node {

int c;
struct node *left, *right;

} node, *tree;
extern tree tree_alloc();
extern tree tree_create_leaf(int c);

File tree.c:
tree tree_alloc(){

return (tree)malloc(sizeof(node));
}
tree tree_create_leaf(int c){

tree T = tree_alloc();
T->left = NULL; T->right = NULL; T->c = c;
return T;

}
54/107

Tests

int main(int argc, char *argv[]){
tree T = NULL, L, R, two;

L = tree_create_leaf(3);
R = tree_create_leaf(4);
T = tree_join(0, L, R);
two = tree_create_leaf(2);
T = tree_join(1, T, two);
return 0;

}

1

0

3 4

2

55/107

Memory picture

L = tree_create_leaf(3); //0x600

R = tree_create_leaf(4); //0x700
T = tree_join(0, L, R); //0x500

0x700 .c .left .right
4 (nil) (nil)

0x600 .c .left .right
3 (nil) (nil)

0x500 .c .left .right
0 0x600 0x700

56/107

Memory picture

L = tree_create_leaf(3); //0x600
R = tree_create_leaf(4); //0x700

T = tree_join(0, L, R); //0x500

0x700 .c .left .right
4 (nil) (nil)

0x600 .c .left .right
3 (nil) (nil)

0x500 .c .left .right
0 0x600 0x700

57/107

Memory picture

L = tree_create_leaf(3); //0x600
R = tree_create_leaf(4); //0x700
T = tree_join(0, L, R); //0x500

0x700 .c .left .right
4 (nil) (nil)

0x600 .c .left .right
3 (nil) (nil)

0x500 .c .left .right
0 0x600 0x700

58/107

Tree traversals

Idea: inspect all nodes once.

Applications: printing, searching for a given information, etc.

Classical traversals: on (r,Tl,Tr)

I prefix order: traverse r, then Tl, then Tr (closest to the
definition);

I infix order: traverse Tl, then r, then Tr (boils down to
flattening the tree);

I postfix order: traverse Tl, then Tr, then r.
The choice of the traversal depends on the application.

59/107

The three traversals for printing

/* r, T_l, T_r */
void tree_prefix_print(tree T){

if(T != NULL){
printf(" %d", T->c);
tree_prefix_print(T->left);
tree_prefix_print(T->right);

}
}

1

11

0

00

3

33

4

44

2

22

⇒ 1⇒ 1,0⇒ 1,0,3⇒ 1,0,3,4⇒ 1,0,3,4,2

60/107

The three traversals for printing

/* r, T_l, T_r */
void tree_prefix_print(tree T){

if(T != NULL){
printf(" %d", T->c);
tree_prefix_print(T->left);
tree_prefix_print(T->right);

}
}

1

1

1

0

00

3

33

4

44

2

22

⇒ 1

⇒ 1,0⇒ 1,0,3⇒ 1,0,3,4⇒ 1,0,3,4,2

61/107

The three traversals for printing

/* r, T_l, T_r */
void tree_prefix_print(tree T){

if(T != NULL){
printf(" %d", T->c);
tree_prefix_print(T->left);
tree_prefix_print(T->right);

}
}

11

1

0

0

0

3

33

4

44

2

22

⇒ 1

⇒ 1,0

⇒ 1,0,3⇒ 1,0,3,4⇒ 1,0,3,4,2

62/107

The three traversals for printing

/* r, T_l, T_r */
void tree_prefix_print(tree T){

if(T != NULL){
printf(" %d", T->c);
tree_prefix_print(T->left);
tree_prefix_print(T->right);

}
}

11

1

00

0

3

3

3

4

44

2

22

⇒ 1⇒ 1,0

⇒ 1,0,3

⇒ 1,0,3,4⇒ 1,0,3,4,2

63/107

The three traversals for printing

/* r, T_l, T_r */
void tree_prefix_print(tree T){

if(T != NULL){
printf(" %d", T->c);
tree_prefix_print(T->left);
tree_prefix_print(T->right);

}
}

11

1

00

0

33

3

4

4

4

2

22

⇒ 1⇒ 1,0⇒ 1,0,3

⇒ 1,0,3,4

⇒ 1,0,3,4,2

64/107

The three traversals for printing

/* r, T_l, T_r */
void tree_prefix_print(tree T){

if(T != NULL){
printf(" %d", T->c);
tree_prefix_print(T->left);
tree_prefix_print(T->right);

