An aymptotic minimal contractor for non-linear equations provided in the Codac library

Simon Rohou

ENSTA Bretagne, Lab-STICC, UMR CNRS 6285, Brest, France

FARO 2024, Paris $11^{\rm th}$ June 2024

Section 1

Introduction

Problem statement

We consider the problem of approximating the solutions of the system:

$$f(x) = 0$$

where $\mathbf{f}:\mathbb{R}^n \to \mathbb{R}^p$ is a non-linear and differentiable function. Possibly non continuous.

In particular, we will look at systems where:

..for which the solution set $\mathbb{X}=\{\mathbf{x}\in\mathbb{R}^n\ |\ \mathbf{f}(\mathbf{x})=\mathbf{0}\}$ has infinitely many solutions.

Set-inversion problem

Set inversion can be done with

- forward evaluations of f (see e.g. SIVIA)
 - limits in high dimensions due to bisections
- forward/reverse evaluations of f (such as contractors + pavers)
 - lower complexity, bisections used as a last resort
 - efficient for constraint propagation

Fwd/bwd evaluations

Forward evaluations:

$$\texttt{fwd_plus}([x],[y]) \colon \mathsf{returns} \ [\{z \mid \exists x \in [x], \exists y \in [y], z = x + y\}]$$

Nathalie Revol. Introduction to the IEEE 1788-2015 standard for interval arithmetic. International Workshop on Numerical Software Verification. pp. 14-21, Springer, Germany (2017)

Fwd/bwd evaluations

Forward evaluations:

fwd_plus([x],[y]): returns
$$[\{z \mid \exists x \in [x], \exists y \in [y], z = x + y\}]$$
 and also fwd_cos, fwd_exp, fwd_matrix_product, etc

Nathalie Revol. Introduction to the IEEE 1788-2015 standard for interval arithmetic. International Workshop on Numerical Software Verification. pp. 14-21, Springer, Germany (2017)

Fwd/bwd evaluations

Forward evaluations:

fwd_plus([x],[y]): returns
$$[\{z \mid \exists x \in [x], \exists y \in [y], z = x + y\}]$$
 and also fwd_cos, fwd_exp, fwd_matrix_product, etc

Reverse (backward) evaluations:

$$\texttt{bwd_plus}\big([z],\![x],\![y]\big) \colon \mathsf{returns} \ [\{(x,y) \in ([x],[y]) \mid x+y \in [z]\}]$$

Nathalie Revol. Introduction to the IEEE 1788-2015 standard for interval arithmetic. International Workshop on Numerical Software Verification. pp. 14-21, Springer, Germany (2017)

Fwd/bwd evaluations

Forward evaluations:

```
fwd_plus([x],[y]): returns [\{z \mid \exists x \in [x], \exists y \in [y], z = x + y\}] and also fwd_cos, fwd_exp, fwd_matrix_product, etc
```

Reverse (backward) evaluations:

$$\label{eq:bwd_plus} \begin{split} \mathsf{bwd_plus}([z],\![x],\![y]) \colon \mathsf{returns} \ [\{(x,y) \in ([x],[y]) \mid x+y \in [z]\}] \\ \mathsf{and} \ \mathsf{also} \ \mathsf{bwd_cos}, \ \mathsf{bwd_exp}, \ \mathsf{bwd_matrix_product}, \ \mathit{etc} \end{split}$$

Nathalie Revol. Introduction to the IEEE 1788-2015 standard for interval arithmetic. International Workshop on Numerical Software Verification. pp. 14-21, Springer, Germany (2017)

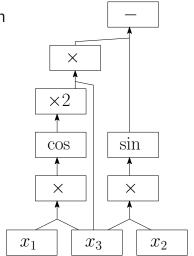
Section 2

The HC4Revise algorithm

A "forward-backward" algorithm

DAG associated with:

$$f(\mathbf{x}) = 2x_3 \cos(x_1 x_3) - \sin(x_2 x_3)$$

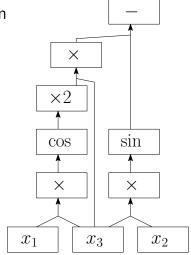


A "forward-backward" algorithm

DAG associated with:

