
10 June 2024

Goal Abstraction via Reachability Analysis
in Hierarchical Reinforcement Learning

PhD Student:
Mehdi Zadem

Advisors:
Sergio Mover, Sao Mai Nguyen

1

Learning to plan

2

Continual Learning; acquire, update and exploit knowledge throughout the
robot’s lifetime:

• Avoid difficult engineering

• Scale to large environments and harder tasks

• Generalise and adapt to new situations

Can design planning problem What to do here?

Learning to plan

3

ANT: 4-legged robot

~30 continuous observations
~8 continuous actions

Task: reach the maze exit

How can the ant robot
learn, autonomously,
to reach the maze exit?

• Learning to take decisions via an action policy

• RL optimises by maximising an expected future reward

• RL algorithms learn by alternating:

‣ Exploring the environment to discover rewards

‣ Execute actions that maximise estimated rewards

π : S → A

π
T

∑
i=t

ri

π

Reinforcement Learning

4

Agent

Environment

Reward rState s Action a

The agent will use to pick the
action to execute in the state

π(s)
s

performs an action

observe the new
state

get a reward

observe the
current state

• Reward estimation is hard
• Policies are very complex to learn
➡Long horizon tasks need to be decomposed into smaller sub-tasks

Long-horizon tasks

5

Exit
Start

State space: x, y
Actions: vx, vy

How to decompose the problem?

Hierarchical Reinforcement Learning

6

Exit
Start

State space: x, y
Actions: vx, vy

Low-level Agent

Environment

πLow(st)

st+1

r(st)

rLow(st, gt)

High-level Agent
πHigh(st)

Gt+k

at• High-level: select goal from a goal space
• Low-level: execute actions to reach goal

Hierarchical Reinforcement Learning

7

Exit
Start

State space: x, y
Actions: vx, vy

Low-level Agent

Environment

πLow(st)

st+1

r(st)

rLow(st, gt)

High-level Agent
πHigh(st)

Gt+k

at

G0

• High-level: select goal from a goal space
• Low-level: execute actions to reach goal

Hierarchical Reinforcement Learning

8

Exit
Start

State space: x, y
Actions: vx, vy

Low-level Agent

Environment

πLow(st)

st+1

r(st)

rLow(st, gt)

High-level Agent
πHigh(st)

Gt+k

at

G0sk

• High-level: select goal from a goal space
• Low-level: execute actions to reach goal

Hierarchical Reinforcement Learning

9

Exit
Start

State space: x, y
Actions: vx, vy

Low-level Agent

Environment

πLow(st)

st+1

r(st)

rLow(st, gt)

High-level Agent
πHigh(st)

Gt+k

at

G0sk
G1

• High-level: select goal from a goal space
• Low-level: execute actions to reach goal

Hierarchical Reinforcement Learning

10

Exit
Start

State space: x, y
Actions: vx, vy

Low-level Agent

Environment

πLow(st)

st+1

r(st)

rLow(st, gt)

High-level Agent
πHigh(st)

Gt+k

at

G0sk
G1

s2k

• High-level: select goal from a goal space
• Low-level: execute actions to reach goal

Hierarchical Reinforcement Learning

11

Exit
Start

State space: x, y
Actions: vx, vy

Low-level Agent

Environment

πLow(st)

st+1

r(st)

rLow(st, gt)

High-level Agent
πHigh(st)

Gt+k

at

G0sk
G1

s2k

G2

• High-level: select goal from a goal space
• Low-level: execute actions to reach goal

Hierarchical Reinforcement Learning

12

Exit
Start

State space: x, y
Actions: vx, vy

Low-level Agent

Environment

πLow(st)

st+1

r(st)

rLow(st, gt)

High-level Agent
πHigh(st)

Gt+k

at

G0sk
G1

s2k

G2s3k

• High-level: select goal from a goal space
• Low-level: execute actions to reach goal

Hierarchical Reinforcement Learning

13

Exit
Start

State space: x, y
Actions: vx, vy

Low-level Agent

Environment

πLow(st)

st+1

r(st)

rLow(st, gt)

High-level Agent
πHigh(st)

Gt+k

at

G0sk
G1

s2k

G2s3k

How to choose the goal space?

