Assurances for machine learning trajectory
predictors: guaranteed probabilistic bounds
with conformal prediction

PhD Student Advisors

Aloysio GALVAO LOPES ~ Eric GOUBAULT
Laurent PAUTET

Sylvie PUTOT

LIX - Ecole Polytechnique, LTCI - Télécom Paris

{galvaolopes,goubault,putot}@lix.polytechnique.fr
laurent.pautet@telecom-paris.fr

1/35



This is mainly going to be an introductory talk in conformal prediction.

| will try to show you that it's a very simple yet powerful method.

| will introduce it in the context of my work.

| will also give you a glimpse of some results.
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What do | do?
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What do | do?

| develop planning algorithms taking probabilistic motion predictions of other traffic
participants. These algorithms should be able to guarantee safety, while being
real-time feasible.
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Other vehicles
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For this talk

Given trajectory predictions in magenta, we want to compute valid prediction regions
in blue, for a given desired coverage probability 1 — « (probability true trajectory is

inside the blue regions).
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Let's consider a simpler problem

Given a dataset of 1-D points D = {(x1,y1),-- -, (Xn, ¥n)}, we want to compute valid
prediction regions for a new point yp11 = f(xn41), for a given desired coverage

probability 1 — o = 90%.

e + Interval = .

y = cos(x) + N(0,0.4)

— cos(x)
® cos(x)+N(0,0.4)
0

1 2
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Let's consider a simpler problem

Given a dataset of 1-D points D = {(x1,y1),-- -, (Xn, ¥n)}, we want to compute valid

prediction regions for a new point y,+1 = f(xn+1), for a given desired coverage
probability 1 — a = 90%.

We can train f using a subset of D,
Dtrain - D. 1

How can we choose a band g, such that:

P(yn41 € [f(xns1) =, F(xnt1) +q]) = 90%
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Let's consider a simpler problem

Given a dataset of 1-D points D = {(x1,y1),-- ., (Xn, ¥n)}, we want to compute valid
prediction regions for a new point y,+1 = f(xn+1), for a given desired coverage
probability 1 — o = 90%.

Given the residuals defined as:

ri = |yi — f(x)]
The problem is equivalent to finding a
band g, such that: -
P(rn+1 < q) > 90% 101

One possible solution is to use the 90% = S R

empirical quantile of the residuals.
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Brief recap on quantiles
Given a distribution F the level 5 quantile is defined as follows, for Z ~ F:

Quantile(f, F) = inf{z : P(Z < z) > 3}

For an empirical distribution X (such as the residuals r; on the dataset Di.j,) it can be
defined as:

Quantile(3, X) = Quantile(, % > 6x)
i=1

1 — 90% quantile
EEl Empirical r_i quantiles D_train

0.0 0.2 0.4 0.6 0.8 1.0 9 / 3 5



Let's consider a simpler problem

Given a dataset of 1-D points D = {(x1,y1),-- -, (Xn, ¥n)}, we want to compute valid
prediction regions for a new point y,+1 = f(xn+1), for a given desired coverage

probability 1 — a = 90%.

Given the residuals defined as:

ri = lyi — £(xi)]

Compute the g = 90% empirical quantile
of the residuals, for the points in Dyain,

and take [f(xp+1) — q, (Xn+1) + q].
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Let's consider a simpler problem

Given a dataset of 1-D points D = {(x1,y1),-- ., (Xn, ¥n)}, we want to compute valid
prediction regions for a new point y,+1 = f(xn+1), for a given desired coverage
probability 1 — a = 90%.

Given the residuals defined as:

ri = \}/i - f(Xi)|

Compute the g = 90% empirical quantile
of the residuals, for the points in Dypajn, _

and take [f(xns1) — g, f(Xxns1) + q].

Only 40% coverage on a test dataset Diest
disjoint with Dyain(only a sample of the
test points is shown in the image)!
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A little bit of history

Vladimir Vovk
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A little bit of history

Algorithmic Learning
- inaRandomWorld

Viadimir Vovk
Alex Gammerman
Glenn Shafer

Vladimir Vovk Algorithmic learning in a Random World
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Let's consider a simpler problem

Given a dataset of 1-D points D = {(x1,y1),-- ., (Xn, ¥n)}, we want to compute valid

prediction regions for a new point y,+1 = f(xn+1), for a given desired coverage

probability 1 — o = 90%.

Compute the g = 90% empirical quantile

of the residuals, for the points in D,;, not
used for the training of f! Then take

[f (Xns1) — g, F(Xny1) + q].

— cos(x)
® D_train

— fix)

band for q=0.6
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Let's consider a simpler problem

Given a dataset of 1-D points D = {(x1,y1),-- ., (Xn, ¥n)}, we want to compute valid
prediction regions for a new point y,+1 = f(xn+1), for a given desired coverage
probability 1 — o = 90%.

Compute the g = 90% empirical quantile
of the residuals, for the points in D,;, not
used for the training of f! Then take 1

[f (Xns1) — g, F(Xny1) + q].

