
1 / 24

Towards a sheaf representation of distributed robot tasks

Bernardo Hummes Flores

11 June 2024



1 / 24

I: Motivation



2 / 24

Objectives of this talk Motivation

I want to convince you of a few things:

1. Sheaves are a nice way to talk about robots;

2. The Laplacian operator is a nice way to find agreement;

3. I am really talking about robots.

I also want to share with you some of my hopes:

• Agreement problems are a nice way to talk about any problem;

• Sheaves may not be a nice way to talk about tasks,
but they allow to get an algorithm for free (and this is nice).
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Robots and sheaves Motivation

For now, just keep in mind that:

A distributed mission means that only local information is available.

While at the same time:

A solution to a mission is a global state of the system.

Assessing global properties from local data is main motivation behind sheaf theory.
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Intuition Sheaves
Sheaves appeared as a way to talk about properties of some data defined on a space by
looking only at pieces of the space.

Space R

Set of robots Set of robots

Pieces Intervals in R

Subsets of robots Subsets of robots

Data R-valued functions

Gathering positions Task data

Property Is continuous

Is the same Is coherent

Figure: Continuous R-valued functions
defined on R, image from Rosiak 2022.

Sheaf condition

The sheaf structure describes how to to tie the data
parametrized a space such that it is coherent.

Idea

To talk about properties of algorithms executed by
groups of robots in terms of coherence among
interacting robots.
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Interaction (and graphs) Sheaves

The first requirement is a description of space that correctly identifies the pieces and
describes how they are connected.

Idea

The goal is to model coherence whenever two robots interact.

• A piece of the space should be delimited by what is local to a robot.

• Intersections should correspond to links allowing for interaction.

The structure that represents this is a graph.

Definition (Graph)

A graph G = (V, E) is a set of vertices V and a set of
edgesE. An edge is an unordered pairs of vertices.

An edge is said to be incident of the vertices it
contains, and it defines an incidence relation v ⊴ e
whenever v ∈ e. Figure: Depiction by Kia et al. 2019 of a

group of communicating agents,
together with a reference signal. Also, a
depiction of a graph being the base
space of some local signal.
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Interlude on literature Sheaves

This is where it often ends

Oftentimes the analysis of distributed control stops at the graph theoretic analysis, e.g.

• Resilience of multi-agent stems is measured via robustness of communication
graphs: Dibaji et al. 2018; Luo et al. 2023; Pirani et al. 2023; Shang 2023b; Wen et al.
2023

• The above results are made usable by methods to preserve the connectivity of
communication graphs: Cortes et al. 2006; Yi et al. 2021; Zavlanos et al. 2011

• Gathering is solved using averaging algorithms on graphs: Dutta et al. 2023; Iqbal
et al. 2022; Kia et al. 2019; Romero et al. 2024

• Higher order interactions are modeled via higher-order graphs: Majhi et al. 2022;
Shang 2023a

But often is not always

Recent efforts use sheaf theory as the single point of view:

• Opinion dynamics: Ghrist 2022; Hansen and Ghrist 2021; Riess and Ghrist 2022

• Topological data analysis: Curry 2014

• Sensor fusion: Robinson 2017; Robinson 2020

• Dynamical systems: Schultz and Spivak 2019; Schultz, Spivak, and Vasilakopoulou
2020
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Local constraints (and sheaves) Sheaves

We need to define how the data attached to the graph should be coherent.

Definition (Sheaf over a graph)

A sheaf F over a graph G = (V, E) is defined by attaching some data to its vertices and
edges:

• (stalk over v) For each vertex v ∈ V , a set F(v)

• (stalk over e) For each edge e ∈ E, a set F(e)

• (restriction map) For each pair of vertex and incident edge v ⊴ e, a map
Fv⊴e : F(v) → F(e)

The restriction map should respect identities, Fv⊴v = id

Figure: Cartoon of a sheaf of vector spaces over a graph, from Hansen and Ghrist 2021
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Interlude on task data Sheaves

Choosing the data on the sheaf is choosing the definition of agreement.

