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Learning to plan 
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Continual Learning; acquire, update and exploit knowledge throughout the 
robot’s lifetime:

• Avoid difficult engineering

• Scale to large environments and harder tasks

• Generalise and adapt to new situations

Can design planning problem What to do here?



Learning to plan
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ANT: 4-legged robot 
 

~30 continuous observations
~8 continuous actions

Task: reach the maze exit

How can the ant robot 
learn, autonomously, 
to reach the maze exit?



• Learning to take decisions via an action policy 

• RL optimises  by maximising an expected future reward 

• RL algorithms learn  by alternating:

‣ Exploring the environment to discover rewards

‣ Execute actions that maximise estimated rewards

π : S → A

π
T

∑
i=t

ri

π

Reinforcement Learning 
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Agent

Environment

Reward rState s Action a

The agent will use  to pick the  
action to execute in the state 

π(s)
s

performs an action

observe the new 
state 

get a reward

observe the 
current state 



• Reward estimation is hard
• Policies are very complex to learn
➡Long horizon tasks need to be decomposed into smaller sub-tasks

Long-horizon tasks
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Exit
Start

State space: x, y
Actions:  vx, vy

How to decompose the problem?



Hierarchical Reinforcement Learning
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Exit
Start

State space: x, y
Actions:  vx, vy

Low-level Agent

Environment

πLow(st)

st+1

r(st)

rLow(st, gt)

High-level Agent
πHigh(st)

Gt+k

at• High-level: select goal from a goal space
• Low-level: execute actions to reach goal
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• High-level: select goal from a goal space
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Exit
Start

State space: x, y
Actions:  vx, vy

Low-level Agent

Environment

πLow(st)

st+1

r(st)

rLow(st, gt)

High-level Agent
πHigh(st)

Gt+k

at

G0sk
G1

s2k

G2s3k

How to choose the goal space?



Goal representation
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Exit
Start

G0sk
G1

s2k

G2s3k

G3

We examine the goal space  as mapping of the state space .𝒢 S

𝒢 = S

Problem: The high-
level policy incorrectly 
estimates that the low-
level policy is close to 

How can we reconcile low-level and high-level policies?

G3

Easier to pick this goal



Goal representation
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How can we reconcile low-level and high-level policies?

Symbols are:

• Compact

• Information rich

• General



Reachability-Aware Goal representation
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The goal space should preserve environment dynamics [Nachum et al 2019]
➡Spatial Abstraction groups states that have similar roles

Can we automatically learn such symbolic representation?

Start
ExitG0

G1 G2

G3

No longer considered 
to be near the exit
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1.Reachability-aware symbolic goal abstraction:

‣Goals are sets of states that play similar role in the task

2.HRL algorithm GARA that allows to learn the goal abstraction and 
policies:

‣The abstraction is refined from exploration data

‣The policy uses the abstract goal to learn more efficiently

3.Scale the abstraction to high-dimensional environments in a new HRL 
algorithm STAR:

‣Uses temporal abstraction + spatial reachability-aware abstraction

Contributions



GARA[1]: Goal Abstraction via Reachability Analysis
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Low-level Agent

EnvironmentGt+k ∼ πHigh(st, gt)

at ∼ πLow(st)

st+1
r(st)

rLow(st, gt)

High-level Agent

[1] Mehdi Zadem, Sergio Mover, and Sao Mai Nguyen. Goal space abstraction in hierarchical reinforcement learning via set-based reachability 

D

𝒢

Exploration data

Goal Abstraction 
Refinement

Refined goal space
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Initial coarse goal space 𝒢 = {G0, G1}

GARA example
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GARA example

Agent starts from  and targets G0 G1
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GARA example
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GARA example
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GARA example

Agent has explored trajectories that reach G1
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GARA: Goal Abstraction via Reachability 
Analysis

Rk(G0, G1)

The set of reached 
states when starting 

from  and targeting G0
G1

The bottom part of  
cannot easily reach 

G0
G1

The set of reached states  is computed (more details on how 
later)

Rk(G0, G1)



GARA example
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The abstract goal space is refined (more details on how later)

All the states in  
reach 

G0
G1

All the states in  do 
not reach 

G2
G1
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•  is approximated by neural network reachability analysis.

•  predict the state  reached in  steps when stating from  and 
targeting the set .

Rk(G0, G1)

F(st, G1) st+k k st
G1

Reached set of states computation

Trajectories 
are used to train 

(st, Gt, st+k)
F
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•  is approximated by neural network reachability analysis.

•  predict the state  reached in  steps when stating from  and 
targeting the set .

Rk(G0, G1)

F(st, G1) st+k k st
G1

Reachability Analysis Problem: Given a set , and , show that X Y F(X) ⊆ Y

Input set 
Neural 

network

Image of 
F(X )

Set Y

Technical: cannot compute 
 preciselyR

Reached set of states computation
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The policy “go right” starting from  leads to states in  and . 
 is thus split into 2 partitions reaching  and  respectively.

G0 G1 G2
G0 G1 G2

Rk(G0, G1)

States in  can reach 
states in 

G0
G1

Splitting a Goal
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The policy “go right” starting from  leads to states in  and . 
 is thus split into 2 partitions reaching  and  respectively.

