

#### Universes à la Martin-Löf



Predicative quantification over types in MLTT Keep MLTT as presented in the course and add:

U: Type

tr : U → Type

 $\pi: \Pi A: U, ((tr A) \rightarrow U) \rightarrow U$ 

nat: U

eq:  $\Pi A: U, (tr A) \rightarrow (tr A) \rightarrow U$ 

 $\sigma: \Pi A: U, ((tr A) \rightarrow U) \rightarrow U$ 

sum :  $U \rightarrow U \rightarrow U$ 

False: U

tr ( $\pi$  A B)  $\triangleright$   $\Pi$  x:tr A. tr (B x)

tr nat

tr (eq A a b)  $\triangleright$  a=A b

tr ( $\sigma$  A B)  $\triangleright \Sigma$  x:tr A. tr (B x)

tr (sum A B)  $\triangleright$  A+B

tr False

U: Type

tr : U → Type

 $\pi: \Pi A: U, ((tr A) \rightarrow U) \rightarrow U$ 

nat : U

eq:  $\Pi A: U, (tr A) \rightarrow (tr A) \rightarrow U$ 

 $\sigma: \Pi A: U, ((tr A) \rightarrow U) \rightarrow U$ 

sum :  $U \rightarrow U \rightarrow U$ 

False: U

tr ( $\pi$  A B)  $\triangleright$   $\Pi$  x:tr A. tr (B x)

tr nat > N

tr (eq A a b)  $\triangleright$  a=A b

tr ( $\sigma$  A B)  $\triangleright \Sigma$  x:tr A. tr (B x)

tr (sum A B)  $\triangleright$  A+B

tr False

Idea: if we quantify over U, we quantify over all types! (except U)

u: U tr u > U would give Type: Type and a paradox



#### Embedded Universes



 $U_1$ : Type

 $tr: U_1 \rightarrow Type$ 

 $\pi: \Pi A: U_1, ((tr A) \rightarrow U_1) \rightarrow U_1$ 

nat : U<sub>1</sub>

eq:  $\Pi A: U_1$ ,  $(tr A) \rightarrow (tr A) \rightarrow U_1$ 

 $\sigma: \Pi A: U_1, ((tr A) \rightarrow U_1) \rightarrow U_1$ 

sum :  $U_1 \rightarrow U_1 \rightarrow U_1$ 

False: U<sub>1</sub>

 $u:U_1$ 

tr (π A B)

tr nat

tr (eq A a b)  $\triangleright$  a=A b

tr ( $\sigma$  A B)

tr (sU1m A B)  $\triangleright$  A+B

tr False

tr u

 $\supset$   $\Pi$  x:tr A. tr (B x)

 $\triangleright N$ 

 $\triangleright \Sigma \times tr A. tr (B \times)$ 

 $\rightarrow$   $\perp$ 

 $\triangleright$  U

U comprises all types including U but not U1



#### Inductive-recursive definition



What is this object U?

U1: Type

tr: U1 → Type

 $\pi: \Pi A: U1, ((tr A) \rightarrow U1) \rightarrow U1$ 

Here!

 $tr(\pi A B) \qquad \triangleright \quad \Pi x:tr A. tr(B x)$ 

An inductive definition:

- inductive type U
- constructor  $\pi$
- recursive function tr

It can be viewed as an instance of a powerful extension of the inductive definition scheme

But... the function is used in the type of the constructor!

## Using universes



Proving 0≠1

Not possible in MLTT as given in the course notes  $0=1 \rightarrow \bot$  mapped to system T would give a term of type  $N \rightarrow \bot$ 

We need a property P : N $\rightarrow$ Type such that P 0  $\triangleright$  T and P (S x)  $\triangleright$   $\perp$ 

How to proceed?

Q: N  $\rightarrow$  U Q 0  $\triangleright$  nat and Q (S x)  $\triangleright$  False then take P =  $\lambda$  x:N. tr (Q x)

 $Q = R_U$  nat  $\lambda p:N. \lambda R:U. False$ 

Universes in Coq are a little different

Digression: computational proofs



#### The conversion rule



$$\frac{t : A \quad B : Prop}{t \cdot B} \quad A =_{c} B$$

From the logical point of view, A and B are the *same* proposition

 $=_c$  encaptures the computations of the system for instance,  $2+2=_c4$ 

## Proofs by computation



We are used to use this rule:

$$0 = 0 + 0$$
  $0 = 0$ 

forall 
$$n, n = n + 0$$

$$n = n + 0 -> S n = (S n) + 0$$

$$S n = S (n + 0)$$

Combination of computation and deduction

$$S n = S n$$



#### Simple purely computational proof



$$2 + 2 = 4$$
  $4 = 4$ 

refl 4: 
$$4 = 4$$
 refl 4:  $2+2 = 4$ 

refl 400 : 200+200 = 4



## Why is a number prime?



#### 5 is prime because :

- 2 does not divide 5
- 3 does not divide 5
- 4 does not divide 5
- 0 does not divide 5
- all other natural numbers are either 1, 5, or strictly larger than 5
- and if they are > 5, they do
   not divide 5

How do we formalize this in Coq?