Global sections

The "task data type" is that assigned to the space through the sheaf.

The structure of the data induces the constraints.

• Agreeing on a value in Rn without update constraints can be modeled as a sheaf of
vector spaces Rn1.

• Opinion dynamics has been modeled with sheaf of lattices, where agents need to
find a lower upper bound to their individual opinions2.

1Hansen, Jakob. “Laplacians Of Cellular Sheaves: Theory And Applications”. 2020.
2Riess, Hans. “Lattice Theory in Multi-Agent Systems”. 2023.
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Solutions (and global sections) Sheaves

The robots that interact should reach the same conclusions.

The position in space to meet

The position in space of every robot or a target

The assignment of objectives to each robot

The move action to perform

Each task can be seen as a local agreement problem. A solution to this agreement
problem is a solution to the task.

Local agreement in sheaves has a very specific meaning, built-in from its creation:
sections!

Definition (Global section)

A global section of a sheaf F on a graph G = (V, E) is a choice of
values xv ∈ F(v) for all v ∈ V such that Fv1⊴e(xv1) = Fv2⊴e(xv2)
whenever (v1, v2) ∈ E.

2Cross-section of a sheaf figure from Rosiak 2022
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Interlude on Laplacians Sheaves

A Laplacian operation is first found as differential operator in the Euclidean space.
It is defined as the divergence (∇·) of the gradient of a function (∇f ). Note that they are
adjoint maps.

∆f = ∇ · ∇f =
n∑

i=1

∂2f

∂x2
i

In other settings:
• In sheaves of vector spaces we have the the Hodge-Laplacian3

LF = δ∗δ + δδ∗

where δ is a specific restriction map and δ∗ the Hermitian adjoint.
• In sheaves of lattices we have the Tarski-Laplacian4

Lx =
∧

j∈Ni

F(ij)+i⊴ijF(ij)j⊴ij(xj)

where Ni is the set of neighbours of vertex i and the pair F(ij)+i⊴ijF(ij)j⊴ij(xj) forms
a Galois connection.

A pattern on adjoint maps

In settings where inverses do not necessarily exist, one finds a pair of adjoint maps that
best approximate the local differences, and then minimizes the differences.

3Hansen, Jakob and Ghrist, Robert. “Toward a Spectral Theory of Cellular Sheaves”. 2019.
4Ghrist, Robert and Riess, Hans. “Cellular Sheaves of Lattices and the Tarski Laplacian”. 2022.
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Getting to solutions (and Laplacians) Sheaves

The sheaf Laplacian provides a way to evolve an arbitrary initial assignment of data
towards the best approximation of agreement.

Definition (Sheaf Laplacian)

The sheaf Laplacian of a sheaf F over a graph G = (V, E) is computed in a vertex v for an
assignment of data x.

LF (x) =
∑
v,u⊴

F†
vi⊴e(Fvi⊴e(xi)−Fvj⊴e(xj)) (1)

Where Fvi⊴e is the restriction map of F , and F†
vi⊴e is its adjoint.
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III: Robots
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One robot with memory Robots

I want to distinguish the physical problems from the algorithmic problems.

Definition (Robot with memory5)

A robot with memory has sensors, actuators, an intelligence and a memory. It has an ontic
state x and an epistemic state µ. It is capable of making observations and evolving its
states.

ẋ(t) = f (x(t), u(t)) (ontic evolution) (2)

y(t) = g(x(t)) (observation) (3)

µ̇(t) = φ(µ(t), y(t)) (epistemic evolution) (4)

u(t) = h(µ(t), t) (control) (5)

Note that the control steers the ontic state, while observations steer the epistemic state.

This definition displays the case of a single robot as a dynamical system, with state
Z = (x, µ).

5Adapted from L Jaulin (Nov. 2023). Guaranteed Numerical Methods to Secure a Zone with Autonomous Robots.
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Multiple robots with memory Robots

Interaction requires a notion of perception and communication.

