Fast high-resolution drawing of algebraic curves and surfaces

Nuwan Herath Mudiyanselage with Guillaume Moroz and Marc Pouget

ROBEX ENSTA Bretagne, Lab-STICC

November 10, 2023

Overview

1 Implicit curve drawing

2 Previous work

3 Our approach

4 Fast multipoint evaluation

6 Experiments

Implicit curve drawing

Scientific visualization

Some scientific visualization applications:

- modeling
- medical imaging
- mechanism design

Goal: build an intuition and get an understanding of the data

3D CT reconstruction of distal tibia fracture

Industrial robots from KUKA by Mixabest (CC BY-SA 3.0)

Implicit curve drawing problem

General problem

Discrete representation of an implicit curve on a fixed grid

- Input:
 - ► function *F*
 - resolution N
 - visualization window

Implicit curve defined as the solution set

$$\{(x,y)\in\mathbb{R}^2\mid F(x,y)=0\}$$

• **Output**: drawing (set of pixels)

Implicit curve drawing problem

Our focus

Discrete representation of an algebraic curve on a fixed grid

- Input:
 - **bivariate polynomial** *P* of **partial degree** *d*
 - resolution N
 - window $[-1,1] \times [-1,1]$

Algebraic curve defined as the solution set

$$\{(x,y)\in\mathbb{R}^2\mid P(x,y)=0\}$$

• **Output**: drawing (set of pixels)

Goal: fast high-resolution drawing of high degree algebraic curves

- $d pprox 100 \longrightarrow d^2 pprox 10,000$ monomials
- $N \approx 1,000$

Why high degree algebraic curves?

Goal of visualization: build an intuition and get an understanding of the data

In robotics, the configuration space could be of high dimension

$$\mathbb{R}^N o \mathbb{R}^M$$

Operations on algebraic varieties:

- cut
- projection

Industrial robots from KUKA by Mixabest (CC BY-SA 3.0)

Correctness of the drawing

For numerical reasons, there may be some:

• False negative pixels

Correctness of the drawing

For numerical reasons, there may be some:

- False negative pixels
- False positive pixels

Previous work

The idea

2D variant of the widely used marching cubes algorithm [Lorensen & Cline, 1987] Implicit curve defined by P(X, Y) = 0

The idea

2D variant of the widely used marching cubes algorithm [Lorensen & Cline, 1987] Implicit curve defined by P(X, Y) = 0

The idea

2D variant of the widely used marching cubes algorithm [Lorensen & Cline, 1987] Implicit curve defined by P(X, Y) = 0

The idea

2D variant of the widely used marching cubes algorithm [Lorensen & Cline, 1987] Implicit curve defined by P(X, Y) = 0

The idea

2D variant of the widely used marching cubes algorithm [Lorensen & Cline, 1987] Implicit curve defined by P(X, Y) = 0

The idea

2D variant of the widely used marching cubes algorithm [Lorensen & Cline, 1987] Implicit curve defined by P(X, Y) = 0

The idea

2D variant of the widely used marching cubes algorithm [Lorensen & Cline, 1987] Implicit curve defined by P(X, Y) = 0

Complexity

Complexity (number of elementary operations) Naive evaluation

 $\theta(d^2N^2)$

d partial degree N resolution of the grid

Arithmetic complexity of the marching squares

With partial evaluation of P(x, y), assuming d < N

 $\theta(dN^2)$

Slow for high resolutions... Can we have an algorithm in O(dN)?

Local refinements of the grid

Methods providing topological correctness

Adaptive 2D subdivision with interval arithmetic

- [Snyder, 1992]
- [Plantinga & Vegter, 2004]
- [Burr et al., 2008]
- [Lin & Yap, 2011]
- . . .