}
}

11

1

00

0

33

3

44

4

2

2

2

⇒ 1⇒ 1,0⇒ 1,0,3⇒ 1,0,3,4

⇒ 1,0,3,4,2

65/107

The three traversals for printing

/* r, T_l, T_r */
void tree_prefix_print(tree T){

if(T != NULL){
printf(" %d", T->c);
tree_prefix_print(T->left);
tree_prefix_print(T->right);

}
}

11

1

00

0

33

3

44

4

22

2

⇒ 1⇒ 1,0⇒ 1,0,3⇒ 1,0,3,4

⇒ 1,0,3,4,2

66/107

The other two traversals

// L, r, R
void tree_infix_print(tree T){

if(T != NULL){
tree_infix_print(T->left);
printf(" %d", T->c);
tree_infix_print(T->right);

}
}
// L, R, r
void tree_postfix_print(tree T){

if(T != NULL){
tree_postfix_print(T->left);
tree_postfix_print(T->right);
printf(" %d", T->c);

}
}

67/107

IV. Hashing

Pb: we want to store a set E having N integers (say) in a
table, so that accessing any x costs as little as possible.

Ex. if E = [1,N], use int t[N]; and t[i] = -1 if empty.

We mimic this by computing for each x ∈ E an address
h(x) ∈ {0,1, . . . ,M−1} for some well chosen M. If M� N,
several elements might fall at the same address (collision).

Insertion of x: O(1)
I compute h(x);
I Th(x) := Th(x)∪{x}.

Searching x: O(1)
I compute h(x);
I return x ∈Th(x)?

68/107

IV. Hashing

Pb: we want to store a set E having N integers (say) in a
table, so that accessing any x costs as little as possible.

Ex. if E = [1,N], use int t[N]; and t[i] = -1 if empty.

We mimic this by computing for each x ∈ E an address
h(x) ∈ {0,1, . . . ,M−1} for some well chosen M. If M� N,
several elements might fall at the same address (collision).

Insertion of x: O(1)
I compute h(x);
I Th(x) := Th(x)∪{x}.

Searching x: O(1)
I compute h(x);
I return x ∈Th(x)?

69/107

IV. Hashing

Pb: we want to store a set E having N integers (say) in a
table, so that accessing any x costs as little as possible.

Ex. if E = [1,N], use int t[N]; and t[i] = -1 if empty.

We mimic this by computing for each x ∈ E an address
h(x) ∈ {0,1, . . . ,M−1} for some well chosen M. If M� N,
several elements might fall at the same address (collision).

Insertion of x: O(1)
I compute h(x);
I Th(x) := Th(x)∪{x}.

Searching x: O(1)
I compute h(x);
I return x ∈Th(x)?

70/107

Example

Hash function: h(z) = z mod M.

Ex. E = {11,59,32,44,301,26,199}; M = 10; T is an array of
lists:

i 0 1 2 3 4 5 6 7 8 9
Ti

11 32 44 26 59

collision!

Rem. We cannot avoid collisions, but if h is well chosen, the
lists do not explode.

Rem. We can hash every object we want, since we can map
any object to a string then to an integer.

71/107

Example

Hash function: h(z) = z mod M.

Ex. E = {11,59,32,44,301,26,199}; M = 10; T is an array of
lists:

i 0 1 2 3 4 5 6 7 8 9
Ti 11

32 44 26 59

11 = 1×10+1⇒ 11 mod 10 = 1

collision!

Rem. We cannot avoid collisions, but if h is well chosen, the
lists do not explode.

Rem. We can hash every object we want, since we can map
any object to a string then to an integer.

72/107

Example

Hash function: h(z) = z mod M.

Ex. E = {11,59,32,44,301,26,199}; M = 10; T is an array of
lists:

i 0 1 2 3 4 5 6 7 8 9
Ti 11

32 44 26

59

59 = 5×10+9⇒ 59 mod 10 = 9

collision!

Rem. We cannot avoid collisions, but if h is well chosen, the
lists do not explode.

Rem. We can hash every object we want, since we can map
any object to a string then to an integer.

73/107

Example

Hash function: h(z) = z mod M.

Ex. E = {11,59,32,44,301,26,199}; M = 10; T is an array of
lists:

i 0 1 2 3 4 5 6 7 8 9
Ti 11 32

44 26

59

32 = 3×10+2⇒ 32 mod 10 = 2

collision!

Rem. We cannot avoid collisions, but if h is well chosen, the
lists do not explode.