Definition (Communication and perception of robots)

A robot i obtains an estimation of the ontic state of robot j through perception and of its
epistemic state through communication.

x̂ij(t) = η(xj(t)) (perception) (6)

µ̂ij(t) = λ(µj(t)) (communication) (7)

Communication and perception add to Eq. 4 the information about other robots.

µ̇i(t) = φ(

current epistemic state︷︸︸︷
µi(t) , yi(t)︸︷︷︸

estimation of own

ontic state

,

estimation of ontic

state of others︷ ︸︸ ︷
{x̂ij(t)}j ̸=i , {µ̂ij(t)}j ̸=i︸ ︷︷ ︸

estimation of epistemic

state of others

) (8)

Remark

To have a range for communication or perception is a special case, where such
thresholds are added to Eq. 6 and 7.
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IV: Sheaves in robotics
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Separation of body and memory Sheaves in robotics

Distributed robot tasks combine problems of distributed control with those of distributed
computing.

The separation of a robot’s state in ontic and epistemic allows for the individual treatment
of each.

• A distributed computing system can be recovered by setting the ontic evolution to
obey a simplistic point-mass dynamics, where it is essentially controlled by the
memory.

• A traditional feedback controller can be obtained from the epistemic evolution,
leading to the typical depiction of robots in control theory.

• A hybrid dynamic system can be used to describe the different nature of the time
domains of the physical and computational aspects of the robots.

• A switched dynamic system could be used to represent the asynchronicity of
updates, capturing the uncertainty in the communication network.

Remark

Overall, this distinction is semantic and serves mostly to provide an intuition on what
changes can be done in a robot model.
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leading to the typical depiction of robots in control theory.

• A hybrid dynamic system can be used to describe the different nature of the time
domains of the physical and computational aspects of the robots.

• A switched dynamic system could be used to represent the asynchronicity of
updates, capturing the uncertainty in the communication network.

Remark

Overall, this distinction is semantic and serves mostly to provide an intuition on what
changes can be done in a robot model.
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A Laplacian as the algorithm Sheaves in robotics

The Laplacian operator on a task sheaf provides an approximate solution to the task.

The idea: use the Laplacian as the epistemic evolution

Each robot i is associated to a vertex vi and its epistemic state µi is its assignment of data
on the sheaf

F(vi) = µi

Its dynamics is given by the sheaf Laplacian, a dynamical system representing the
memory.

µ̇(t) = −LF (vi)

Theorem (Th. 4.1 in Hansen and Ghrist 2021)

Solutions x(t) to the heat equation
dx

d(
t) = −αLFx, α > 0 on x ∈ C0(G;F) converge

as t → ∞ to the orthogonal projection of x(0) onto H0(G;F).

Universality of approximate agreement

This usage of the sheaf Laplacian hints at the notion of the universality of approximation
algorithms, folklore in distributed computing and stated for full-information protocols6

(roughly computing models with memory).

6Fauconnier, Hugues et al. “Non-Negotiating Distributed Computing”. 2023.
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Simplifying assumptions (1) Sheaves in robotics

Assumption (Point-mass dynamics)

Robots have point-mass dynamics, as in Definition 8.

Definition (Point-mass dynamics)

A point-mass dynamical system is entirely described by the force applied to it. That is, the
input u(t) controls the system directly.

ẋ(t) = f (x(t), u(t)) = u(t)
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Simplifying assumptions (2) Sheaves in robotics

Assumption (Accurate self-estimation)

Robots have access to their own ontic states, i.e. g(xi) = xi .

Assumption (Accurate perception)

Robots can accurately measure the ontic state of others through perception. For robot i
perceiving robot j, x̂ij = η(xj) = xj

Assumption (Accurate communication)

Robots can accurately obtain the epistemic state of others through communication. For
robot i receiving a communication from robot j, µ̂ij = λ(µj) = µj
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Example: full-information approximate gathering (1) Sheaves in robotics

Consider a group of N robots with memory modeled as follows.