$$f(\mathbf{x}) = 2x_3 \cos(x_1 x_3) - \sin(x_2 x_3)$$

Considered constraint: $f(\mathbf{x}) \in [y]$



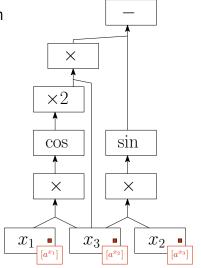
A "forward-backward" algorithm

DAG associated with:

$$f(\mathbf{x}) = 2x_3 \cos(x_1 x_3) - \sin(x_2 x_3)$$

Considered constraint: $f(\mathbf{x}) \in [y]$

1. initializing $([a^{x_1}], [a^{x_2}], [a^{x_3}])$



F. Benhamou, F. Goualard, L. Granvilliers, and J. F. Puget, "Revising hull and box consistency," in Logic Programming: The 1999 Inter- national Conference, Las Cruces, New Mexico, USA, November 29 - December 4, 1999, D. D. Schreye, Ed. MIT Press, 1999, pp. 230-244

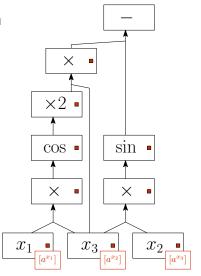
A "forward-backward" algorithm

DAG associated with:

$$f(\mathbf{x}) = 2x_3 \cos(x_1 x_3) - \sin(x_2 x_3)$$

Considered constraint: $f(\mathbf{x}) \in [y]$

- 1. initializing $([a^{x_1}], [a^{x_2}], [a^{x_3}])$
- 2. forward propagation: from (x_1, x_2, x_3) to $f(\mathbf{x})$



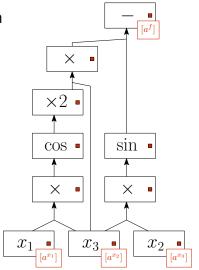
A "forward-backward" algorithm

DAG associated with:

$$f(\mathbf{x}) = 2x_3 \cos(x_1 x_3) - \sin(x_2 x_3)$$

Considered constraint: $f(\mathbf{x}) \in [y]$

- 1. initializing $([a^{x_1}], [a^{x_2}], [a^{x_3}])$
- 2. forward propagation: from (x_1, x_2, x_3) to $f(\mathbf{x})$
- 3. intersecting $\left[a^f\right]$ with $\left[y\right]$



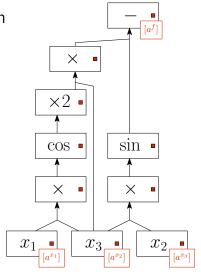
A "forward-backward" algorithm

DAG associated with:

$$f(\mathbf{x}) = 2x_3 \cos(x_1 x_3) - \sin(x_2 x_3)$$

Considered constraint: $f(\mathbf{x}) \in [y]$

- 1. initializing $([a^{x_1}], [a^{x_2}], [a^{x_3}])$
- 2. forward propagation: from (x_1, x_2, x_3) to $f(\mathbf{x})$
- 3. intersecting $[a^f]$ with [y]
- 4. reverse (backward) propagation: from $f(\mathbf{x})$ to (x_1, x_2, x_3)



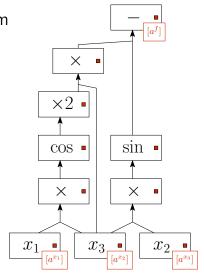
A "forward-backward" algorithm

DAG associated with:

$$f(\mathbf{x}) = 2x_3 \cos(x_1 x_3) - \sin(x_2 x_3)$$

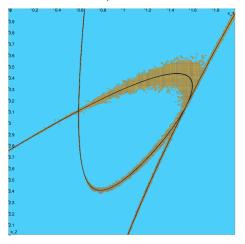
Considered constraint: $f(\mathbf{x}) \in [y]$

- 1. initializing $([a^{x_1}], [a^{x_2}], [a^{x_3}])$
- 2. forward propagation: from (x_1, x_2, x_3) to $f(\mathbf{x})$
- 3. intersecting $[a^f]$ with [y]
- 4. reverse (backward) propagation: from $f(\mathbf{x})$ to (x_1, x_2, x_3)
- 5. possible contraction of $([a^{x_1}], [a^{x_2}], [a^{x_3}])$



Limits of the algorithm

$$\begin{pmatrix} -x_3^2 + 2x_3\sin(x_3x_1) + \cos(x_3x_2) \\ 2x_3\cos(x_3x_1) - \sin(x_3x_2) \end{pmatrix} = \mathbf{0}$$



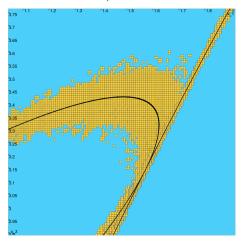
Example from:

R. Malti, M. Rapaić, and V. Turkulov. A unified framework for robust stability analysis of linear irrational systems in the parametric space. Annual Reviews in Control, vol. 57, 2024.