Cylindrical algebraic decomposition (CAD)

- [Gonzalez-Vega & Necula, 2002]
- [Eigenwillig et al., 2007]
- [Alberti et al., 2008]
- [Cheng et al., 2009]
- [Kobel & Sagraloff, 2015]
- [Diatta et al., 2018]
- . . .

https://isotop.gamble.loria.fr/

Our approach

Inclusion property

$$P(X) = 2X^3 - X^2 - 1.5X + 0.75$$

How to compute P(I) for I = [-1, 1]?

P(I) = [-0.75, 1.06...]

Inclusion property

$$P(X) = 2X^3 - X^2 - 1.5X + 0.75$$

How to compute P(I) for I = [-1, 1]?

$$\Box P(I) = 2[-1,1]^3 - [-1,1]^2 - 1.5[-1,1] + 0.75$$
$$= [-5.25, 5.25]$$

P(I) = [-0.75, 1.06...]

Inclusion property

$$P(X) = 2X^3 - X^2 - 1.5X + 0.75$$

How to compute P(I) for I = [-1, 1]?

 $\Box P(I) = 2[-1,1]^3 - [-1,1]^2 - 1.5[-1,1] + 0.75$ = [-5.25, 5.25]

With Horner's scheme:

$$\Box P(I) = ((2[-1,1]-1)[-1,1]-1.5)[-1,1] + 0.75$$
$$= [-3.75, 5.25]$$
$$P(I) \subseteq \Box P(I)$$

P(I) = [-0.75, 1.06...]

Convergence property

Convergence at a point With $x \in [a, b]$

 $\lim_{[a,b]\longrightarrow[x,x]=\{x\}}\Box P([a,b])=P(x)$

Our approach: guaranteed intersection with the grid

Adaptive subdivision

New approach: evaluation along fibers

 \Rightarrow Make it fast and provide some guarantees

An algorithm

Pixel drawing

- evaluation in X Chebyshev nodes multipoint evaluation with IDCT Taylor approximation
- *subdivision in Y* naive root finding method

Guarantees False positive pixels *only*

 $P([x_k, x_{k+1}], Y) = \sum a_j Y^j$

 $P([x_k, x_{k+1}], Y) = \sum a_j Y^j$

 $P([x_7, x_8], Y)$

 $P([x_k, x_{k+1}], Y) = \sum a_j Y^j$

 $P([x_k, x_{k+1}], Y) = \sum a_j Y^j$

 $P([x_k, x_{k+1}], Y) = \sum a_j Y^j$

Pixel drawing Pixel lighting

- Detect a crossing in pixel of the grid
- Light that pixel

Pixel drawing False positive and false negative pixels

Some incorrect pixels:

- False negative when a connected component lies inside of a pixel
- False positive when the evaluation on an edge of a pixel is close to zero That occurs for a segment *S* when

$$0\in \Box P(S)+[-E,E]$$

Pixel drawing False positive and false negative pixels

Some incorrect pixels:

- False negative when a connected component lies inside of a pixel
- False positive when the evaluation on an edge of a pixel is close to zero That occurs for a segment *S* when

$$0\in \Box P(S)+[-E,E]$$

Certification of segments that are not crossed:

$$0 \notin \Box P(S) + [-E, E]$$

$$\downarrow \\ 0 \notin P(S)$$

Fast multipoint evaluation

A prerequisite to fast multipoint evaluation

Chebyshev polynomials

Definition

The Chebyshev polynomials (T_k) verify $\forall k \in \mathbb{N}, T_k(\cos \theta) = \cos(k\theta)$

The first three Chebyshev polynomials

$$\begin{aligned} \cos(0 \cdot \theta) &= 1 & T_0 = 1 \\ \cos(1 \cdot \theta) &= \cos(\theta) & T_1 = X \\ \cos(2 \cdot \theta) &= 2\cos(\theta)^2 - 1 & T_2 = 2X^2 - 1 \end{aligned}$$

A prerequisite to fast multipoint evaluation

Chebyshev polynomials

Definition

The Chebyshev polynomials (T_k) verify $\forall k \in \mathbb{N}, T_k(\cos \theta) = \cos(k\theta)$