• Their ontic state x ∈ R2 represents their physical coordinates.
• Their epistemic state µ ∈ R2 represents their current estimation of a gathering point.
• The epistemic state is initialized with the current coordinates, available through

Assumption 2.
µi(0) = xi(0)

• The control is defined to follow that of the epistemic state.

ui(t) = µ̇i(t)

• The ontic evolution follows a point-mass dynamics as by Assumption 1.

ẋi(t) = ui(t)

• The estimation of other robots is exchanged accurately due to Assumption 4.

µ̂ij(t) = µj(t)

• The epistemic evolution is defined as the Laplacian of the associated sheaf F .

µ̇i(t) = LF (vi)

The robot model is rewritten as

ẋi(t) = ui(t) = µ̇i(t)

µ̇i(t) = φ(µi(t), xi(t), {xj(t)}i ̸=j, {µj(t)}i ̸=j) = −LF (vi)
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Example: full-information approximate gathering (2) Sheaves in robotics

The sheaf F is defined over a communication graph G = (V, E) as R2, a constant sheaf of
vector spaces R2.

• To each vertex v ∈ V is associated the space of possible estimations of the gathering
point of the corresponding robot.

• To each edge e ∈ E between vertices vi and vj is associated the compatibility space
between two interacting robots.

The sheaf Laplacian (Eq. 1) is rewritten in this context as

LF (µi) = −
∑

vi,vj⊴e

F†
vi⊴e︷︸︸︷
id (

Fvi⊴e︷︸︸︷
id ( µi︸︷︷︸

robot i has access to own memory

)−

Fvj⊴e︷︸︸︷
id ( µj︸︷︷︸

λ=id, by Assumption 4

))

The system described by ẋ(t) = −αLF (x) converges to the global sections of F 7.

Remark

Assumption 3 is never used, as the only comparisons are made through the accurately
communicated estimations.

7Hansen and Ghrist 2021, Theorem 4.1
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Simulation Sheaves in robotics

A very simple one :)
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V: Final considerations
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Other types of tasks Final considerations

Each aspect of a robot task is reflected in a different aspect of the sheaf model.
• Changes in observation, communication and perception usually reflect to changes in

the restriction maps;
• Changes in the interaction model correspond to changes in the base space (now

graphs);
• Changes in the definition of agreement correspond to a proper choice of task data.

Guesses on possible modeling choices

Problem variation Modeling change

Vision based sensing Restriction maps adapted to projection matrices

Malicious communication or Restriction maps and task data adapted to uncertainty
unreliable sensors

Obstacles Task data with global sections that cannot be
distinguished according to intuition of equivalent paths

Different local coordinates Task data or restriction maps, mainly interpretation

Exploration Task data, such as preference lattices to agree on
a coherent partition

Tracking of a target Task data, re-interpreting vector spaces for
keeping track of all information to be agreed on

Dynamic constraints to behavior Task data with more structure, e.g. vector fields

Mapping Task data to represent and merge non-conflicting maps
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Ongoing work Final considerations

Many paths come from the sheaf theoretic point of view:

• Exploration: agreement of some preference structure could offer a unified view for
both converging and diverging tasks8.

• Robot dynamics: it may be possible to pack all dynamical information within the
sheaf with vector fields (or similar).

• Interaction dynamics: sheaf morphisms could shed a light in the consequences of
time-varying visibility constraints and graphs9.

• Asynchronicity: a Laplacian with firing sequences could be related to the switched
systems theory used to model asynchronous behavior10.

• Hybrid systems: the description of algorithms as differential equations is a bit
sketchy and more convincing arguments should be found11.

• Other tasks from before, as a lot of justification is still needed.

8Alcántara, Manuel et al. “The Topology of Look-Compute-Move Robot Wait-Free Algorithms with Hard
Termination”. 2019.