Goal representation

14

Exit
Start

G0sk
G1

s2k

G2s3k

G3

We examine the goal space as mapping of the state space .𝒢 S

𝒢 = S

Problem: The high-
level policy incorrectly
estimates that the low-
level policy is close to

How can we reconcile low-level and high-level policies?

G3

Easier to pick this goal

Goal representation

15

How can we reconcile low-level and high-level policies?

Symbols are:

• Compact

• Information rich

• General

Reachability-Aware Goal representation

16

The goal space should preserve environment dynamics [Nachum et al 2019]
➡Spatial Abstraction groups states that have similar roles

Can we automatically learn such symbolic representation?

Start
ExitG0

G1 G2

G3

No longer considered
to be near the exit

17

1.Reachability-aware symbolic goal abstraction:

‣Goals are sets of states that play similar role in the task

2.HRL algorithm GARA that allows to learn the goal abstraction and
policies:

‣The abstraction is refined from exploration data

‣The policy uses the abstract goal to learn more efficiently

3.Scale the abstraction to high-dimensional environments in a new HRL
algorithm STAR:

‣Uses temporal abstraction + spatial reachability-aware abstraction

Contributions

GARA[1]: Goal Abstraction via Reachability Analysis

18

Low-level Agent

EnvironmentGt+k ∼ πHigh(st, gt)

at ∼ πLow(st)

st+1
r(st)

rLow(st, gt)

High-level Agent

[1] Mehdi Zadem, Sergio Mover, and Sao Mai Nguyen. Goal space abstraction in hierarchical reinforcement learning via set-based reachability

D

𝒢

Exploration data

Goal Abstraction
Refinement

Refined goal space

19

Initial coarse goal space 𝒢 = {G0, G1}

GARA example

20

GARA example

Agent starts from and targets G0 G1

21

GARA example

22

GARA example

23

GARA example

Agent has explored trajectories that reach G1

24

GARA: Goal Abstraction via Reachability
Analysis

Rk(G0, G1)

The set of reached
states when starting

from and targeting G0
G1

The bottom part of
cannot easily reach

G0
G1

The set of reached states is computed (more details on how
later)

Rk(G0, G1)

GARA example

25

The abstract goal space is refined (more details on how later)

All the states in
reach

G0
G1

All the states in do
not reach

G2
G1

26

• is approximated by neural network reachability analysis.

• predict the state reached in steps when stating from and
targeting the set .

Rk(G0, G1)

F(st, G1) st+k k st
G1

Reached set of states computation

Trajectories
are used to train

(st, Gt, st+k)
F

27

• is approximated by neural network reachability analysis.

• predict the state reached in steps when stating from and
targeting the set .

Rk(G0, G1)

F(st, G1) st+k k st
G1

Reachability Analysis Problem: Given a set , and , show that X Y F(X) ⊆ Y

Input set
Neural

network

Image of
F(X)

Set Y

Technical: cannot compute
 preciselyR

Reached set of states computation

28

The policy “go right” starting from leads to states in and .
 is thus split into 2 partitions reaching and respectively.

G0 G1 G2
G0 G1 G2

Rk(G0, G1)

States in can reach
states in

G0
G1

Splitting a Goal

29

The policy “go right” starting from leads to states in and .
 is thus split into 2 partitions reaching and respectively.

G0 G1 G2
G0 G1 G2

Other states in
cannot reach states in

G0

G1

Rk(G0, G1)

2. Splitting a goal

30

The policy “go right” starting from leads to states in and .
 is thus split into 2 partitions reaching and respectively.

G0 G1 G2
G0 G1 G2

Rk(G0, G1)

A reachable set of
states is over-
approximated

2. Splitting a goal

31

The policy “go right” starting from leads to states in and .
 is thus split into 2 partitions reaching and respectively.

G0 G1 G2
G0 G1 G2

Rk(G0, G1)

 is split in 2
partitions

G0

2. Splitting a goal

Theoretical Guarantees

32

1. with value-function measuring
cumulative reward.