#### A more computational proof



- ▶Write test : nat -> bool
- ▶test n tries to divide n by 2, 3, ..., n-1 and returns true iff it finds no diviso
- prove:

test\_corr : forall n, test n = true -> prime n
what is a proof of prime 5?

test\_corr 5 (refl true) : prime 5

needs to check refl true : test 5 = true needs to compute test 5 ▶ true



## Going further



is prime!



#### When the computer helps us



Largest known prime number in 1951 : (2148 + 1) / 17 (44 digits)

today:  $2^{82,589,933} - 1$  (24,862,048 digits)

Why such progress? obvious But also new mathematics



# Pocklington's theorem (1914)



Let n > 1 and natural numbers a,  $(p_1, \alpha_1), \ldots, (p_k, \alpha_k)$ ; n is prime if:

$$p_1 \dots p_k$$
 are prime numbers  $(0)$   $(p_1^{\alpha_1} \dots p_k^{\alpha_k}) \mid (n-1)$   $(1)$   $a^{n-1} = 1 \pmod{n}$   $(2)$   $\forall i \in \{1, \dots, k\} \gcd(a^{\frac{n-1}{p_i}} - 1, n) = 1$   $(3)$   $p_1^{\alpha_1} \dots p_k^{\alpha_k} > \sqrt{n}.$   $(4)$ 

 $a, p_1, \alpha_1 \dots, p_k, \alpha_k$  is a Pocklington *certificate* for n.



#### Plan of action



- prove Pocklington's theorem : done by
   Oostdijk and Caprotti (2001)
- define a data-structure for representing certificates
- write a certificate checker in Coq, prove it correct
- build certificates outside Coq
- Sit back and relax



## Defining certificates



A certificate for n is some tupple :  $a, p_1, \alpha_1, \ldots, p_k, \alpha_k$ . self-contained certificate : recursively add certificates for each

$$p_i$$
 :

$$c = \{n, a, [c_1^{\alpha_1}; \dots; c_k^{\alpha_k}]\}$$

a certificate for 127 is:

$$\{127, 3, [\{7, 2, [\{3, 2, [(2, prime2)]\}; (2, prime2)]\}; \\ \{3, 2, [(2, prime2)]\}; \\ (2, prime2)]\}$$



## Formalizing certificates



Share the certificates by flattening the list:

$$[\{127, 3, [7; 3; 2]\}; \{7, 2, [3; 2]\}; \{3, 2, [2]\}; (2, prime2)].$$

such a certificate is a mini-data-base containing all prime numbers used in proving that n is prime.



## Checking certificates



```
\forall l, Check l = true \Rightarrow \forall c \in l, prime (n \ c)
```

recursion over the list (certificate); test the computational conditions.

only difficulty: time&space of the calculations

```
Inductive positive : Set :=
```

| xH : positive

| x0 : positive -> positive

| xI : positive -> positive.

 $a^{n-1} = 1 \pmod{n}$  main trick : keep things small by calculating modulo n



#### How are certificates built?



a C program builds the certificate and prints it as a Coq term.

#### Different recipes :

generic: find a factorization using ECM (Elliptic Curve

Library)

Mersenne : for  $2^m - 1$ . various tricks  $2^n - 1 - 1 = 2(2^{n-1} - 1)$ 

and  $2^{2p}-1=(2^p-1)(2^p+1)$ ,  $2^{3p}-1=(2^p-1)(2^{2p}+2^p+1)$ ;

help find a decomposition.

Lucas criterion

Proth numbers

Can be the critical step.

For random prime numbers, up to 200 digits.

For the largest Mersenne primes we treat, some hack was needed.

00390600653875954571505539<sup>24323075451301520615020</sup>787839937705607143516



proved in Coq!

is prime!



## Going further



This is actually old. Since more technology has been brought in:

- more efficient coding of numbers in Coq
- add more efficient representation of these numbers to Coq

using more modern results about prime numbers (elliptic curves)



#### It is not just about the numbers



Some theorems seem non-computational in nature; yet their (known) proofs rely on heavy computations.

- The four color theorem (1976) done in Coq
- The Kepler conjecture (Thomas Hales, 1998)

Interesting because the exposition of the arguments mixes mathematics and ad-hoc programs; both sophisticated.

there is a real problem of verification standarts