MPRI 2-7-1

week 4 - Oct. 5th

Functions in HOL

One version of HOL

base types :1and o
HOL rules for = and v

constants: 0, S, + x

AXiIoms: V X. O+X =X, VXV . S(X) +Vy = S(X + V),
VX.OXxX=0,VXY.S(X)XYy=XXV+YV,

v X. 0 = S(X), injectivity of S

induction

Can be extended with more base types and induction principles
Can be extended with the excluded middle

Implemented and used in real systems : HOL, HOL-light, Isabelle-HOL...

Some properties of HOL
Very simple model

Model of simply typed A-calculus, [|= N, |o|= {0,1}
=| = boolean implication

vT1|(A) = minae |Al(a)
0[=0, S| = xo x+1, ..

The formalism enjoys cut-elimination property
Intuitionistic proofs are constructive

Some inductive definitions in HOL
The smallest set such that :

» even (0)
» V X. even (X) = even (S(S(x)))

Some inductive definitions in HOL
The smallest set such that :

» even (0)
» V X. even (X) = even (S(S(x)))

Any set closed by the two properties contains even

Some inductive definitions in HOL
The smallest set such that :

» even (0)
» V X. even (X) = even (S(S(x)))

Any set closed by the two properties contains even

(X0) =

Some inductive definitions in HOL
The smallest set such that :

» even (0)
» V X. even (X) = even (S(S(x)))

Any set closed by the two properties contains even

(X0) =
(VY. (Xy)= XS (SY))) =

Some inductive definitions in HOL
The smallest set such that :

» even (0)
» V X. even (X) = even (S(S(x)))

Any set closed by the two properties contains even
VX:Il™O0.
(X0) =
(VY. (Xy) = (X(S(5Y)) =

Some inductive definitions in HOL
The smallest set such that :

» even (0)
» V X. even (X) = even (S(S(x)))

Any set closed by the two properties contains even

vX:l—™O0.
(X0) =

(Vy. (Xy) = (X(S(5Y)) =
(X n)

Some inductive definitions in HOL
The smallest set such that :

» even (0)
» V X. even (X) = even (S(S(x)))

Any set closed by the two properties contains even

(even n) = vX: 12 0.
(X0) =

(Vy. (Xy) = (X(S(5Y)) =
(X n)

A Proof by induction

VvX:Il—™O0.
(X0) =

(Vy. (Xy) = (X(S(5Y) =
(X n)

A Proof by induction

VXiI™O0. (evenx) =3y .X=y +V
(X0) =

(Vy. (Xy) = (X(S(5Y) =
(X)

A Proof by induction

VXiI™O0. (evenx) =3y .X=y +V
(X0) =

(Vy. (Xy) = (X(S(5Y) =
(X)

P=AX.3y.X=Yy+Yy

A Proof by induction

vXil—™O0. J(evenx) =3y . x=y+y
(X0) =

(v y. (Xy) = (X (S (Sy)) =
(X n) STTTTTIIT

P=AX.3y.X=y+YV

y (Ay.0=y+y)=
(VX 3y . x=y+y = 3y.(S5(SX)=y+y)=

Y . X=VyY+Y

A Proof by induction

vXil—™O0. J(evenx) =3y . x=y+y
(X0) =

(v y. (Xy) = (X (S (Sy)) =
(X n) STTTTTIIT

P=AX.3y.X=y+YV

y (Ay.0=y+y)=
(VX 3y . X=y+y = 3y.(S(OSX)=y+y)=

A Proof by induction

vXil—™O0. J(evenx) =3y . x=y+y
(X0) =

(v y. (Xy) = (X (S (Sy)) =
(X n) TLLLIIE

y (Ay.0=y+y)=
(VX 3y . X=y+y = 3y.(S(OX)=y+y)=

A Proof by induction

VXil™O0. J (evenx) =3y . x=y+y
(X0) =

(vy. (Xy) = (X(S(S) =
(X n) suEEEEEEEER.

P=AX.3y.X=y+Yy

y, Ay.0=y+y)=

A Proof by induction

VXil™O0. ‘__{(evenx)=>5|y.x:y+y
(X0)= ’ P=AX.3y.X=y+YV
(VY. (Xy) = (X(S(SY))) =
(X n) T TYTIIT

y (Ay.0=y+y)=

two Induction cases to prove

X A more advanced inductive predicate

What is a strongly normalizing term “?