The policy obtained under abstraction has a bounded sub-optimality.

|Vπ*(si) − Vπ*𝒩(s′￼i)| ≤ U(ϵ, i, γ) V

v

C

g3

g7

𝒩(g3) 𝒯*𝒩Low

𝒯*Low

g0

g1

g2 g4

g5

g6

𝒩(g0)

𝒩(g1)

𝒩(g2) 𝒩(g4)

𝒩(g5)

𝒩(g6)

𝒩(g7)

Sub-optimality: The trajectory
obtained on abstract goals in red
has a bounded deviation from the

optimal trajectory obtained on
concrete goals in black

Theoretical Guarantees

33

1. with value-function measuring
cumulative reward.

The policy obtained under abstraction has a bounded sub-optimality.

2.A reachability-aware abstraction can be obtained in a finite number of
refinements.

The abstraction can be learned.

|Vπ*(si) − Vπ*𝒩(s′￼i)| ≤ U(ϵ, i, γ) V

How to scale?

34

• Reachability-Aware abstraction assumes successful goal-conditioned
policies.

• If abstract goal are initially too hard to reach, is never refined.
➡ Introduce Temporal Abstraction, in addition to Spatial abstraction.

𝒢

Rk(G0, G1)

g0g0g0

g1g1

g0

g1

g0

g2g1

g0

g2

Rk(G0, G1)

‘

“0

Need “temporal
abstraction” to sample

easier intermediate
subgoals to reach goal

sets.

STAR: Spatial and Temporal Abstraction via Reachability

35

Controller

Environment

Gt+k ∼ πCommander

at ∼ πController(st)

st+1 r(st)

rController

Commander

Tutor

rManager

gt+l ∼ πTutor

Refinement

𝒟

𝒢

How does STAR work?

36

g0g0g0

g1g1

g0

g1

g0

g2g1

g0

g2

Rk(G0, G1)

‘

“0
Controller

Gt+k ∼ πCommander

Commander

Tutor

gt+l ∼ πTutor

The commander selects
the abstract goal G1

The Tutor selects the
subgoal g0

The Controller
executes the policy to

reach g0

Experimental Setup

37

Research Questions:

1. Are the spatial and temporal abstractions of STAR more efficient?
2. Do reachability-aware abstraction scale better when increasing the

“oracle” state space?
3. How does the learned abstraction decompose the environment?
Environment Setup:
1. Ant Maze: oracle is
2. Ant Fall: oracle is
3. Ant Maze Cam: oracle is

x, y
x, y, z

(x, y, θx, θy, θz)

Ant Maze Ant Fall Ant Maze Cam

38

We compare:

• STAR [Zadem et al., ICLR 2023]: Spatial + Temporal Abstraction

• GARA [Zadem et al., ICDL 2023]: Spatial Abstraction

• HIRO (Nachum et al., NeurIPS 2018): Temporal Abstraction

• LESSON (Li et al., ICLR 2021): Temporal Abstraction

• HRAC (Zhang et al., NeurIPS 2022): State-by-state reachability
relations

Experimental Setup

Results

39

Ant Maze Ant Fall Ant Maze Cam

STAR is more data efficientThe reachability-aware abstraction
scales with higher dimensions

Representation analysis (Ant Maze)

Explored abstract states during evaluation after 1M, 2M, and 3M time-steps in Ant Maze.

The colour gradient represents the frequency of visits of each abstract state.

40

STAR finds a path to the maze.

Explored abstract states during evaluation after 1M, 2M, and 3M time-steps in Ant Fall.

The colour gradient represents the frequency of visits of each abstract state.

41

Representation analysis (Ant Fall)

STAR finds a bridge-like structure to the upper part of the maze.

Moveable Block

Bridge-like goal
(behind red block)

In both Ant Maze and Ant Fall, STAR decomposes the task intuitively and
focuses its learning on bottleneck areas for efficiency.

42

3. Representation analysis

Conclusion

43

• STAR leverages spatial and temporal abstractions for data-efficient
online learning.

• The reachability-aware goal abstraction scales to more complex
environments

• Future avenues:

‣ Stochastic environment: Non-stationary reachability relations

‣ Partially observable environments: reachability relations are not
fully characterised by the state space

