
From F to Fω
F for cut elimination of 2nd order arithmetic (can quantify over propositions,
predicates, but not properties of properties)

A:Type, P : nat→Type are mapped to Types (after erasing dependency)

CR : (term→Type)→Type would be mapped to some Type→Type

In Fω : simple calculus of types

K ::= Type | K→K

T ::= α | T→ T | ∀ α:K.T | Λ α:K.T | T T

t ::= x | λ x:T.t | t t | Λ α:K.t | t T

Fω rules
Γ wf

Γ (α:K) wf
Γ wf

Γ ⊢ α:K
Γ ⊢ T1:Type Γ ⊢ T1:Type

Γ ⊢ T1→T2:Type
Γ (α:K)⊢ T:Type

Γ ⊢ ∀ α:K.T:Type

Γ (α:K1)⊢ T:K2

Γ ⊢Λ α:K1.T : K1→K2

Γ ⊢ T1:K1 Γ⊢ T2 : K1→K2

Γ ⊢ T1 T2 : K2

Γ ⊢ T : Type

Γ (x:T) wf

Γ wf

Γ ⊢ x : T

(x:T)
Γ (x:U)⊢ t : T

Γ⊢ λ x:U.t : U→ T

Γ⊢ t : U→ T Γ⊢ u : U

Γ⊢ t u: T

Γ(α:K)⊢ t : T

Γ⊢Λ α:K.t:∀α:K.T

Γ⊢t:∀α:K.T Γ⊢U:K

Γ⊢ t U :T[α \ U]

Λ α:K.T U ▷β T [α \ U]

From a programming language point of view

We can talk about parametrized types:

list : Type → Type

list ≡ Λα:Type. ∀ X:Type. X →(α →X →X) →X

From a programming language point of view:

- the impredicative encoding is not practically useful

- but talking about functions from types to types is

PTSs
Sorts S

t ::= s | x | λ x:t.t | t t | Π x:T.t

[] wf
Γ⊢ T:s

Γ(x:T) wf

Γ wf

Γ⊢ x:T

S = {Type; Kind} (a.o.)

A ⊂ SxS (= {(Type,Kind)})

R ⊂ SxS

Γ⊢Π x:T.U : s Γ(x:T)⊢ t : U

Γ⊢ λx:T.t:Π x:T.U

Γ⊢u : Π x:T.U Γ⊢ t : T

Γ⊢ u t : U[x \ t]

Γ⊢ T : s1 Γ(x:T)⊢ U:s2

Γ⊢Π x:T.U : s2
(s1,s2)∈ R

Γ wf

Γ⊢ s1:s2

(s1,s2)∈ A

Γ⊢t:T Γ⊢ T':s

Γ⊢ t :T'

T=ᵦ T'

PTSs
Sorts S

t ::= s | x | λ x:t.t | t t | Π x:T.t

Γ⊢ T : s1 Γ(x:T)⊢ U:s2

Γ⊢Π x:T.U : s2

Γ wf

Γ⊢ s1:s2

R = {(Type, Type)}

 {(Type, Type); (Type, Kind)}

 {(Type, Type); (Kind, Type)}

 {(Type, Type); (Kind, Type); (Kind,Kind)}

 {(Type, Type); (Kind, Type); (Kind,Kind); (Type, Kind)}

Simply typed calculu λ→

LF aka λ Π

 System F

Fω

Calculus of Constructions

Calculus of Constructions: Coquand & Huet, 1985

Barendregt's Cube

λ→

F

Fω

λΠ

CoC

Dimensions:

- Impredicativity

- Type constructors (?)

- Dependent Types

Other PTSs

Underlying Coq:

Prop : Type1 : Type2 : Type3 : …

Rules: (Typei, Prop, Prop) (polymorphism / impredicativity)

(Typei, Typej, Typemax(i,j)) (predicative universes)

Additional subtyping: Typei ⊂ Typei+1

covariance: T⊂ U ⇒ Π x:A.T ⊂ Π x : A.U

Γ⊢ T : s1 Γ(x:T)⊢ U:s2

Γ⊢Π x:T.U : s3
(s1, s2, s3)∈ R

Other additions: inductive, co-inductive types…

Original terminology:

Extended Calculus of Constructions

(ECC, Luo)

Simple Model of Coq
Without going into details

We mimick everything in Set Theory:

|Prop| = {0; 1}

|Π x:A.B|I = ∏α∈|A| |B|I; x← α

|λ x:T.t|I = α∈|T|I ↦ |t|I; x→ α

etc…

‣ Not deep

‣ Some technical details must be taken care of

‣ Allows to easily validate some axioms

‣ Not possible with an impredicative sort Set in which 0≠1 !

Computational Proofs

Simple purely computational proof
2 + 2 4

2 + 2 = 4

refl 4 : 4 = 4 refl 4 : 2+2 = 4

refl 400 : 200+200 = 4

4 = 4

Why is a number prime ?
5 is prime because :

- 2 does not divide 5

- 3 does not divide 5

- 4 does not divide 5

- 0 does not divide 5

- all other natural numbers are

either 1, 5, or strictly larger
than 5

- and if they are > 5, they do
not divide 5

How do we formalize this in Coq ?

A more computational proof
‣Write test : nat -> bool
‣test n tries to divide n by 2, 3, … , n-1 and returns true iff it finds no divisor

‣prove:

 test_corr : forall n, test n = true -> prime n
what is a proof of prime 5 ?

test_corr 5 (refl true) : prime 5

needs to check refl true : test 5 = true
 needs to compute test 5 ▸ true

Going further

is prime !

When the computer helps us

Largest known prime number in 1951 : (2148 + 1) / 17 (44 digits)

today : 282,589,933 − 1 (24,862,048 digits)

Why such progress ? obvious

But also new mathematics

Pocklington's theorem (1914)

Plan of action

Defining certificates

Formalizing certificates

Checking certificates

How are certificates built ?

is prime !

 proved in Coq!

Going further

This is actually old. Since more technology has been brought in:

- more efficient coding of numbers in Coq

- add more efficient representation of these numbers to Coq

- using more modern results about prime numbers (elliptic curves)

It is not just about the numbers

Computational Reflection
Using computation can also be useful for some automations. Like
the Ring tactic