Lemma

An arbitrary polynomial p of degree d can be written in terms of the Chebyshev polynomials:

$$p(X) = \sum_{k=0}^{d} \alpha_k T_k(X)$$

A prerequisite to fast multipoint evaluation

Chebyshev polynomials

Definition

The Chebyshev polynomials (T_k) verify $\forall k \in \mathbb{N}, T_k(\cos \theta) = \cos(k\theta)$

Lemma

An arbitrary polynomial p of degree d can be written in terms of the Chebyshev polynomials:

$$p(X) = \sum_{k=0}^{d} \alpha_k T_k(X)$$

Lemma

For $N \in \mathbb{N}$, a polynomial p of degree d can be evaluated on the Chebyshev nodes $(c_n)_{0 \le n \le N-1}$ using the IDCT:

$$(p(c_n))_{0 \le n \le N-1} = \frac{1}{2}(\alpha_0, \ldots, \alpha_0) + \mathsf{IDCT}((\alpha_k)_{0 \le k \le N-1})$$

A prerequisite to fast multipoint evaluation Chebyshev nodes

Definition

For $N \in \mathbb{N}$, the Chebyshev nodes are

$$c_n = \cos\left(\frac{2n+1}{2N}\pi\right), \ n=0,\ldots,N-1$$

They are the roots of T_N

Inverse Discrete Cosine Transform (IDCT): $\alpha_k \rightarrow x_n$

$$x_{n} = \frac{1}{2}\alpha_{0} + \sum_{k=1}^{N-1} \alpha_{k} \cos\left[\frac{\pi k(2n+1)}{2N}\right]$$

$$IDCT$$

$$\lim_{linear transformation} \qquad FFT \qquad \lim_{linear transformation} \bigvee_{\mathbf{v}_{k}}$$

 \Rightarrow Fast thanks to the Fast Fourier Transform (FFT) algorithm in $O(N \log_2 N)$

[Makhoul, 1980]

Inverse Discrete Cosine Transform (IDCT): $\alpha_k \rightarrow x_n$

$$x_{n} = \frac{1}{2}\alpha_{0} + \sum_{k=1}^{N-1} \alpha_{k} \cos\left[\frac{\pi k(2n+1)}{2N}\right]$$

$$IDCT$$

$$\lim_{linear transformation} \qquad FFT \qquad \lim_{linear transformation} (v_{k}) \xrightarrow{} (v_{k}) \xrightarrow{} (v_{k}) \xrightarrow{} (x_{k})$$

 \Rightarrow Fast thanks to the Fast Fourier Transform (FFT) algorithm in $O(N \log_2 N)$ [Makhoul, 1980]

$$p(c_n) = \sum_{k=0}^{N-1} \alpha_k T_k \left(\cos \left(\frac{2n+1}{2N} \pi \right) \right)$$

Inverse Discrete Cosine Transform (IDCT): $\alpha_k \rightarrow x_n$

$$x_{n} = \frac{1}{2}\alpha_{0} + \sum_{k=1}^{N-1} \alpha_{k} \cos\left[\frac{\pi k(2n+1)}{2N}\right]$$

$$IDCT$$

$$\lim_{linear transformation} FFT \qquad \lim_{linear transformation} (v_{k}) \xrightarrow{} (v_{k}) \xrightarrow{} (v_{k}) \xrightarrow{} (x_{k})$$

 \Rightarrow Fast thanks to the Fast Fourier Transform (FFT) algorithm in $O(N \log_2 N)$ [Makhoul, 1980]

$$p(c_n) = \sum_{k=0}^{N-1} \alpha_k T_k \left(\cos\left(\frac{2n+1}{2N}\pi\right) \right) = \sum_{k=0}^{N-1} \alpha_k \cos\left[\frac{\pi k(2n+1)}{2N}\right]$$