- delayed systems
- $\ \mathbf{x} \in [0,2] \! \times \! [2,4] \! \times \! [0,10]$
- projected approximations for x_{1.2}

Limits of the algorithm

$$\begin{pmatrix} -x_3^2 + 2x_3\sin(x_3x_1) + \cos(x_3x_2) \\ 2x_3\cos(x_3x_1) - \sin(x_3x_2) \end{pmatrix} = \mathbf{0}$$



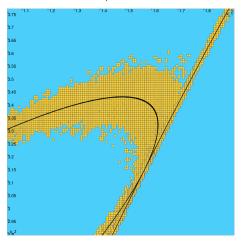
Example from:

R. Malti, M. Rapaić, and V. Turkulov. A unified framework for robust stability analysis of linear irrational systems in the parametric space. Annual Reviews in Control, vol. 57, 2024.

- delayed systems
- $\ \mathbf{x} \in [0,2] \! \times \! [2,4] \! \times \! [0,10]$
- projected approximations for $\mathbf{x}_{1,2}$

Limits of the algorithm

$$\begin{pmatrix} -x_3^2 + 2x_3\sin(x_3x_1) + \cos(x_3x_2) \\ 2x_3\cos(x_3x_1) - \sin(x_3x_2) \end{pmatrix} = \mathbf{0}$$



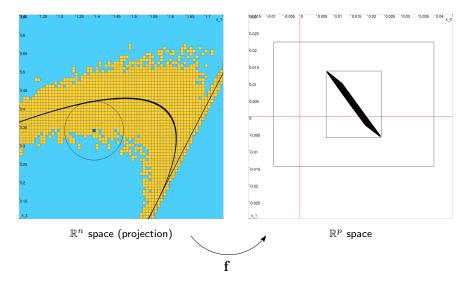
Example from:

R. Malti, M. Rapaić, and V. Turkulov. A unified framework for robust stability analysis of linear irrational systems in the parametric space. Annual Reviews in Control, vol. 57, 2024.

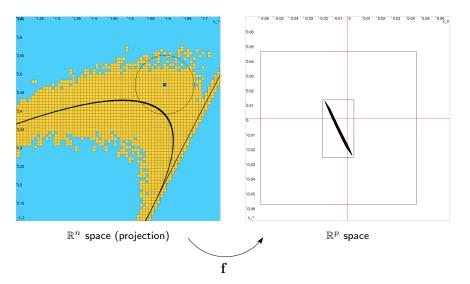
- delayed systems
- $-\mathbf{x} \in [0, 2] \times [2, 4] \times [0, 10]$
- projected approximations for $x_{1,2}$

Two problems

Clustering effect due to: [1] dependency problem



Clustering effect due to: [2] wrapping effect



Solutions for these clustering effects

For [1]: dependency problem

Solutions for these clustering effects

For [1]: dependency problem

- centered form provides minimal results with narrow boxes

Solutions for these clustering effects

For [1]: dependency problem

- centered form provides minimal results with narrow boxes
- not used classically for reverse (backward) propagations

Solutions for these clustering effects

For [1]: dependency problem

- centered form provides minimal results with narrow boxes
- not used classically for reverse (backward) propagations

For [2]: wrapping effect

- the hull box of the image evaluation may unfortunately contain zero

Solutions for these clustering effects

For [1]: dependency problem

- centered form provides minimal results with narrow boxes
- not used classically for reverse (backward) propagations

- the hull box of the image evaluation may unfortunately contain zero
- a preconditioning allows to attenuate the wrapping effect

Solutions for these clustering effects

For [1]: dependency problem

- centered form provides minimal results with narrow boxes
- not used classically for reverse (backward) propagations

For [2]: wrapping effect

- the hull box of the image evaluation may unfortunately contain zero
- a preconditioning allows to attenuate the wrapping effect

These solutions come from a recent contribution with proof:

L. Jaulin (2024). Asymptotically minimal interval contractors based on the centered form; Application to the stability analysis of linear time-delayed differential equations, Acta Cybernetica.