X A more advanced inductive predicate

What is a strongly normalizing term “?
No infinite path :t= t1= to= ta > ...

X A more advanced inductive predicate

What is a strongly normalizing term “?
No infinite path :t= t1= to= ta > ...
Define it inductively 7

X A more advanced inductive predicate

What is a strongly normalizing term “?

No infinite path : t= t1= to= ta > ...
Define it inductively 7

teSNiffvt t=1t = te SN

X A more advanced inductive predicate

What is a strongly normalizing term “?

No infinite path : t= t1= to= ta > ...
Define it inductively 7

teSNiffvt t=1t = te SN

The smallest sets.t. (vi,t=t =teSN)=1te SN

X A more advanced inductive predicate

What is a strongly normalizing term “?

No infinite path :t= t1= to= ta > ...
Define it inductively 7

teSNiffvt t=1t = te SN
The smallest sets.t. (vi,t=t =teSN)=1te SN

Only one clause !

X A more advanced inductive predicate

What is a strongly normalizing term “?

No infinite path : t= t1= to= ta > ...
Define it inductively 7

teSNiffvt t=1t = te SN

The smallest sets.t. (vi,t=t =teSN)=1te SN

Only one clause !
base case : tis normal (then it is SN)

X A more advanced inductive predicate

What is a strongly normalizing term “?

No infinite path : t= t1= to= ta > ...
Define it inductively 7

teSNiffvt t=1t = te SN

The smallest sets.t. (vi,t=t =teSN)=1te SN

Only one clause !
base case : tis normal (then it is SN)

(SN u) =
vX:N=2O0.
(VE:A. (VT A.(Btt) = Xt)=X1)

= (X u)

Using this definition

VX:A=2o0o. (VI:A. (VT A.(Btt)=Xt) =t = (Xu)

Can we prove (B u u) is false ?

Using this definition

VX:A=2o0o. (VI:A. (VT A.(Btt)=Xt) =t = (Xu)

Can we prove (B u u) is false ?

(VI:A (VA (Bt) =Pt t)=-(pPtt) = -(Buu)

Using this definition

VX:A=2o0o. (VI:A. (VT A.(Btt)=Xt) =t = (Xu)

Can we prove (B u u) is false ?

(VI:A (VA (Bt) =Pt t)=-(pPtt) = -(Buu)
VI:A (VTN (BtY) =Pt t) =-(Btt)

Using this definition

VX:A=2o0o. (VI:A. (VT A.(Btt)=Xt) =t = (Xu)

Can we prove (B u u) is false ?

(VI A (VI A.Btt)=-Btt)=-(Btt) = -(Buu)
vi:A. (VI A.Btt)=-Btt) =-(Btt)
givent, vt :A.(Btt)=-(Bt't) show -(Btt)

Using this definition

VX:A=2o0o. (VI:A. (VT A.(Btt)=Xt) =t = (Xu)

Can we prove (B u u) is false ?

(VI:A. (VI A Bt ==-(Btt)=-(Btt) = -(Buu)
Vi:A (VT A Btt)=-(Btt) =-(Btt)
givent, vt :A.(Btt)=-(Bt't) show -(Btt)
(Btt)=-(Btt) Iindeed entails =(B11)

Specifying a recursive function

We want : (exp x 0) = (S 0)
(exp x (Sy)) = (exp Xy) X X

exp X Or = r=(S0)

EXPX(SY)r = r=xXra expxyr

expabcs
VR: 12 1= 1—20.
(VXx.Rx01)—
(VXYrRxyr—=Rx(Sy)xxr)—
(Rabc)

Ack(0, n) = (S n)

Ack(S m, 0) = Ack(m, (S 0))

Ack(Sm, Sn) = Ack(m Ack(S m, n))
A a:LA DiLATIL

VX:il= 110,
(VN.(X0On(Sn)) =

(VM. Vr(Xm(S0)r)=(X(Sm)0r)) =
(VM. vn.vrvr.(XEmnr)y=Xmrrn=XESm)(Sn)r)) =>
(Xabr)