Inverse Discrete Cosine Transform (IDCT): $\alpha_k \rightarrow x_n$

$$x_{n} = \frac{1}{2}\alpha_{0} + \sum_{k=1}^{N-1} \alpha_{k} \cos\left[\frac{\pi k(2n+1)}{2N}\right]$$

$$IDCT$$

$$(\alpha_{k}) - \cdots \rightarrow (V_{k}) \xrightarrow{\mathsf{FFT}} (v_{k}) \xrightarrow{\mathsf{linear transformation}} (x_{k})$$

 \Rightarrow Fast thanks to the Fast Fourier Transform (FFT) algorithm in $O(N \log_2 N)$ [Makhoul, 1980]

$$p(c_n) = \frac{1}{2}\alpha_0 + \frac{1}{2}\alpha_0 + \sum_{k=1}^{N-1} \alpha_k \cos\left[\frac{\pi k(2n+1)}{2N}\right]$$
$$(p(c_n))_{0 \le n \le N-1} = \frac{1}{2}(\alpha_0, \dots, \alpha_0) + \mathsf{IDCT}((\alpha_k)_{0 \le k \le N-1})$$

Error of the IDCT

[Makhoul, 1980] and [Brisebarre et al., 2020, Theorem 3.4] yield

Theorem (H., Moroz, Pouget, 2022)

Assume radix-2, precision-p arithmetic, with rounding unit $u = 2^{-p}$. Let \hat{x} be the computed 2^n -point IDCT of $\alpha \in \mathbb{C}^{2^n}$, and let x be the exact value. Then

 $\|\widehat{x}-x\|_{\infty}=n\|\alpha\|_{\infty}O(u).$

Table: IDCT error bounds for p = 53 (double precision)

$N = 2^n$	1,024	2,048	4,096	8,192	16,384	32,768
$\ \widehat{x} - x\ _{\infty} / \ \alpha\ _{\infty}$	7.97e-15	8.84e-15	9.72e-15	1.06e-14	1.15e-14	1.23e-14

 $26 \, / \, 41$

Algorithms

Illustration

$$P(X, Y) = \sum \left(\sum a_{i,j} X^i\right) Y^j = \sum p_j(X) Y^j$$
$$p_j(X) = \sum a_{i,j} X^i = \sum \alpha_{i,j} T_i(X)$$
$$(p_j(c_n))_{0 \le n \le N-1} = \frac{1}{2} (\alpha_{0,j}, \dots, \alpha_{0,j}) + \mathsf{IDCT}((\alpha_{k,j})_{0 \le k \le N-1})$$

 $\frac{\text{Illustration}}{P(c_n, Y)} = \sum p_j(c_n) Y^j$

 $\frac{\text{Illustration}}{P(c_3, Y)} = \sum p_j(c_3) Y^j$

 $\begin{array}{l} \text{Illustration} \\ P(c_3,Y) = \sum p_j(c_3)Y^j \end{array}$

 $\frac{\text{Illustration}}{P(c_3, Y)} = \sum p_j(c_3) Y^j$

 $\frac{\text{Illustration}}{P(c_3, Y)} = \sum p_j(c_3) Y^j$

An edge enclosing algorithm

IDCT multipoint evaluation in Xat $c_0, c_1 \dots$

subdivision in Y

IDCT multipoint evaluation of the partial polynomials of $P(X, Y) = \sum p_j(X)Y^j$

An edge enclosing algorithm

subdivision in Y

IDCT multipoint evaluation of the partial polynomials of $P(X, Y) = \sum p_j(X)Y^j$

An edge enclosing algorithm

IDCT multipoint evaluation of the partial polynomials of $P(X, Y) = \sum p_j(X)Y^j$

General idea: pixel enclosure

 $\frac{\text{Illustration}}{P(I,Y)} = \sum p_j(I)Y^j$

General idea: pixel enclosure

 $\frac{\text{Illustration}}{P(I,Y)} = \sum p_j(I)Y^j$

General idea: pixel enclosure Illustration $P(I, Y) = \sum p_j(I)Y^j$

P(I, Y)