Section 3

A contractor involving the centered form

Forward evaluations with the "centered form"

The classical formula is given as:

$$[\mathbf{f}_c]([\mathbf{x}]) = \mathbf{f}(\overline{\mathbf{x}}) + [\mathbf{J}_{\mathbf{f}}]([\mathbf{x}]) \cdot ([\mathbf{x}] - \overline{\mathbf{x}})$$

with $\overline{\mathbf{x}}$ the center of the box $[\mathbf{x}]$, and $[\mathbf{J_f}]([\mathbf{x}])$ the interval Jacobian matrix of \mathbf{f} evaluated over $[\mathbf{x}]$.

R. Moore, Methods and Applications of Interval Analysis Society for Industrial and Applied Mathematics, jan 1979.

- traditionally used to enclose the range of a function over narrow intervals
- asymptotically small overestimation for sufficiently narrow boxes on scalar functions

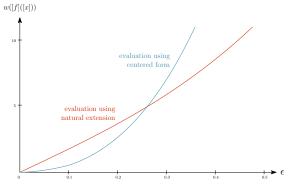
The dependency problem: example

Consider for instance this expression with multiple occurrences of x:

$$f(x) = 2x^5 + x^3 - 3x^2$$

Let us try the evaluation for several growing inputs:

$$[x] = 0.7 + [-\epsilon, \epsilon], \ \epsilon = 0 \dots 0.5$$



Comparing pessimism: natural evaluation (red) vs centered form evaluation (blue).

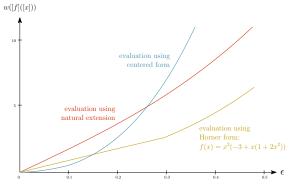
The dependency problem: example

Consider for instance this expression with multiple occurrences of x:

$$f(x) = 2x^5 + x^3 - 3x^2$$

Let us try the evaluation for several growing inputs:

$$[x] = 0.7 + [-\epsilon, \epsilon], \ \epsilon = 0 \dots 0.5$$



Comparing pessimism: natural evaluation (red) vs centered form evaluation (blue).

Forward evaluations with the "centered form"

$$\mathbf{f}(\mathbf{x}) \in [\mathbf{y}]$$

Forward evaluations with the "centered form"

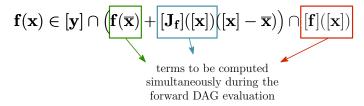
$$\mathbf{f}(\mathbf{x}) \in [\mathbf{y}] \cap \left(\mathbf{f}(\overline{\mathbf{x}}) + [\mathbf{J}_\mathbf{f}]([\mathbf{x}])([\mathbf{x}] - \overline{\mathbf{x}})\right)$$

Forward evaluations with the "centered form"

$$\mathbf{f}(\mathbf{x}) \in [\mathbf{y}] \cap \left(\mathbf{f}(\overline{\mathbf{x}}) + [\mathbf{J}_{\mathbf{f}}]([\mathbf{x}])([\mathbf{x}] - \overline{\mathbf{x}})\right) \cap [\mathbf{f}]([\mathbf{x}])$$

Forward evaluations with the "centered form"

Forward evaluations with the "centered form"



A contractor involving the centered form

Forward evaluations with the "centered form"

The constraint $\{f(x) \in [y], x \in [x]\}$ is then expressed using a centered form expression:

$$\mathbf{f}(\mathbf{x}) \in [\mathbf{y}] \cap (\mathbf{f}(\overline{\mathbf{x}}) + [\mathbf{J}_{\mathbf{f}}]([\mathbf{x}])([\mathbf{x}] - \overline{\mathbf{x}})) \cap [\mathbf{f}]([\mathbf{x}])$$
terms to be computed simultaneously during the forward DAG evaluation

Simultaneous evaluation ⇒ operator overloading

A contractor involving the centered form

Interval Automatic Differentiation (IAD)

Contribution of this work:

We use IAD to automatically compute the term $[\mathbf{J_f}]([\mathbf{x}])$.