9Hansen, Jakob and Ghrist, Robert. “Toward a Spectral Theory of Cellular Sheaves”. 2019.
10Lee, Kooktae. Asynchronous Distributed Averaging: A Switched System Framework for Average Error Analysis.

2020.
11Graça, Daniel S. et al. “Computability with Polynomial Differential Equations”. 2008.
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Conclusion Final considerations

• Sheaf theory is a language for distributed information

• The Laplacian operator generalizes computing approximate agreement

• The robot with memory formalism connects the sheaf language to the
dynamical systems view of robots

• And some insight can come from seeing problems as a lack of agreement
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Thank you for your attention!
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Robot tasks Appendix

At the center of this work is the characterization of robot tasks.

Definition (Robot task)

A robot task (I,O,∆) represents a mission assigned to multiple robots, here assumed
identical.
They are expressed via a collection of initial configurations I , a set of acceptable final
configurations O and a relationship ∆ between I and O.

Those are called input-output tasks in the distributed computing community when
referring to processes in a network.

Example (Gathering)

The gathering task may allow robots to start in any configuration, but it restricts the final
configurations to only the ones where all robots are present in the same position. The ∆
relation associates to each initial configuration one or more final gathering points that are
acceptable, according to the mission restrictions.
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Robot algorithms Appendix

In order to study robot tasks we think about the related algorithms, which I as define
follows.

Definition (Robot algorithm)

An algorithm A that solves a desired robot task T must satisfy three properties:

1. correctness: The algorithm only proposes correct outputs.

2. validity: The algorithm only proposes valid outputs.

3. termination: The algorithms terminates.

A correct output is a configuration that satisfies the objective of the mission.
A valid output is a configuration that does not violate restrictions placed upon the possible
solutions.

The correctness alongside termination guarantee that the mission will be satisfied in finite
time, while validity assures that it will not present any undesired behavior.

Example (Gathering with termination)

In the gathering task, we have correctness respected only in configurations that have all
robots in the same position.
Validity requires that if robots are already gathered in a starting configuration, they should
not terminate gathered in any other configuration.
In the input-output description, correctness affects the collection of final configurations
O, and validity the ∆ relation.
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Epistemic evolution as a feedback controller Appendix

The robot with memory model generalizes the traditional dynamical system model of a
robot with a controller.
Let a robot be a dynamical system with observer.{

ẋ = f (x, u)

y = g(x)

An output feedback controller simulates of the system x in order to obtain an estimation of
the state x̂ and regulate the input u of the original system.{

˙̂x = f (x̂, u)

u = h(x̂, y)

It corresponds to setting the epistemic state to be an estimation of its ontic state,
µ(t) = x̂(t), by following the same evolution, φ = f .
The epistemic evolution has acces to the previous input u produced. The control accesses
the observation y, in order to compare with its own, i.e. u = h(x̂, y) = y − g(x̂).
Both changes do not pose problems, as they are present in the same unit.
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When the graph is not static Appendix

An important and unrealistic requirement for defining a Laplacian is that the graph is static.
Our communication graph is induced by the positions of the robots, which are constantly
changing.

For a given graph homeomorphism f : X → Y , we can define the following (Hansen and
Ghrist 2019, Def. 2.10, 2.11).

Definition (Pullback)

The pullback f∗F of a sheaf over Y is a sheaf over X with

• f∗F(v) = F(f (v)) and f∗F(e) = F(f (e));

• (f∗F)v⊴e = (F)f(v)⊴f(e).

Definition (Pushforward)

The pushforward f∗F of a sheaf over X is a sheaf over Y with

• f∗F(v) is the limit limv⊴f(e)F(e);

• (f∗F)v⊴e is induced by Fv⊴e with the restriction above.

Note that the Laplacian is invariant under pushforwards of locally injective cell morphisms,
when each point x has a neighborhood that is mapped injectively, as in ibid., Prop. 5.10 .
This means that if we can restrict changes of the graph with a certain class of maps, we
can preserve convergence properties.
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