X Proving the existence of a recursive function

Ack_ A a:LA biLA Tl
vX:I2 1120,
(VN.(X0n(Sn)) =

(VM. VEL(Xm(S0)r=X(ESm)0r)) =
(Vm.vn. vrvr.XEmnr)y=Xmrr)=XESm)(Sn)r)) =>
(Xabr)

va.vb.3ar.(Ackabr) by Induction

inductionovera: vb.3r.(Ackabr)

vb.3r.(AckODbr)
vb.3ar.(Ackabr)=vb.3r.(Ack(Sa)br)

X Proving the existence of a recursive function

Ack = A\ a:LA biLA riL
VX171 (1—0.
(VNn.(X0On(Sn)) =

(VM. VrL(Xm(S0)rn=X(ESm)0r)) =
(VM. vNVvVrLVvr.(XEmnr)y=Xmr'r)=XEm)(Sn)r)) =>
(Xabr)

inductionovera: vb.3r.(Ackabr)

vb.3ar.(AckObr)
vb.3ar.(Ackabr)=vb.3r.(Ack(Sa)br)

inductionoverb: 3r.(Ack(Sa)br)
3r.(Ack(Sa)0r)
3r.(Ack (Sa)(Sb)r)

Naming functions: Hilbert operator

Extending the language

e(P)

'If one guy can do it, it's &

Naming functions: Hilbert operator

Extending the language

e(P) '"The" object verifying P

'If one guy can do it, it's &

Naming functions: Hilbert operator

Extending the language

e(P) "The" object verifying P ("choice operator")

'If one guy can do it, it's &

Naming functions: Hilbert operator

Extending the language

e(P) "The" object verifying P ("choice operator")

— (P t)
— (P &(P))

'If one guy can do it, it's &

Naming functions: Hilbert operator

Extending the language

e(P) "The" object verifying P ("choice operator")

— (P t)

'If one guy can do it, it's &

IX.Px & PeégP)

Naming functions: Hilbert operator

Extending the language

e(P) "The" object verifying P ("choice operator")

— (P t)

'If one guy can do it, it's &

Ix.Px < PeglP) (can be used instead of 3)

Using the Hilbert operator
exp_fab =¢&AXx.(expabx))
exp_f=Aa.Ab.&gAXx.(expabx))

We canshow exp_faO=1, exp_fa(Sb)= axexp_fab

The proof of these equations can be mechanized

What do we miss 7 Computations !

Architecture of HOL implementations (in a nutshell)

Architecture of HOL implementations (in a nutshell)

»One does not construct the proof derivation (as a tree data structure)

Architecture of HOL implementations (in a nutshell)

»One does not construct the proof derivation (as a tree data structure)

»ML was invented as the meta-language of HOL implementations !

Architecture of HOL implementations (in a nutshell)

»One does not construct the proof derivation (as a tree data structure)
»ML was invented as the meta-language of HOL implementations !

» Safety architecture :

Architecture of HOL implementations (in a nutshell)

»One does not construct the proof derivation (as a tree data structure)
»ML was invented as the meta-language of HOL implementations !

» Safety architecture :
- An abstracted datatype for judgements [+— A

Architecture of HOL implementations (in a nutshell)

»One does not construct the proof derivation (as a tree data structure)
»ML was invented as the meta-language of HOL implementations !

» Safety architecture :
- An abstracted datatype for judgements [+— A

-Only a few simple tactics allow to construct these judgements

Architecture of HOL implementations (in a nutshell)

»One does not construct the proof derivation (as a tree data structure)
»ML was invented as the meta-language of HOL implementations !

» Safety architecture :
- An abstracted datatype for judgements [+— A

-Only a few simple tactics allow to construct these judgements
- These tactics correspond to logical rules

Architecture of HOL implementations (in a nutshell)

»One does not construct the proof derivation (as a tree data structure)
»ML was invented as the meta-language of HOL implementations !

» Safety architecture :
- An abstracted datatype for judgements [+— A

-Only a few simple tactics allow to construct these judgements
- These tactics correspond to logical rules

- These tactics are the Trusted Computing Base

Architecture of HOL implementations (in a nutshell)

»One does not construct the proof derivation (as a tree data structure)
»ML was invented as the meta-language of HOL implementations !