Interval Automatic Differentiation (IAD)

Contribution of this work:

We use IAD to automatically compute the term $[\mathbf{J_f}]([\mathbf{x}])$.

About Automatic Differentiation:

- techniques to automatically evaluate the partial derivatives of a function
- HC4Revise ⇒ execution of a sequence of elementary algorithms:

```
fwd_plus, fwd_cos, etc (and their reverse counterparts)
```

– using **chain rule** and interval analysis: compute AD for approximating $[\mathbf{J}_{\mathbf{f}}]([\mathbf{x}])$

Interval Automatic Differentiation (IAD)

Contribution of this work:

We use IAD to automatically compute the term $[\mathbf{J_f}]([\mathbf{x}])$.

About Automatic Differentiation:

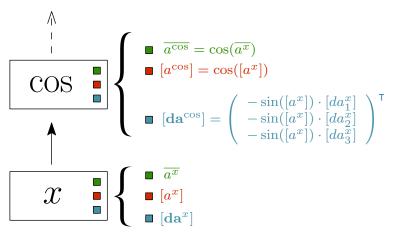
- techniques to automatically evaluate the partial derivatives of a function
- HC4Revise ⇒ execution of a sequence of elementary algorithms:

```
fwd_plus, fwd_cos, etc (and their reverse counterparts)
```

- using **chain rule** and interval analysis: compute AD for approximating $[\mathbf{J_f}]([\mathbf{x}])$
- ⇒ operator overloading in programming languages

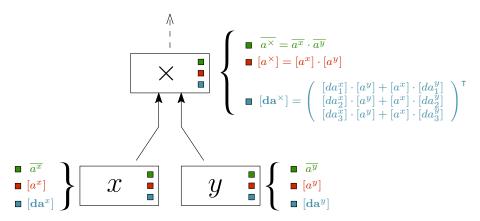
A contractor involving the centered form

Examples of operator overloading



Overloading the cos operator with automatic differentiation

Examples of operator overloading

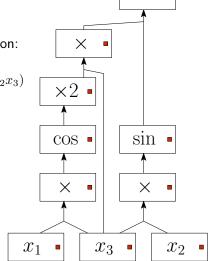


Overloading the product operator with automatic differentiation

Directed acyclic graph, now with IAD

Directed acyclic graph (DAG) involving automatic differentiation:

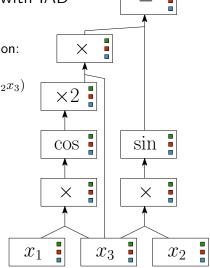
Ex:
$$f(\mathbf{x}) = 2x_3 \cos(x_1 x_3) - \sin(x_2 x_3)$$



Directed acyclic graph, now with IAD

Directed acyclic graph (DAG) involving automatic differentiation:

Ex: $f(\mathbf{x}) = 2x_3 \cos(x_1 x_3) - \sin(x_2 x_3)$

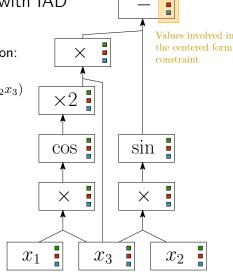


A contractor involving the centered form

Directed acyclic graph, now with IAD

Directed acyclic graph (DAG) involving automatic differentiation:

Ex: $f(\mathbf{x}) = 2x_3 \cos(x_1 x_3) - \sin(x_2 x_3)$



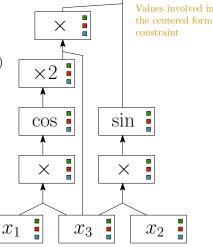
Directed acyclic graph, now with IAD

Directed acyclic graph (DAG) involving automatic differentiation:

Ex:
$$f(\mathbf{x}) = 2x_3 \cos(x_1 x_3) - \sin(x_2 x_3)$$

Towards centered form for forward interval evaluation of f

$$f([x]) \subset f(\overline{x}) + [J_f]\left([x]\right) \cdot \left([x] - \overline{x}\right)$$



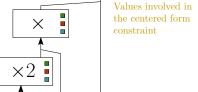
Directed acyclic graph, now with IAD

Directed acyclic graph (DAG) involving automatic differentiation:

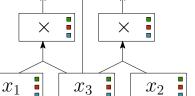
Ex:
$$f(\mathbf{x}) = 2x_3 \cos(x_1 x_3) - \sin(x_2 x_3)$$

