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Outline

- Work accepted recently at the 13th Symposium on Conformal
and Probabilistic Prediction with Applications (COPA 2024)

- Recap on conformal prediction

-ConForME



Conformal Prediction

Given a dataset of 1-D points D = {(x1,v1),---, (Tn,Yn)}, Wwe want to
compute valid prediction regions for a new point 9,11 = f(x,11), for a given
desired coverage probability 1 — «.



Conformal Prediction

Given a dataset of 1-D points D = {(x1,v1), ..., (ZTn,yn)}, we want to
compute valid prediction regions for a new point ¢,,+1 = f(x,11), for a given
desired coverage probability 1 — «.

A
f(xn-l-l) — Yn+1

(ZUn_|_1, yn-|-1)




Conformal Prediction

Given a dataset of 1-D points D = {(x1,v1), ..., (Tn,yn)}, we want to
compute valid prediction regions for a new point ¢,,+1 = f(x,11), for a given
desired coverage probability 1 — «.

A
f(In_I_l) — Yn+1

('Tn—l—ly y?’b—l-l)




Conformal Prediction

Given a dataset of 1-D points D = {(x1,v1), ..., (Tn,yn)}, we want to
compute valid prediction regions for a new point ¢,,+1 = f(x,11), for a given
desired coverage probability 1 — «.




Conformal Prediction

Given a dataset of 1-D points D = {(x1,v1), ..., (Tn,yn)}, we want to
compute valid prediction regions for a new point ¢,,+1 = f(x,11), for a given
desired coverage probability 1 — «.

A

—~
DO
.
i
-
~—
o0




Conformal Prediction

Given a dataset of 1-D points D = {(x1,v1), ..., (Tn,yn)}, we want to
compute valid prediction regions for a new point ¢,,+1 = f(x,11), for a given
desired coverage probability 1 — «.




Conformal Prediction

Given a dataset of 1-D points D = {(x1,v1), ..., (Tn,yn)}, we want to
compute valid prediction regions for a new point ¢,,+1 = f(x,11), for a given
desired coverage probability 1 — «.

~
A,
b
ot
N—"
|
o
O
-




Conformal Prediction

Given a dataset of 1-D points D = {(x1,v1), ..., (Tn,yn)}, we want to
compute valid prediction regions for a new point ¢,,+1 = f(x,11), for a given
desired coverage probability 1 — «.

fC1.0 )= 50
(1.0 5 7.0 )




Conformal Prediction

Given a dataset of 1-D points D = {(x1,v1), ..., (Tn,yn)}, we want to
compute valid prediction regions for a new point ¢,,+1 = f(x,11), for a given
desired coverage probability 1 — «.




Conformal Prediction

Given a dataset of 1-D points D = {(x1,v1), ..., (Tn,yn)}, we want to
compute valid prediction regions for a new point 9,11 = f(x,11), for a given
desired coverage probability 1 — «.

/(3.
(3.

A

0)= 47 |
05 50 ) ! qb

y = CF ()




Conformal Prediction

Split the dataset into a training set and a calibration set D = Dy ain U Deal
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Split the dataset into a training set and a calibration set D = Diyain U Deay

Compute the residuals r; = |y; — f(x;)| for ¢ € D., and build their empirical
quantiles

Cj(@) = [f(x) = 1", F@) + 1
Plye Cr(x)) =1—a










Given trajectory predictions in magenta, compute valid and efficient (i.e.
tight) prediction regions in blue, for a given desired coverage probability 1 — «
(probability true trajectory is completely inside the blue regions).




Problem Settings

Extending conformal prediction to multi-horizon forecasting. We consider we
are given observations Y10 S YT—H and a predictor f which produces the
predictions yr_mga1,:- 4

cecsee@® @@@



Problem Settings

Extending conformal prediction to multi-horizon forecasting. We consider we
are given observations yi,--- ,yr—_g and a predictor f which produces the

predictions yr_pg41,- -, Y-
f(e oo oe @ @ @@



Problem Settings

Extending conformal prediction to multi-horizon forecasting. We consider we
are given observations yi,--- ,yr—_pg and a predictor f which produces the
predictions yr_ga1,:- , Y.

f(’y]:, ey yT—H) — (ZJ)ZT:T-—HH



Problem Settings

Extending conformal prediction to multi-horizon forecasting. We consider we

are given observations yi,--- ,yr_g and a predictor f which produces the
predictions yr_gai1,: -+ , Y.
A
f(yl; ey ’yT—H) — (y)i:T—H+1
Compute valid prediction intervals yr_g1411,...,yT where validity is defined
below:

P ( (1 wie Sfi)) >1-a

1=T—H-+1



Problem Settings

Extending conformal prediction to multi-horizon forecasting. We consider we

are given observations yi,--- ,yr_g and a predictor f which produces the
predictions yr_gai1,:-+ , Y.
~\T
f(yl.; ey ’y-‘T—H) — (y)i:T—H+1
Compute valid prediction intervals yr_g411,...,yT where validity is defined
below:

T
P ( ﬂ (Yi € Sfi)) >1-a

1=1—H+41

Use the mean interval size as performance metric.






Other Works

We have at our disposal a dataset D of sequences of length 71" which is i.i.d.
with the observed data. This dataset is then split into a training set Di,qin
and a calibration set D,,;.

A branch of the literature focuses on a dataset of past points and the predicted
interval is just around a single prediction (H = 1). In this case, the guarantees
are only asymptotic.

-The branch of the literature that shares the same setting is based on the work
of Stankeviciute et al. (2021) (CF-RNN).
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Each individual prediction interval is computed as follows:
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Which means that, by Boole’s inequality, the probability of at least one error
1s at most «.
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Though effective against other methods, CF-RNN introduces a significant
approximation error, especially when there’s a lot of dependence in time as the
events are not disjoint.
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Each individual prediction interval is computed as follows:

~ o/ H
yi=0C ?;/ (Y15 yr—mH)

Which means that, by Boole’s inequality, the probability of at least one error
1s at most «.
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Though effective against other methods, CF-RNN introduces a significant
approximation error, especially when there’s a lot of dependence in time as the
events are not disjoint.
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We group the prediction intervals into blocks of size b;:

(1) ier—ms1 = (JT-H41 - - FT-Hib, " YT br+1---YT1)
—_— e —e——,——
B, B, B

Consider separately validity in each block to enforce the validity as a whole:
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We compute the intervals as:
Y =C

where D'V = {(4:) € Deat | Yim)i € Fmy¥m € (1)7,..., (1)7 — 1)}
With:
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Evenly distributed blocks:
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Results

Comparison with CF-RNN on the following datasets:

Dataset Description Size

Synthetic Programatically generated data 2500

EEG Electroencephalograms from visual stimuli 38400

Argoverse Car trajectories 218693

COVID-19 Covid cases in different regions 380



Results

Up to 52% smaller interval sizes on the EEG data, at least 35% smaller
intervals on real world data, 9.7% smaller intervals on synthetic data. The
image below shows the interval sizes for EEG 40 (left) and Argoverse (right)
datasets.
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Results

For the pairwise evenly distributed method, we study the effect of 3 on the
left. On the right, for the EEGy4y dataset, we compare the mean interval sizes
per horizon for the optimal 8 with ConForMEq.




Future Work

- Integrate my method with planning in real-time.

‘Better understand the hyperparameters choice: wuse better algorithm for
optimal hyperparameter choice.

Prove that pairwise evenly distributed can be always computed efficiently.