» Safety architecture :
- An abstracted datatype for judgements [+— A

-Only a few simple tactics allow to construct these judgements
- These tactics correspond to logical rules

- These tactics are the Trusted Computing Base

- More complex tactics are assembled on top of those tactics
(using ML)

X How unconstructive is the € operator ?

X How unconstructive is the € operator ?

Remarks:

X How unconstructive is the € operator ?

Remarks:
1. VX.VYy.X=yVvXxzy Iisprovablein HA

X How unconstructive is the € operator ?

Remarks:
1. VX.VYy.X=yVvXxzy Iisprovablein HA

2. (Av-A)A(Bv-B) = (AAB)v =(A A B)

X How unconstructive is the € operator ?

Remarks:
1. VX.VYy.X=yVvXxzy Iisprovablein HA

2. (Av-A)A(Bv-B) = (AAB)v =(A A B)
3. (Av-A)A(Bv-B) = (AvB)v-(AvB)

How unconstructive is the & operator ?

Remarks:

1.
2.

3.
4.

VX.VY.X=yVvXzy Iisprovable in HA
(Av-A)A(Bv-B) = (AAB)v (A AB)

(Av-A)ABv-B) = (AvB)v (A v B)
(Av =A)A (Bv -B) = (A=B) v -(A=B)

How unconstructive is the & operator ?

Remarks:
1. VX.VYy.X=yVvXxzy Iisprovablein HA

2. (Av-A)A(Bv-B) = (AAB)v =(A A B)
3. (Av-A)A(Bv-B) = (AvB)v-(AvB)
4. (Av-A)A(Bv-B) = (A=B) v -(A=B)

Why is classical arithmetic undecidable 7

How unconstructive is the & operator ?

Remarks:
1. VX.VYy.X=yVvXxzy Iisprovablein HA

2. (Av-A)A(Bv-B) = (AAB)v =(A A B)
3. (Av-A)A(Bv-B) = (AvB)v-(AvB)
4. (Av-A)A(Bv-B) = (A=B) v -(A=B)

Why is classical arithmetic undecidable 7

v X. A(X) v 7A(X) does not entall (v x. A(x)) v =(V X. A(X))

How unconstructive is the & operator ?

Remarks:
1. VX.VYy.X=yVvXxzy Iisprovablein HA

2. (Av-A)A(Bv-B) = (AAB)v =(A A B)
3. (Av-A)A(Bv-B) = (AvB)v-(AvB)
4. (Av-A)A(Bv-B) = (A=B) v -(A=B)

Why is classical arithmetic undecidable 7

v X. A(X) v 7A(X) does not entall (v x. A(x)) v =(V X. A(X))
does not entaill (3 x. A(x)) v —(3 x. A(X))

How unconstructive is the & operator ?

Remarks:
1. VX.VYy.X=yVvXxzy Iisprovablein HA

2. (Av-A)A(Bv-B) = (AAB)v =(A A B)
3. (Av-A)A(Bv-B) = (AvB)v-(AvB)
4. (Av-A)A(Bv-B) = (A=B) v -(A=B)

Why is classical arithmetic undecidable 7

v X. A(X) v 7A(X) does not entall (v x. A(x)) v =(V X. A(X))
does not entaill (3 x. A(x)) v —(3 x. A(X))

with €, Heyting arithmetic becomes classical !

We prove that for any proposition A, + A v =A holds (is provable)
by induction over the size of A

We prove that for any proposition A, + A v =A holds (is provable)
by induction over the size of A

SUppose we know
v X. A(X) v 7A(X) (3 x. A(X)) v =(3 x. A(X))

We prove that for any proposition A, + A v =A holds (is provable)
by induction over the size of A

SUppose we know
v X. A(X) v 7A(X) (3 x. A(X)) v =(3 x. A(X))
(3 x. A(X)) v (3 X. A(X))

We prove that for any proposition A, + A v =A holds (is provable)
by induction over the size of A

1. VX.VYy.X=yVvXxzy Iisprovablein HA

SUppose we know
v X. A(X) v 7A(X) (3 x. A(X)) v =(3 x. A(X))
(3 x. A(X)) v (3 X. A(X))