Towards centered form for forward interval evaluation of f

$$\mathbf{f}([\mathbf{x}]) \subset \underbrace{\mathbf{f}(\overline{\mathbf{x}}) + [\mathbf{J}_{\mathbf{f}}]\left([\mathbf{x}]\right) \cdot \left([\mathbf{x}] - \overline{\mathbf{x}}\right)}_{\text{linear system}}$$



sin



COS

Section 4

Top level algorithm for the CtcInverse contractor

Recall the constraint $\{f(x) \in [y], x \in [x]\}$, expressed using a centered form expression:

$$\mathbf{f}(\mathbf{x}) \in [\mathbf{y}] \cap \left(\mathbf{f}(\overline{\mathbf{x}}) + [\mathbf{J}_{\mathbf{f}}]\big([\mathbf{x}]\big)\big([\mathbf{x}] - \overline{\mathbf{x}}\big)\right)$$

Recall the constraint $\{f(x) \in [y], x \in [x]\}$, expressed using a centered form expression:

$$\mathbf{f}(\mathbf{x}) \in [\mathbf{y}] \cap \bigg(\mathbf{f}(\overline{\mathbf{x}}) + [\mathbf{J}_{\mathbf{f}}]\big([\mathbf{x}]\big)\big([\mathbf{x}] - \overline{\mathbf{x}}\big)\bigg) \cap [\mathbf{f}]([\mathbf{x}])$$

Recall the constraint $\{f(x) \in [y], x \in [x]\}$, expressed using a centered form expression:

$$\mathbf{f}(\mathbf{x}) \in [\mathbf{y}] \cap \bigg(\mathbf{f}(\overline{\mathbf{x}}) + [\mathbf{J}_{\mathbf{f}}]\big([\mathbf{x}]\big)\big([\mathbf{x}] - \overline{\mathbf{x}}\big)\bigg) \cap [\mathbf{f}]([\mathbf{x}])$$

This can be expressed under the form of a linear constraint:

$$\mathbf{b} = \mathbf{A} \cdot \mathbf{p}$$

with

$$- \ \mathbf{b} \in ([\mathbf{y}] \cap [\mathbf{f}]([\mathbf{x}])) - \mathbf{f}(\overline{\mathbf{x}}), \ \in \mathbb{IR}^p$$

$$-\mathbf{A} \in [\mathbf{J_f}]([\mathbf{x}]), \in \mathbb{IR}^{p \times n}$$

$$-\mathbf{p} \in [\mathbf{x}] - \overline{\mathbf{x}}, \in \mathbb{IR}^n$$

Resulting algorithm for the contractor involving the centered form, for dealing with the constraint $f(x) \in [y]$

$$\begin{split} & \operatorname{\texttt{CtcInverse}}(in:\ \mathbf{f},[\mathbf{y}],\ in/out:\ [\mathbf{x}]) \\ & \overline{\mathbf{x}} \leftarrow \operatorname{mid}([\mathbf{x}]) \\ & \left(\mathbf{a^f},[\mathbf{a^f}],[\mathbf{da^f}]\right) \leftarrow \operatorname{\texttt{fwd_dag_eval}}(\mathbf{f},[\mathbf{x}],\overline{\mathbf{x}}) \\ & [\mathbf{p}] \leftarrow [\mathbf{x}] - \overline{\mathbf{x}} \\ & [\mathbf{b}] \leftarrow \left([\mathbf{y}] \cap [\mathbf{a^f}]\right) - \mathbf{a^f} \\ & [\mathbf{A}] \leftarrow [\mathbf{da^f}] \\ & ([\mathbf{A}],[\mathbf{p}]) \leftarrow \operatorname{\texttt{reverse_mul}}([\mathbf{b}],[\mathbf{A}],[\mathbf{p}]) \\ & [\mathbf{x}] \leftarrow [\mathbf{p}] + \overline{\mathbf{x}} \end{split}$$

with the terms \mathbf{a}^f , $[\mathbf{a}^f]$ and $[\mathbf{d}\mathbf{a}^f]$ computed during the forward evaluation of the DAG.

