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How do we define mathematics?

All humans are mortal, Socrates is human, thus Socrate is mortal.

correction : syntaxic criterion

FA=B FA
FB

The stones to build mathematical proofs

FVx.H(x) = M(x)
F H(s) = M(S)
= M(S)

A mathematical proof is a construction

- H(S)




Birth of modern mathematical logic

Mathematical truth defined through totally objective rules

1872 : The Begriffsschrift of Frege
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mechanical verification

proof = tree structure
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A century later

Mechanical verification
becomes real

First proof system : Automath (1968)

N. G. de Bruijn

‘ Formal proofs are actually built. ‘

A modern proof system : Coq
» Same principle

» More modern formalism
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Before (informal proofs) : we want the formalism to be expressive
(many theorems)

Now (formal proofs) we want also :
» Concise proofs
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What do we want from a formalism

Before (informal proofs) : we want the formalism to be expressive
(many theorems)

Now (formal proofs) we want also :
» Concise proofs
» Close to our intuition (no spurious syntactical hacking)
> ...

This course : study formalisms with these aims in mind



First-order logic - language

A set of variables : x,y,z,...

A set of function symbols : f, g, h,... each function symbol has an
arity (number of arguments).

A set of predicate symbols : A, B, C, P, R ... each with an arity.

Objects :
» a variable is a term,

» if fis of arity n and t1,...,t, are terms, then f(t1,...,t,) is
a term.

Propositions :
» if P is of arity n then P(t1,...,t,) is a proposition

» is A and B are propositions,
AANB,AV B,A= B, 1,Vx.A,3x.B are propositions.
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Arithmetic
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Examples

Arithmetic
Function symbols : 0,5, +, x
Predicate symbol : =

Set Theory
Predicate symbols : €, =



A theory is :
» A language (functions + predicate symbols)
> A set of axioms (propositions of the language)

Axioms of arithmetic :

Vx,0+ x = x Vx,0x x =0
Vx y,S(x)+y=S(x+y) VYxy,S(xX)xy=y+xxy

Vx,=(0 = S(x))
Vx y,S5(x) =S(y) = x=y

P(0) A (¥x, P(x) = P(S(x))) = Vx, P(x).

Vx,x = x
Vx y,P(x) Ax =y = P(y).
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I" set of propositions
A Ais provable unde hypothesises+axioms [
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(this gives intuitionistic logic

NMN-Av-A (EM)

(this gives classical logic)



Relating correctness and truth : models and semantics

A set U (universe)
For every f of arity n, a function |f| : U" — U
For every P of arity n, a function |P|:U" — {0,1} (equivalently
|Pl CPU"))
Given any Z mapping variables x to U we define |t|z € U by :
> x|z = Z(x)

> |f(tr,...,tn)|lz = |f|(|talz, - - - |talz)



Relating correctness and truth : models and semantics

A set U (universe)
For every f of arity n, a function |f| : U" — U
For every P of arity n, a function |P|:U" — {0,1} (equivalently
|Pl CPU"))
Given any Z mapping variables x to U we define |t|z € U by :
> x|z = Z(x)

> |f(tr,...,tn)|lz = |f|(|talz, - - - |talz)
Given any Z we define |A| € {0,1} by :
> P(t,...,tn)|lz = |P|(|t1|z, - - - |[talz)
> |AAB|z = |Alz A Bz
» similar for vV, =, L ...
> |Vx.Alz = mingey|Alzxa
» |Ix.Alz = maxacu|Alz:xa (this is very much classical logic)
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Model of a theory

A model is a triple : U, interpretation of fs, interpretation of Ps.
It is a model of a theory T if forany A€ T, |Alz =1 (for any Z
since A is closed)

Correctness : If T = A, and VB €T, |B|z =1, then |Alz = 1.
proof : quite straightforward (good exercise)

Coherence : There is no proof of 7 F L (easy consequence of
correctness)