Rem. We can hash every object we want, since we can map
any object to a string then to an integer.

74/107

Example

Hash function: h(z) = z mod M.

Ex. E = {11,59,32,44,301,26,199}; M = 10; T is an array of
lists:

i 0 1 2 3 4 5 6 7 8 9
Ti 11 32 44

26

59

44 = 4×10+4⇒ 44 mod 10 = 4

collision!

Rem. We cannot avoid collisions, but if h is well chosen, the
lists do not explode.

Rem. We can hash every object we want, since we can map
any object to a string then to an integer.

75/107

Example

Hash function: h(z) = z mod M.

Ex. E = {11,59,32,44,301,26,199}; M = 10; T is an array of
lists:

i 0 1 2 3 4 5 6 7 8 9
Ti 11,301 32 44

26

59

301 = 30×10+1⇒ 301 mod 10 = 1

collision!

Rem. We cannot avoid collisions, but if h is well chosen, the
lists do not explode.

Rem. We can hash every object we want, since we can map
any object to a string then to an integer.

76/107

Example

Hash function: h(z) = z mod M.

Ex. E = {11,59,32,44,301,26,199}; M = 10; T is an array of
lists:

i 0 1 2 3 4 5 6 7 8 9
Ti 11,301 32 44 26 59

collision!

Rem. We cannot avoid collisions, but if h is well chosen, the
lists do not explode.

Rem. We can hash every object we want, since we can map
any object to a string then to an integer.

77/107

Example

Hash function: h(z) = z mod M.

Ex. E = {11,59,32,44,301,26,199}; M = 10; T is an array of
lists:

i 0 1 2 3 4 5 6 7 8 9
Ti 11,301 32 44 26 59,199

collision!

Rem. We cannot avoid collisions, but if h is well chosen, the
lists do not explode.

Rem. We can hash every object we want, since we can map
any object to a string then to an integer.

78/107

Example

Hash function: h(z) = z mod M.

Ex. E = {11,59,32,44,301,26,199}; M = 10; T is an array of
lists:

i 0 1 2 3 4 5 6 7 8 9
Ti 11,301 32 44 26 59,199

collision!

Rem. We cannot avoid collisions, but if h is well chosen, the
lists do not explode.

Rem. We can hash every object we want, since we can map
any object to a string then to an integer.

79/107

Handling collisions using lists

#define HMAX 256
#define HMOD 256

/* fast way of computing x mod 2^n */
#define h(x) ((x) & (HMOD-1))

extern void hash_init(list H[]);
extern void hash_insert(list H[], int n);
extern int hash_is_in(list H[], int n);
extern void hash_print(list H[]);

80/107

hash.c
void hash_init(list H[]){

int i;

for(i = 0; i < HMOD; i++)
H[i] = NULL;

}

void hash_insert(list H[], int n){
int hn = h(n);

if(list_is_in(n, H[hn]) == NULL)
H[hn] = list_add_first(n, H[hn]);

}

int hash_is_in(list H[], int n){
int hn = h(n);

return list_is_in(n, H[hn]) != NULL;
}

81/107

hash.c
void hash_init(list H[]){

int i;

for(i = 0; i < HMOD; i++)
H[i] = NULL;

}

void hash_insert(list H[], int n){
int hn = h(n);

if(list_is_in(n, H[hn]) == NULL)
H[hn] = list_add_first(n, H[hn]);

}

int hash_is_in(list H[], int n){
int hn = h(n);

return list_is_in(n, H[hn]) != NULL;
}

82/107

hash.c
void hash_init(list H[]){

int i;

for(i = 0; i < HMOD; i++)
H[i] = NULL;

}

void hash_insert(list H[], int n){
int hn = h(n);

if(list_is_in(n, H[hn]) == NULL)
H[hn] = list_add_first(n, H[hn]);

}

int hash_is_in(list H[], int n){
int hn = h(n);

return list_is_in(n, H[hn]) != NULL;
}

83/107

hash.c (cont’d)

void hash_print(list H[]){
int i;
for(i = 0; i < HMOD; i++)

if(H[i] != NULL){
printf("H[%d]=", i);
list_print(H[i]);
printf("\n");

}
}

84/107

Example
#include <stdio.h>
#include <stdlib.h>
#include "list.h"
#include "hash.h"

int main(int argc, char *argv[]){
list tabh[HMAX];
int i;
hash_init(tabh);
for(i = 0; i < 100; i++)

hash_insert(tabh, abs(random()) % 1000);
hash_print(tabh);

}

H[9]= -> 777
H[11]= -> 11
H[12]= -> 12
H[14]= -> 526 -> 782
...