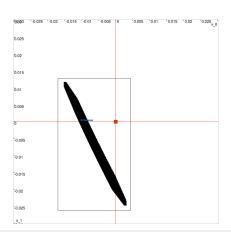
Dealing efficiently with the linear constraint

About the reverse matrix-vector product:

$$([\mathbf{A}],[\mathbf{p}]) \leftarrow \mathtt{reverse_mul}([\mathbf{b}],[\mathbf{A}],[\mathbf{p}])$$

Some preconditioning allows to significantly reduce the wrapping effect.

This can be achieved using a Gauss Jordan band diagonalization method.

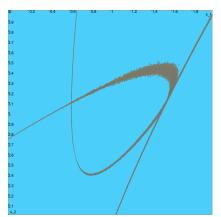


Section 5

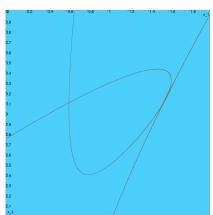
Results of CtcInverse provided in the Codac library

Results of CtcInverse provided in the Codac library

Previous example using the centered form



X computed with HC4Revise. Computation time: 4.51s. 27430 boxes.

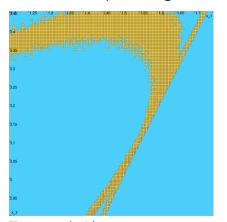


X computed with CtcInverse. Computation time: 0.69s. 3713 boxes.

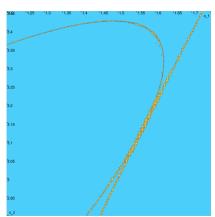
Projection of the boxes $[\mathbf{x}] \in \mathbb{IR}^3$ onto (x_1, x_2) .

Results of CtcInverse provided in the Codac library

Previous example using the centered form



X computed with HC4Revise. Computation time: 4.51s. 27430 boxes.

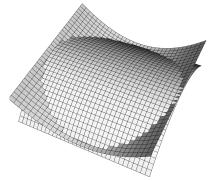


X computed with CtcInverse. Computation time: 0.69s. 3713 boxes.

Projection of the boxes $[\mathbf{x}] \in \mathbb{IR}^3$ onto (x_1, x_2) .

Results of CtcInverse provided in the Codac library

Comparison with affine arithmetic



Intersection of two lofted parabolas:

L.H. De Figueiredo. Surface Intersection using Affine Arithmetic, Proceedings of Graphics Interface'96, 168-175. 1996

$$\alpha(u) = \mathbf{a}_0 (1 - u)^2 + 2\mathbf{a}_1 u (1 - u) + \mathbf{a}_2 u^2$$

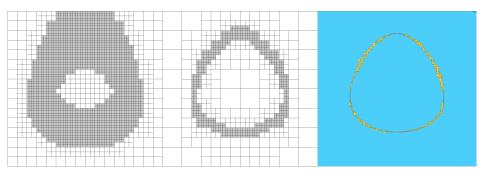
$$\beta(u) = \mathbf{b}_0 (1 - u)^2 + 2\mathbf{b}_1 u (1 - u) + \mathbf{b}_2 u^2$$

$$\mathbf{f}(u, v) = (1 - v)\alpha(u) + v\beta(u)$$

Results of ${\tt CtcInverse}$ provided in the Codac library

Comparison with affine arithmetic

$$\mathbf{f}: \mathbb{R}^4 \to \mathbb{R}^3$$



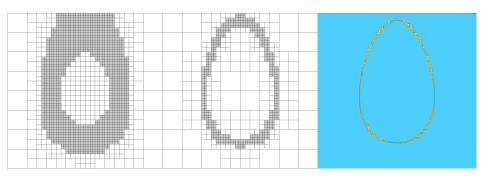
Results projected on the (u_1,v_1) space. Left: natural evaluation — center: affine evaluation — right: CtcInverse

Using the same ϵ in the branch-and-band algorithm.

Results of ${\tt CtcInverse}$ provided in the Codac library

Comparison with affine arithmetic

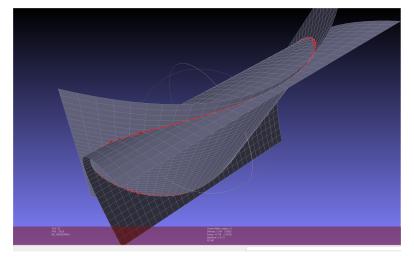
$$\mathbf{f}: \mathbb{R}^4 \to \mathbb{R}^3$$



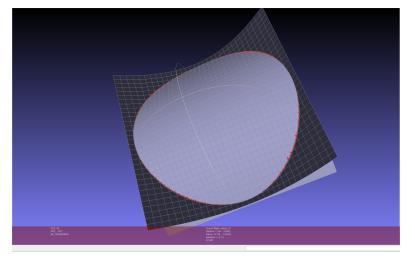
Results projected on the (u_2,v_2) space. Left: natural evaluation — center: affine evaluation — right: CtcInverse

Using the same ϵ in the branch-and-band algorithm.

