MPRI PRFSYS

Nov. 18th

Computational and less computational sorts

The sorts of Rocq

Original terminology:

(ECC, Luo)

Extended Calculus of Constructions

$$\frac{\Gamma \vdash T : s_1 \quad \Gamma(x:T) \vdash U:s_2}{\Gamma \vdash \Pi \ x:T.U : s_3} (s_1, s_2, s_3) \in \mathcal{R}$$

Underlying Rocq:

 $Prop : Type_1 : Type_2 : Type_3 : \dots$

Rules: (Type_i, Prop, Prop) (polymorphism / impredicativity) (Type_i, Type_j, Type_{max(i,j)}) (predicative universes)

Additional subtyping: Type_i \subset Type_{i+1}

covariance: Tc U \Rightarrow Π x:A.T c Π x : A.U

Other additions: inductive, co-inductive types...

Why the additions?

Inductive types in order to have:

- more efficient representations / computations
- dependent elimination schemes (induction...)
- 0 ≠ 1 thanks to "large elimination"

```
Definition EQZ n : Prop :=
   match n with
   | 0 => True
   | S _ => False
   end.
```


What about Set?

Originally: CoC, that is Prop and Kind

Prop then duplicated into Prop and Set original motivation: Program extraction: programming by proving

```
p: \Pi l: list . \Sigma l': list . sorted l' \wedge l \simeq l'
```

sort
$$\equiv \lambda l \cdot \pi_1(p l) : list \rightarrow list$$

$$\lambda l \cdot \pi_2(p l) : \Pi l : list \cdot sorted (sort l) \wedge l \simeq (sort l)$$

But we want to erase as much of p as we can: everything that is not used to compute l'

using sorts to mark terms

$$\frac{\Gamma \vdash T : s}{\Gamma (x:T) \text{ wf}}$$

if s is Set: computational (kept)

if s is Prop: only specification (erased when extracting)

Reflected in the elimination rules for inductives:

```
Definition EQZ n : Prop :=
   match n with
   | 0 => True
   | S _ => False
   end.
```

These limitations ensure that the extracted term is well-typed (has no "holes")

authorized because nat:Set

```
Inductive nat : Prop :=
| 0
| S : nat -> nat.
```

we cannot prove O ≠ 1 for these "nats"

A very short story of extraction

Originally: novel way to write certified programs. In line with Curry-Howard

```
p: \Pi l: list. \Sigma l': list. sorted l' \wedge l \simeq l'
```

$$\mathcal{E}(p): list \rightarrow list$$

$$\mathcal{R}(p)$$
: Π l: list . sorted $(\mathcal{E}(p) \ l) \land l \simeq (\mathcal{E}(p) \ l)$

Then (PhD of JC Filiâtre):

From sort : list \rightarrow list and specification Π 1 : list . Σ 1' : list . sorted 1' \land 1 \simeq 1' generate the assumptions to retrieve p

Base of program tactic, then of Why (Why3) etc...

Next step: allowing some classical axioms

A V B : Prop

A + B : Set

```
forall A : Set, A + (A\rightarrow \bot) problematic
```

forall A : Set, A $\backslash /$ (A $\rightarrow \bot$) can be considered ok

Such considerations became a main motivation for Set / Prop distinction

forall A : Set, A + $(A\rightarrow \bot)$ actually much more problematic

not only for computations, but also for consistency

A limitation of (some) type theories

J:
$$\prod A: \text{Type}$$
. $\prod P: A \rightarrow \text{Type}$. $\prod x y: A$. $x=y \rightarrow Px \rightarrow Py$

J A P t u (refl_A _) p \triangleright p

Thomas Streicher identified the need for a second axiom/operator:

K:
$$\prod A: \text{Type}$$
. $\prod x:A$. $\prod P: x=x \rightarrow \text{Type}$. $P(\text{refl}_A x) \rightarrow \prod h: x=x \cdot P h$

Basically: there is only one (canonical) equality proof

K A t (refl_A x)
$$p \triangleright p$$

- Cannot be proved in Rocq
- Some versions of Agda allow to prove K

Why is it important?

With J we routinely construct:

$$J A P t u : t=u \rightarrow P t \rightarrow P u$$

Think of P as an actual (dependent) type: this is a translation from P t to P u so we want: J A P t t e p = p

We have $J A P t t (refl_A t) p \triangleright p$.

To prove this we need e= (refl_A t)

- The reduction for K is not too important. Assuming K as an axiom is generally enough
- Sometimes one does not want K (HoTT...)

Why do I mention K here?

- 1. It is another useful extension of Type Theory
- 2. It is linked to the excluded middle
- 3. We will use it for an example / exercise

2: the excluded middle allows to prove K

Actually, if $\Pi \times y : A, x=y \vee x \neq y$, then one can prove uniqueness of equality proofs for A

Not difficult but a little technical (you can see in the exercise)

Excluded middle and impredicativity

If Prop is impredicative

and we have decidable equality (a fortiori excluded-middle) then we can prove proof-irrelevance:

$$\Pi$$
 P:Prop. Π p₁ p₂: P. p₁ = p₂

In other words:

- we can assume EM in Prop, provided we have no large elimination (that is we cannot prove 0≠1, true≠false... for nat or bool : Prop)
- we cannot assume EM in an impredicative sort Set

A variant of the Barbanera-Berardi result

We prove proof-irrelevance in the calculus of constructions with:

- decidable equality (a fortiori EM)
- inductive equality with the regular elimination scheme
- equality over Kind (means we need one more universe)

- Makes the point that it is useful to have the possibility to tag computational and non-computational type
- A cute (I think) little variation on Russell's paradox

A paradox

We take:

Bool : Prop

t: Bool f: Bool

Let us define:

 $U = \Pi P : Prop. P \rightarrow Bool : Prop$ (we use impredicativity)

Idea: $u_1 \in u_2 = u_1 \cup u_2 = t$

Now, given $P:U\to Bool$ can we define the U corresponding to P?

$$\{u:U \mid P \mid u = t\}$$

Given $P: U \rightarrow Bool$

can we define the U corresponding to P?

$$\{u:U \mid P \mid u = t\}$$

We need to turn $U \to Bool$ into $\Pi P : Prop. P \to Bool$

that is, given P: Prop into $P \to Bool$

We use decidability of equality:

- if P=U, we transform $U \to Bool$ into $P \to Bool$
- if not, anything goes (always return f for instance)

Gives us a form of comprehension:

$$Comp: (U \to Bool) \to U$$

We can show: (Comp P U u) = P u

(here we need to use uniqueness of equality)

A paradox (3)

$$(Comp P U u) = P u$$

We can define "negation" $nb : Bool \rightarrow Bool$

nb t = f

nb f = t

How? using EM / decidability of equality!

We can then define Russell's set: $R = \{x : U \mid x \mid U \mid x = f\}$

So...

R U R = nb (R U R)

From this, we deduce t = f