Completeness : If for any model validating I', |A|z = 1, then
I Ais provable.
proof : more difficult (Godel's PhD)

» Relates correctness with truth

» incompleteness : limit of « truth » in math
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An extension of first-order logic

Deduction modulo : we add rewrite rules to the language

0+x > x
SxX)+y > S(x+vy)

Oxx > 0
S(xX)xy > y+xxy

we allow reasoning modulo the rewrite rules :

MN=¢
M=

if o =gt

How to prove 2 +2 =47
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Replacing more axioms by rewrite rules

How to ensure 0 #£ 17

Vx.0 # S(x)
Add a new predicate symbol EQZ

EQZ(0)

> T
EQZ(S(x)) > L

Exercise : finish the proof

Important : avoiding messy rewrite rules (AN B> L ...



Replacing more axioms by rewrite rules(2)

How to ensure Vx.Vy.S(x) = S(y) = x=y?
(injectivity of S)



Replacing more axioms by rewrite rules(2)

How to ensure Vx.Vy.S(x) = S(y) = x=y?
(injectivity of S)
Add a new function symbol pred

pred(S(x)) > x
pred(0) > 0 (or whatever)

Exercise : finish the proof



A "simple” presentation of Arithmetic

Rules :
0+x > x EQZ(0)
Sx)+y > S(x+y) EQZ(5(x))
Oxx > 0 pred(S(x))
Sx)xy > y+xxy pred(0)
Axioms :
Vx.x = x

Vx.Vy.x =y A P(x) = P(y)
P(0) A (Vx.P(x) = P(5(x))) = Vy.P(y)

v Vv VvV V

S

o
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Cuts in proofs

Another form of dynamics / computation / transformation in
proofs

What is a cut?

1. Prove Va.Vb.(a+ b)? = 2 + b? 4 2ab (ends with V-intro)
2. Deduces ¥b.(3 + b)?> = 9 + b? + 6b (use V-elim)

We could have proved (2) directly (following the same scheme as

1)



Logical Cut

An introduction rule followed by the corresponding elimination rule

o1 o2
A =B .
(A-i)

TEANB (e

MrM=A



Logical Cut

An introduction rule followed by the corresponding elimination rule

o1 02

Mr=A =B
FrN-AAB
Tra (el

(A1)

Simplifies to :
01

r-A
exercise : find the simplification for the other logical cuts




Cut Elimination

» Does this process terminate ?

» If we have a proof of ' - A, can we find a cut-free proof?



Cut Elimination

» Does this process terminate ?
» If we have a proof of ' - A, can we find a cut-free proof?

Termination : a major point of this course
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Why does it matter to us?

In a cut-free proof, there are only axiom rules above elimination
rules (or the EM)

If a proof is cut-free, without axiom and constructive, it ends with
an elimination rule.
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Cut-free proofs

Why does it matter to us?

In a cut-free proof, there are only axiom rules above elimination
rules (or the EM)

If a proof is cut-free, without axiom and constructive, it ends with
an elimination rule.

A proof of = AV B that is constructive and cut-free ends with
V—ilofVv—i2

A proof of - Ix.A(x) that is constructive and cut-free contains a
witness.
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Lemma : a cut free derivation (proof) of [| - A always ends
with an introduction rule.
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Cut Free - axiom free proofs

Lemma : a cut free derivation (proof) of [| - A always ends
with an introduction rule.

Proof : by induction over the derivation (could be the length of
the derivation, but not necessary).

Let us do a few cases.
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Why "natural” deduction ?

The ND rules aim at corresponding to actual (human) deduction
steps.
Indeed :

Coq's formalism includes / extends first-order logic with some
rewrite/computation rules.

Proofs are built top-down (goal-driven) and basic tactics
correspond to ND rules

OK, now we can either :
> code
> stop
> play with a newer prototype

Next week : cuts and constructivity in Heyting Arithmetic