— cos(x)
® D_train

— fix)

band for q=0.6

It works!
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Split conformal prediction

Compute the residuals r; = |f(x;) — y;| using the pairs (x;, y;) in the calibration
dataset D).

Sort the residuals in ascending order: r;) < roy < -+ < 1.

Given a max error probability of «, select the g1 = [(n+ 1)(1 — «)]-th residual
in ascending order.

The prediction set is the set of labels y such that |f(x) — y| < g1—o. More
explicitly [f(x) — gi—a, f(x) + g1-a].
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Split conformal prediction

® Take any measurable score function s(x, y) (residual was r = |f(x) — y
with f the predictor trained in Dipain).

® Compute the 1 — o quantile of the scores on the calibration dataset
(Quantile(1 — a, Deay))-

(A:(x) = {y s.t s(x,y) < Quantile(1 — o, D¢a) }

Theorem [Vovk, Gammerman, Shafer 2005]
IP{YG C(X)} >1-a

Holds as long as the new data (X, Y) is exchangeable with the calibration dataset D,;.
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Split conformal prediction - Proof

Given a sequence of random variables:
Ri,Ro,. .y Roy Rus1, ..

Suppose that any permutation is equally likely. That is the sequence is exchangeable,
more formally:

P{R1 < r,Ros1 < rns1,-.. } =P{Rr1) < 11, Re(ng1) < Fogts-- -}

For all permutations, 7 and all r;.
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Split conformal prediction - Proof

This means that R,.1 is equally likely to be among the k smallest values among

Ri,...,Rp11. Suppose that R; are different almost surely this translates to:
- . k
P{R;+1 is among the k smallest in Ry,...,Ry11} = P
n

Which is equivalent to:

k
n-+1

P{Rp+1 is among the k smallest in Ry,...,R,} =

Taking k = [(n+ 1)(1 — «)| we have:

[((n+1){A — o)

P{Rp+1 is among the k smallest in Ry,..., Ry} = |
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Split conformal prediction - Proof

We have:
P{R,+1 is among the k smallest in Ry,...,Rpy1} €[l —a,1 —a+1/(n+1))

We can translate what is inside P to:
1)(1 — y
q = Quantile ( [(n+1)( @)l , — Z 5R,->
n n<—

Finally, we can write:

1
n-+1

l1—a<P{Ry1<ql<l—a+
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How to choose the calibration dataset size?

Does that mean that we can use any calibration dataset size? What happens if we use
a very small calibration dataset?

1.5 A

1.0 A

0.5 A

0.0 1

— cos(x)

1— fix)

band for g=0.6

4 ® D.cal

0 1
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How to choose the calibration dataset size?

Does that mean that we can use any calibration dataset size? What happens if we use
a very small calibration dataset?

— cos(x)

® Dcal
— f(x)
-1.5 A band for q=0.3
— residuals

0 1 2 3 4 5 6
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How to choose the calibration dataset size?

Conditional on the data of the calibration dataset, the coverage is distributed as:

P{Ye600|a;n)epm}~3a4hn—k+n

With k = [(n+1)(1 — )].

Beta Distribution

—— n=1000, alpha=0.5

— n=100, alpha=0.5
—— n=10, alpha=0.5

0.0

0.2 0.4 0.6 0.8

10
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How to choose the calibration dataset size?

Conditional on the data of the calibration dataset, the coverage is distributed as:
P { Y e C(X) | (X, Y) e Dca,} ~ Beta(k,n — k + 1)

With k = [(n+1)(1 — a)].

Beta Distribution

25 4 —— n=1000, alpha=0.5
— n=100, alpha=0.5
—— n=10, alpha=0.5

n (size of D) | coverage correct +/-5%
10 0.24
100 0.68 i |

1000 0.99

0.0 0.2 0.4 0.6 0.8 10
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Conformalized quantile regression

In the same spirit, we can try to find adaptive bounds. One possibility is to train our
predictor f to output quantiles as it is done with the quantile regression:

In this

Quantiles of heteroscedastic Normal distributed target

=== True mean
— Quantile: 0.05
20 — Quantile: 0.5
—— Quantile: 0.95
Outside interval

case, the outputs of our predictor are given by f(x) = {fa(x), fi—2(x)}
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Conformalized quantile regression

This can be easily achieved for any learning based predictor by just using the pinball
loss:

oy — f(x)) if y > f(x)
(1 —a)(f(x)—y) otherwise l—a

,,,,,,,

La(y, f(x)) = {

Using the following conformity score:

s(x,y) = max{y — fa (x). fi_s(x) = y }
We can, now compute the quantile g and build our conformal predictor.
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Conformalized quantile regression

Our conformal bands will be given by:

E(x) = [fa(x) — @, fia(x) +

This method is introduced by Romano et al. (2019). Here are some of their showcase

results:
Observations - Predicted low and high quantiles
6 == Predicted value 61 CQR: prediction interval
Split: prediction interval
4 4
> 2 L o0 CEEn B O O 295565 Gy PR > 2
- e s
@0 W;@q« oen 0 % .x\ﬂw's_’&s;r«, B
P (94 N el
04 SN o e OO, 0
-2 -2
0 1 2 3 4 5 0 1 2 3 4 5
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How to deal with time series?