85/107

V. Graphs

0

12

3 4

a

b1

c

2

d −35

4

I Modelling networks: metro, train, electricity, INTERNET,
etc.

I Representing logical links: ecosystems; dependency
graph between source files, heritance diagram, etc.

I Ressource allocation: minimal cost, etc.

86/107

Representing graphs

Abstraction: G = (V ,E).

V : set of vertices, e.g., [0..n−1].

E : set of edges, e.g., array of lists.

Ex.

L[0] = (1, 2)
L[1] = ()
L[2] = (3)
L[3] = (2, 4)
L[4] = ()

87/107

When V is small: adjacency matrix

For a simple graph G , matrix n×n s.t.

Mi,j =

{
1 if (i, j) ∈ E ,
0 otherwise.

Ex.

0

1

2 3

4




0 1 0 0 0
1 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0




Graph with weights: Mi,j = v(i, j).

88/107

Comparing both implementations

type memory utilisation
matrix O(n2) dense graph
lists O(|E |+n) sparse graph

89/107

Traversals (1/2)

Principle: starting from a vertex s, we traverse a subset of G ,
the neighbours of s. Incrementally, we choose the next vertex
in the frontier of the graph.

a

f

g

c

d b

e

T

Def. The frontier F (T) of T ⊂ V is the set of vertices of V −T
that are adjacent to one of the vertices of T.

90/107

Traversals (2/2)

Def. A traversal of G = (V ,E) (connex) starting from s is a list
of vertices L s.t.
I the first vertex of L is s;
I each vertex in V appears only once in L;
I each verext in L (except s) is adjacent in G to at least a

vertex preceding in L.

Rem. There is no canonical (nor best) traversal.

Rem. The two most frequently used traversals are depth
search first (DFS), and breadth first search (BFS).

91/107

Traversals (2/2)

Def. A traversal of G = (V ,E) (connex) starting from s is a list
of vertices L s.t.
I the first vertex of L is s;
I each vertex in V appears only once in L;
I each verext in L (except s) is adjacent in G to at least a

vertex preceding in L.

Rem. There is no canonical (nor best) traversal.

Rem. The two most frequently used traversals are depth
search first (DFS), and breadth first search (BFS).

92/107

IV. DFS

(Depth First Search) the next vertex to be traversed is the
most recent vertex of type beingexplored.

function dfs(G, s)
0. forall vertex t do

state[t] <- unexplored;
1. dfsRec(G, s, state);

function dfsRec(G, s, state)
if state[s] == unexplored then

state[s] <- beingexplored;
forall t adjacent to s

dfsRec(G, t, state);
state[s] <- explored;

Thm. if all list operations cost O(1), then the complexity of
DFS is O(|V |+ |E |) = O(n+m).

93/107

Example

a

aa

f

ff

g

gg

c

cc

d

dd

b

bb

e

ee

94/107

Example

a

aa

f

ff

g

gg

c

cc

d

dd b

b

b

e

ee

95/107

Example

a

aa

f

ff

g

gg

c

c

c

d

dd b

b

b

e

ee

96/107

Example

a

a

a

f

ff

g

gg

c

c

c

d

dd b

b

b

e

ee

97/107

Example

aa

a

f

ff

g

gg

c

c

c

d

d

d b

b

b

e

ee

98/107

Example

aa

a

ff

f

g

gg

c

c

c

d

d

d b

b

b

e

ee

99/107

Example

aa

a

f

f

f

g

g

g

c

c

c

d

d

d b

b

b

e

ee

100/107

Example

aa

a

f

f

f

g

g

g

c

c

c

d

d

d b

b

b

e

e

e

101/107

Example

aa

a

f

f

f

g

g

g

c

c

c

d

d

d b

b

b

ee

e

102/107

Example

aa

a

f

f

f

gg

g

c

c

c

d

d

d b

b

b

ee

e

103/107

Example

aa

a

ff

f

gg

g

c

c

c

d

d

d b

b

b

ee

e

104/107

Example

aa

a

ff

f

gg

g

c

c

c

dd

d

b

b

b

ee

e

105/107

Example

aa

a

ff

f

gg

g

cc

c

dd

d

b

b

b

ee

e

106/107

Example

aa

a

ff

f

gg

g

cc

c

dd

d

bb

b

ee

e

107/107