We prove that for any proposition A, + A v =A holds (is provable)
by induction over the size of A

1. VX.VYy.X=yVvXxzy Iisprovablein HA
2. (Av-A)A(Bv-B) = (AArB)v =(AAB)

SUppose we know
v X. A(X) v 7A(X) (3 x. A(X)) v =(3 x. A(X))
(3 x. A(X)) v (3 X. A(X))

We prove that for any proposition A, + A v =A holds (is provable)
by induction over the size of A

1. VX.VYy.X=yVvXxzy Iisprovablein HA
2. (Av-A)A(Bv-B) = (AArB)v =(AAB)

3. (Av-A)A(Bv-B) = (AvB)v-(AvB)

SUppose we know
v X. A(X) v 7A(X) (3 x. A(X)) v =(3 x. A(X))
(3 x. A(X)) v (3 X. A(X))

We prove that for any proposition A, + A v =A holds (is provable)
by induction over the size of A

1. VX.VYy.X=yVvXxzy Iisprovablein HA
2. (Av-A)A(Bv-B) = (AArB)v =(AAB)

3. (Av-A)A(Bv-B) = (AvB)v-(AvB)
4. (Av-A)A(Bv-B) = (A=B) v -(A=B)
SUppose we know

v X. A(X) v 7A(X) (3 x. A(X)) v =(3 x. A(X))
(3 x. A(X)) v (3 X. A(X))

We prove that for any proposition A, + A v =A holds (is provable)

by induction over the size of A
number of connectives

We prove that for any proposition A, + A v =A holds (is provable)

by induction over the size of A
Suppose we know : number of connectives

- Vv X. A(X) v 7A(X) letus prove F (3 x. A(X)) v =(3 x. A(X))

by I.LH: A(e(A)) v =A(e(A))
it A(e(A)), then 3 x. A(x) (trivial)
it =A(e(A)) : 3 x. A(X) entails A(e(A)), thus L.
sO —(3 X. A(X))

We prove that for any proposition A, + A v =A holds (is provable)

by induction over the size of A
Suppose we know : number of connectives

- Vv X. A(X) v 7A(X) letus prove F (3 x. A(X)) v =(3 x. A(X))

by I.LH: A(e(A)) v =A(e(A))
it A(e(A)), then 3 x. A(x) (trivial)
it =A(e(A)) : 3 x. A(X) entails A(e(A)), thus L.
sO —(3 X. A(X))

(3 x. A(X)) v (3 x. A(X))

We prove that for any proposition A, + A v =A holds (is provable)
by induction over the size of A

We prove that for any proposition A, + A v =A holds (is provable)
by induction over the size of A

Suppose we know :
v X. A(X) v 7A(X) letus prove F (V X. A(X)) v =(V X. A(X))

We prove that for any proposition A, + A v =A holds (is provable)
by induction over the size of A

Suppose we know :
v X. A(X) v 7A(X) letus prove F (V X. A(X)) v =(V X. A(X))

by |.H

We prove that for any proposition A, + A v =A holds (is provable)
by induction over the size of A

Suppose we know :
v X. A(X) v 7A(X) letus prove F (V X. A(X)) v =(V X. A(X))

by I.H : = A(&(A)) v ~A(e(A))

We prove that for any proposition A, + A v =A holds (is provable)
by induction over the size of A

Suppose we know :
v X. A(X) v 7A(X) letus prove F (V X. A(X)) v =(V X. A(X))

—ACEAR—=AEA)
by |.H

We prove that for any proposition A, + A v =A holds (is provable)
by induction over the size of A

Suppose we know :
v X. A(X) v 7A(X) letus prove F (V X. A(X)) v =(V X. A(X))

= AEA AR
by LH : - AE(-A)) v 2A(E(=A)))

We prove that for any proposition A, + A v =A holds (is provable)
by induction over the size of A

Suppose we know :
v X. A(X) v 7A(X) letus prove F (V X. A(X)) v =(V X. A(X))

= AEA AR
by LH : - AE(-A)) v 2A(E(=A)))

it mA(e(—A)), then —(v x. A(x)) (trivial)

We prove that for any proposition A, + A v =A holds (is provable)
by induction over the size of A