Conformal prediction for time series was introduced by Stankeviciute et al. (2021).
Some other work has followed the same idea as well.

Given a discrete time series of length n, for simplicity, of real values:

(Y1, ¥n)

We want to predict the values from yp,+1 to y,, given the values from y; to y,,. This
is done via a neural network with m inputs and n — m outputs:

A

f(y17 s ,)/m) = (ym—i-l? s ayn)
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How to deal with time series?

The idea is to build one conformal predictor for each output, of the neural network,
independently. Our conformal predictor will look like:

~

(A:(yl, ey Ym) = ((A:erl(yl, ces¥Ym)s s Colya, - - 7ym))

For a coverage of 1 — 3 for each individual predictor, each will have an error probability
of 5. Therefore the probability of at least one error obeys the following given Boole's
inequality:

P{ U Vi & 6i()/1,---,ym)} < Z ]P){),}i ¢ 6i(y1,--.,ym)}
i=m+1 i=m+1

The probability of at least one error is at least 5(n — m). So if we want all predictions

to be valid (tube around our prediction) we want to choose § = ﬁ
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How to deal with time series?

Applying this idea to Trajectron++ with a time step of 0.5s, we have:

Table 1: Prediction set sizes for a 1 — a = 90%

x(m)

y(m)

t(s)

0.8886
1.5965
2.2246
3.0881
4.2229

0.1881
0.3520
0.5275
0.7505
1.0411

0.5
1.0
1.5
2.0
2.5

P——m

-5
E BIEmE
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How to deal with time series?

If full coverage is not required Trajectron++ with a time step of 0.5s, we have:

Table 2: Prediction set sizes for a 1 — a = 90%

x(m)

y(m)

t(s)

0.5345
0.7267
1.0552
1.5524
2.1262

0.0711
0.1453
0.2060
0.2999
0.3672

0.5
1.0
1.5
2.0
2.5

- a

-5
E BIEmE
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Some stuff | did not cover

Conformal prediction for classification : Adaptive prediction sets.

Use part of calibration data for training: Full conformal prediction,
Cross-Conformal Prediction, CV+, and Jackknife+.

Online updates: Rolling RC and adaptive conformal prediction.

Conformal prediction when we face distribution shifts: Conformal prediction under
the covariate shift.
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Conclusions

Takeaways:
® Easy to implement and efficient.
® Provides valid guarantees with finite samples.
® Active area of research, lots of new papers per year.
® Used in world scenarios.
Be attentive to:
® Distribution shifts or anything that breaks the exchangeability assumption.

¢ Conditional validity could be a problem.
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What about classification problems?

Given a set of labels ) = {cat, dog, hamster}, neural networks are able to output
estimates of their likelihoods f(x) = {Pcat; Pdogs Phamster }:

—— %E 0.7 cat

0.1 hamster

How to provide safe prediction sets in such scenarios?
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Adaptive prediction sets

APS - adaptive prediction sets (Romano et al. (2020) Angelopoulos et al. (2021))
solves this issue.

We define 7 to be a permutation which sorts the outputs of the predictor

f(x) ={p1,..., Pk} in decreasing order. Our conformal predictor will be:

&(X) - {ﬁﬂ'(l)? s ﬁw(k)}

Where k is chosen such that we have a cumulative sum until we reach the quantile g
over the conformity scores corresponding to 1 — « coverage:
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Adaptive prediction sets

The quantile g is chosen as previously:
T+ D)1 -a)] 1<
— til — E s
q Quan/e< - ’”,-_1 si

The conformity scores s; are defined as:

k

s(x,) =Y _ Pa(j) where y = m(k)
j=1
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How to make the coverage correct per class

We wish that, in the classification setting, we could have the coverage guarantees per
class, more formally:

If Y ={

true label.

P{Yedxnvzy}zl—a

, Healthy '}, we would like to have prediction sets valid independent of the

Sick | Healthy
Test Positive | 60% | 40%
Test Negative | 10% | 90%
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How to make the coverage correct per class

If we define the quantiles per class as:

((nk+1)(1—a1 125

= Quantile

Where the superscript k denotes restricts the samples in D, to the class k. We can
define a class conditional valid conformal predictor as:

C(x) ={y sts(x.y) < ¢}

35/35



What else could we want?

Instance conditional validity:
IP{YE &(X)|X:x} >1-a

Unfortunately, that's impossible :(

Lei and Wasserman (2014) ..any prediction band which claims to cover at
almost every point, for every joint distribution, must be infinite in size ..

35/35



But not everything is lost

Group conditional validity:
P{yel(X)|Xeg}>1-a

Given a partition of the input space Gi,...,Gk. We can define a group conditional
valid conformal predictor as:

C(x) = {y st s(x,y) < ¢&}
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