 \checkmark

×

IDCT multipoint evaluation in Xaround $c_0, c_1 \dots$

subdivision in Y

A pixel enclosing algorithm

IDCT multipoint evaluation + Taylor approximation in X

subdivision in Y

Taylor expansion of the partial polynomials of $P(X, Y) = \sum p_j(X)Y^j$

$$\left| p(c_n + r) - \left(p(c_n) + rp'(c_n) + \dots + \frac{r^m}{m!} p^{(m)}(c_n) \right) \right| \le \max_{l_{c_n}} \left| p^{(m+1)} \right| \frac{|r|^{(m+1)}}{(m+1)!}$$

A pixel enclosing algorithm

IDCT multipoint evaluation + Taylor approximation in X

subdivision in Y

Taylor expansion of the partial polynomials of $P(X, Y) = \sum p_j(X)Y^j$

$$\left| p(c_n + r) - \left(p(c_n) + rp'(c_n) + \dots + rac{r^m}{m!} p^{(m)}(c_n) \right) \right| \le \max_{l_{c_n}} \left| p^{(m+1)} \right| rac{|r|^{(m+1)}}{(m+1)!}$$

A pixel enclosing algorithm

IDCT multipoint evaluation + Taylor approximation in X

subdivision in Y

Taylor expansion of the partial polynomials of $P(X, Y) = \sum p_j(X)Y^j$

$$\left| p(c_n + r) - \left(p(c_n) + rp'(c_n) + \dots + rac{r^m}{m!} p^{(m)}(c_n)
ight)
ight| \leq \max_{l_{c_n}} \left| p^{(m+1)} \left| rac{|r|^{(m+1)}}{(m+1)!}
ight|$$

Complexities

multipoint evaluation and subdivision $O(d^3 + dN \log_2(N) + dN)$	
multipoint Taylor approximation and subdivision $O(md^3 + mdN \log_2(N) + d)$	dNT) dNT)

d partial degree

N resolution

 ${\cal T}$ maximum number of nodes of the subdivision trees over all vertical fibers / stripes

With a constant number of branches in the window, we expect $T = O(\log_2(N))$

Experiments

Pixel classification

- crossed: blue
- not crossed: white
- undecided: yellow

Drawing for two families of polynomials

Experiments on smooth curves \longrightarrow random polynomials $\xi_{i,j}$: random coefficients in [-100, 100]

Kac polynomial

Kostlan-Shub-Smale (KSS) polynomial

Figure: Kac polynomial of degree d = 110 at a resolution N = 1,024, $\frac{b}{b+y} = 24\%$

Drawing for two families of polynomials

Figure: KSS polynomial of degree d = 40 at a resolution N = 1,024, $\frac{b}{b+y} = 19\%$

Comparison to state-of-the-art software

Our methods

• edge drawing \rightarrow curve enclosing edges false positive and false negative • pixel drawing \rightarrow curve enclosing pixels

Some similar methods

- scikit / NumPy \rightarrow marching squares
- MATLAB \rightarrow could not find the method used
- ImplicitEquations \rightarrow 2D adaptive subdivision

A topologically correct method

• Isotop \rightarrow cylindrical algebraic decomposition

false positive

false negative false negative? false positive

Computation times for a Kac polynomial of degree 40 (in seconds)

Computation times for a Kac polynomial of degree 40 (in seconds)

scikit: $O(dN^2)$

no guarantee slow when d and N are large

Our methods: O(dNT)as expected $T = O(\log_2(N))$

 $\frac{\text{guarantees}}{\text{fast when } d \text{ and } N \text{ are large}}$

Output for a singular curve

Curve: $dfold_{8,1}$ from Challenge 14 of Oliver Labs[13][37] (d = 18)

Conclusion

Contributions

- Two algorithms
 - enclosure of the edges
 - enclosure of the pixels
- Fast implicit curve and surface algorithms for high resolutions: faster than marching squares and marching cubes
- Better guarantees on the drawing than marching squares
- Ability to handle high degrees (d > 20) and high resolutions (N > 1,000)