Suppose we know :
v X. A(X) v 7A(X) letus prove F (V X. A(X)) v =(V X. A(X))

= AEA AR
by 1H : F AE(-A)) v ~A(e(-A))

it =mA(e(—A)), then (v x. A(x)) (trivial)
it A(e(—A)) : 3 x. “A(X) entails =A(g(—A)), thus

We prove that for any proposition A, + A v =A holds (is provable)
by induction over the size of A

Suppose we know :
v X. A(X) v 7A(X) letus prove F (V X. A(X)) v =(V X. A(X))

= AEA AR
by 1H : F AE(-A)) v ~A(e(-A))

it =mA(e(—A)), then (v x. A(x)) (trivial)
it A(e(—A)) : 3 x. “A(X) entails =A(g(—A)), thus
SO —(3 X. ~A(X))

We prove that for any proposition A, + A v =A holds (is provable)
by induction over the size of A

Suppose we know :
v X. A(X) v 7A(X) letus prove F (V X. A(X)) v =(V X. A(X))

= AEA AR
by 1H : F AE(-A)) v ~A(e(-A))

it mA(e(—A)), then —(v x. A(x)) (trivial)

it A(e(—A)) : 3 Xx. 7A(X) entails =A(&(—A)), thus
SO —(3 X. 7A(X))

now, given x, we can show —A(X) = 3vy. ZA(Y)

We prove that for any proposition A, + A v =A holds (is provable)
by induction over the size of A

Suppose we know :
v X. A(X) v 7A(X) letus prove F (V X. A(X)) v =(V X. A(X))

= AEA AR
by 1H : F AE(-A)) v ~A(e(-A))

it mA(e(—A)), then —(v x. A(x)) (trivial)

it A(e(—A)) : 3 Xx. 7A(X) entails =A(&(—A)), thus
SO —(3 X. 7A(X))

now, given X, we can show —A(X) = 3vy. ZAy) = L

We prove that for any proposition A, + A v =A holds (is provable)
by induction over the size of A

Suppose we know :
v X. A(X) v 7A(X) letus prove F (V X. A(X)) v =(V X. A(X))

= AEA AR
by 1H : F AE(-A)) v ~A(e(-A))

it mA(e(—A)), then —(v x. A(x)) (trivial)

it A(e(—A)) : 3 Xx. 7A(X) entails =A(&(—A)), thus
SO —(3 X. 7A(X))

now, given X, we can show —A(X) = 3vy. ZAy) = L

SO V X. 7—A(X)

We prove that for any proposition A, + A v =A holds (is provable)
by induction over the size of A

Suppose we know :
v X. A(X) v 7A(X) letus prove F (V X. A(X)) v =(V X. A(X))

= AEA AR
by 1H : F AE(-A)) v ~A(e(-A))

it mA(e(—A)), then —(v x. A(x)) (trivial)

it A(e(—A)) : 3 Xx. 7A(X) entails =A(&(—A)), thus
SO —(3 X. 7A(X))

now, given X, we can show —A(X) = 3vy. ZAy) = L

SO V X. ==A(X) but A(X) v ~A(x)

We prove that for any proposition A, + A v =A holds (is provable)
by induction over the size of A

Suppose we know :
v X. A(X) v 7A(X) letus prove F (V X. A(X)) v =(V X. A(X))

= AEA AR
by 1H : F AE(-A)) v ~A(e(-A))

it mA(e(—A)), then —(v x. A(x)) (trivial)

it A(e(—A)) : 3 Xx. 7A(X) entails =A(&(—A)), thus
SO —(3 X. 7A(X))

now, given X, we can show —A(X) = 3vy. ZAy) = L

SO V X. ==A(X) but A(X) v ~A(x)
SO V X. A(X)

Summing up

In other words :
Heyting arithmetic with Hilbert operator = Peano + Hilbert operator

Computing with epsilon is not easy

However, HOL (without epsilon and EM) is constructive

| was asked : what is the difference between HOL and system F 7

OL : formalism quantification over propositions

System F : type system quantification over types

Link : when we view proofs as A-terms (starting next week)

Normalization of system F (actually Fy) will allow to show cut elimination in
HOL