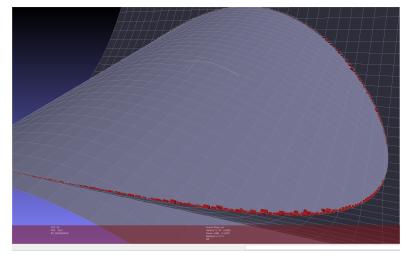
Comparison with affine arithmetic



Comparison with affine arithmetic

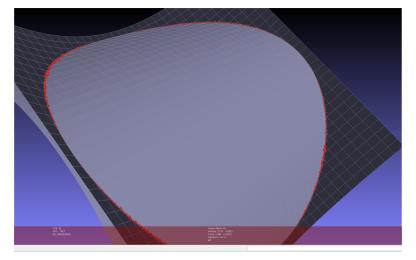


Results of CtcInverse provided in the Codac library Comparison with affine arithmetic



Results of ${\tt CtcInverse}$ provided in the Codac library

Comparison with affine arithmetic



Section 6

Conclusion

- proposed algorithm involving IAD
 - operator overloading:
 - implementation simple to maintain or to extend

- proposed algorithm involving IAD
 - operator overloading:
 - implementation simple to maintain or to extend
- embedded in the contractor framework
 - simple to use for a non-advised user

- proposed algorithm involving IAD
 - operator overloading:
 - implementation simple to maintain or to extend
- embedded in the contractor framework
 - simple to use for a non-advised user
- code available in C++, Python, Matlab
 - and Linux, Windows, MacOS...
 - many thanks to Fabrice Le Bars for his help

- proposed algorithm involving IAD
 - operator overloading:
 - implementation simple to maintain or to extend
- embedded in the contractor framework
 - simple to use for a non-advised user
- code available in C++, Python, Matlab
 - and Linux, Windows, MacOS...
 - many thanks to Fabrice Le Bars for his help
- comparison of a centered form algorithm with affine arithmetic

Python example (Codac library)


```
from codac import *

x = VectorVar(3)
f = AnalyticFunction([x], vec(
    -sqr(x[2])+2*x[2]*sin(x[2]*x[0])+cos(x[2]*x[1]),
    2*x[2]*cos(x[2]*x[0])-sin(x[2]*x[1])
))

ctc = CtcInverse(f, [[0],[0]])
pave([[0,2],[2,4],[0,10]], ctc, 0.004)
```

Using pre-release Codac 2.0.0:

```
pip install codac --pre
```

http://codac.io

Matlab example (Codac library)


```
import py.codac4matlab.*

x = VectorVar(3);
f = AnalyticFunction({x}, vec( ...
    -sqr(x(3))+2*x(3)*sin(x(3)*x(1))+cos(x(3)*x(2)), ...
    2*x(3)*cos(x(3)*x(1))-sin(x(3)*x(2)) ...
));

ctc = CtcInverse(f, {0,0});
pave(IntervalVector({{0,2},{2,4},{0,10}}), ctc, 0.004);
```

Using pre-release Codac 2.0.0 dedicated to Matlab:

```
pip install codac4matlab --pre
```

http://codac.io

C++ example (Codac library)

```
#include <codac-core.h>
using namespace std;
using namespace codac2;
int main()
  VectorVar x(3):
  AnalyticFunction f({x}, vec(
    -sqr(x[2])+2*x[2]*sin(x[2]*x[0])+cos(x[2]*x[1]),
   2*x[2]*cos(x[2]*x[0])-sin(x[2]*x[1])
  ));
  CtcInverse_<IntervalVector> ctc(f, {0.,0.});
  pave(IntervalVector(\{\{0,2\},\{2,4\},\{0,10\}\}), ctc, 0.004);
```

http://codac.io