G0 G1 G2
G0 G1 G2

Other states in  
cannot reach states in 

G0

G1

Rk(G0, G1)

2. Splitting a goal
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The policy “go right” starting from  leads to states in  and . 
 is thus split into 2 partitions reaching  and  respectively.

G0 G1 G2
G0 G1 G2

Rk(G0, G1)

A reachable set of 
states is over-
approximated

2. Splitting a goal
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The policy “go right” starting from  leads to states in  and . 
 is thus split into 2 partitions reaching  and  respectively.

G0 G1 G2
G0 G1 G2

Rk(G0, G1)

 is split in 2 
partitions

G0

2. Splitting a goal



Theoretical Guarantees
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1.  with  value-function measuring 
cumulative reward.

The policy obtained under abstraction has a bounded sub-optimality.

|Vπ*(si) − Vπ*𝒩(s′￼i)| ≤ U(ϵ, i, γ) V

v

C

g3

g7

𝒩(g3) 𝒯*𝒩Low

𝒯*Low

g0

g1

g2 g4

g5

g6

𝒩(g0)

𝒩(g1)

𝒩(g2) 𝒩(g4)

𝒩(g5)

𝒩(g6)

𝒩(g7)

Sub-optimality: The trajectory 
obtained on abstract goals in red 
has a bounded deviation from the 

optimal trajectory obtained on 
concrete goals in black



Theoretical Guarantees
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1.  with  value-function measuring 
cumulative reward.

The policy obtained under abstraction has a bounded sub-optimality.

2.A reachability-aware abstraction can be obtained in a finite number of 
refinements.

The abstraction can be learned.

|Vπ*(si) − Vπ*𝒩(s′￼i)| ≤ U(ϵ, i, γ) V



How to scale?
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• Reachability-Aware abstraction assumes successful goal-conditioned 
policies.

• If abstract goal are initially too hard to reach,  is never refined.
➡ Introduce Temporal Abstraction, in addition to Spatial abstraction.

𝒢

Rk(G0, G1)

g0g0g0

g1g1

g0

g1

g0

g2g1

g0

g2

Rk(G0, G1)

‘

“0

Need “temporal 
abstraction” to sample 

easier intermediate 
subgoals to reach goal 

sets.



STAR: Spatial and Temporal Abstraction via Reachability
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Controller

Environment

Gt+k ∼ πCommander

at ∼ πController(st)

st+1 r(st)

rController

Commander

Tutor

rManager

gt+l ∼ πTutor

Refinement

𝒟

𝒢



How does STAR work?
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g0g0g0

g1g1

g0

g1

g0

g2g1

g0

g2

Rk(G0, G1)

‘

“0
Controller

Gt+k ∼ πCommander

Commander

Tutor

gt+l ∼ πTutor

The commander selects 
the abstract goal G1

The Tutor selects the 
subgoal g0

The Controller 
executes the policy to 

reach g0



Experimental Setup
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Research Questions: 

1. Are the spatial and temporal abstractions of STAR more efficient?
2. Do reachability-aware abstraction scale better when increasing the 

“oracle” state space?
3. How does the learned abstraction decompose the environment?
Environment Setup:
1. Ant Maze: oracle is 
2. Ant Fall: oracle is 
3. Ant Maze Cam: oracle is  

 
 
 
 
 
 

x, y
x, y, z

(x, y, θx, θy, θz)

Ant Maze Ant Fall Ant Maze Cam
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We compare:

• STAR [Zadem et al., ICLR 2023]: Spatial + Temporal Abstraction

• GARA [Zadem et al., ICDL 2023]: Spatial Abstraction

• HIRO (Nachum et al., NeurIPS 2018): Temporal Abstraction

• LESSON (Li et al., ICLR 2021): Temporal Abstraction

• HRAC (Zhang et al., NeurIPS 2022): State-by-state reachability 
relations

Experimental Setup



Results
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Ant Maze Ant Fall Ant Maze Cam

STAR is more data efficientThe reachability-aware abstraction 
scales with higher dimensions



Representation analysis (Ant Maze)

Explored abstract states during evaluation after 1M, 2M, and 3M time-steps in Ant Maze.

The colour gradient represents the frequency of visits of each abstract state.
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STAR finds a path to the maze.



Explored abstract states during evaluation after 1M, 2M, and 3M time-steps in Ant Fall.

The colour gradient represents the frequency of visits of each abstract state.
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Representation analysis (Ant Fall)

STAR finds a bridge-like structure to the upper part of the maze.

Moveable Block

Bridge-like goal 
(behind red block)



In both Ant Maze and Ant Fall, STAR decomposes the task intuitively and 
focuses its learning on bottleneck areas for efficiency.
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3. Representation analysis



Conclusion
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• STAR leverages spatial and temporal abstractions for data-efficient 
online learning.

• The reachability-aware goal abstraction scales to more complex 
environments

• Future avenues:

‣ Stochastic environment: Non-stationary reachability relations

‣ Partially observable environments: reachability relations are not 
fully characterised by the state space


