

From F to Fw

F for cut elimination of 2nd order arithmetic (can quantify over propositions, predicates, but not properties of properties)

A:Type, P : nat \rightarrow Type are mapped to Types (after erasing dependency)

CR: (term \rightarrow Type) \rightarrow Type would be mapped to some Type \rightarrow Type

In F
$$\omega$$
 : simple calculus of types
 $K ::= Type \mid K \rightarrow K$
 $T ::= \alpha \mid T \rightarrow T \mid \forall \alpha:K.T \mid \Lambda \alpha:K.T \mid T T$
 $t ::= x \mid \lambda x:T.t \mid t t \mid \Lambda \alpha:K.t \mid t T$

$F\omega$ rules

 $\frac{\Gamma \text{ wf}}{\Gamma (\alpha: K) \text{ wf}} \qquad \frac{\Gamma \text{ wf}}{\Gamma \vdash \alpha: K} \qquad \frac{\Gamma \vdash T_1: \text{Type}}{\Gamma \vdash T_1: \text{Type}} \qquad \Gamma \vdash T_1: \text{Type} \\ \Gamma \vdash T_1 \rightarrow T_2: \text{Type} \end{cases}$

 $\frac{\Gamma(\alpha:K_1) \vdash T:K_2}{\Gamma \vdash \Lambda \alpha:K_1.T:K_1 \rightarrow K_2} \qquad \qquad \frac{\Gamma \vdash T_1:K_1 \quad \Gamma \vdash T_2:K_1 \rightarrow K_2}{\Gamma \vdash T_1 T_2:K_2}$

 $\frac{\Gamma \vdash T : Type}{\Gamma (x:T) \text{ wf}} \qquad \frac{\Gamma \text{ wf}}{\Gamma \vdash x:T} (x:T) \qquad \frac{\Gamma (x:U) \vdash t:T}{\Gamma \vdash \lambda x:U.t:U \rightarrow T}$

 $\begin{array}{ccc} \Gamma \vdash t : U \rightarrow T & \Gamma \vdash u : U \\ & \Gamma \vdash t \; u : \; T \end{array}$

 $\frac{\Gamma(\alpha:K) \vdash t:T}{\Gamma \vdash \Lambda \alpha:K.t:\forall \alpha:K.T} \qquad \underline{I}$

 $\Lambda \alpha : K.T \ U \ \triangleright_{\beta} T \ [\alpha \setminus U]$

 $\Gamma (\alpha:K) \vdash T:Type$ $\Gamma \vdash \forall \alpha: K.T: Type$

 $\frac{\Gamma \vdash t{:} \forall \alpha{:}K.T \quad \Gamma \vdash U{:}K}{\Gamma \vdash t \ U \ {:}T[\alpha \setminus U]}$

From a programming language point of view

We can talk about parametrized types: list : Type \rightarrow Type

list = $\Lambda \alpha$:Type. \forall X:Type. X $\rightarrow (\alpha \rightarrow X \rightarrow X) \rightarrow X$

From a programming language point of view:

- the impredicative encoding is not practically useful
- but talking about functions from types to types is

/ useful es is

PTSs

 $\frac{\Gamma \vdash T : s_1 \quad \Gamma(x:T) \vdash U:s_2}{\Gamma \vdash \Pi \ x:T.U : s_2} (s_1,s_2) \in \mathcal{R}$

 $\Gamma \vdash u : \Pi x:T.U \quad \Gamma \vdash t : T$ $\Gamma \vdash u t : U[x \setminus t]$

$S = \{\text{Type}; \text{Kind}\} (a.o.)$ $\mathcal{A} \subset S \times S \ (= \{(Type, Kind)\})$

$\Gamma \vdash \Pi x:T.U : s \Gamma(x:T) \vdash t : U$ $\Gamma \vdash \lambda x:T.t:\Pi x:T.U$

Sorts S Γwf $t ::= s | x | \lambda x:t.t | tt | \Pi x:T.t$ $\Gamma \vdash S_1:S_2$

PTSs

 $\Gamma \vdash T : S_1 \quad \Gamma(X:T) \vdash U:S_2$ $\Gamma \vdash \Pi x: T.U : s_2$

 $R = \{(Type, Type)\}$ {(Type, Type); (Type, Kind)} {(Type, Type); (Kind, Type)} {(Type, Type); (Kind, Type); (Kind,Kind)} Fω {(Type, Type); (Kind, Type); (Kind, Kind); (Type, Kind)} Calculus of Constructions

Calculus of Constructions: Coquand & Huet, 1985

Simply typed calculu $\lambda \rightarrow$ LF aka λΠ System F

Barendregt's Cube

Dimensions:

- Impredicativity

- Type constructors (?) - Dependent Types

Other PTSs

 $\frac{\Gamma \vdash T : s_1 \quad \Gamma(x:T) \vdash U:s_2}{\Gamma \vdash \Pi \ x:T.U : s_3} (s_1, s_2, s_3) \in \mathcal{R}$ Underlying Coq:

(ECC, Luo)

 $Prop : Type_1 : Type_2 : Type_3 : \dots$

Rules: (Type_i, Prop, Prop) (polymorphism / impredicativity) $(Type_i, Type_j, Type_{max(i,j)})$ (predicative universes)

Additional subtyping: Type_i \subset Type_{i+1} covariance: $T \subset U \Rightarrow \Pi x: A.T \subset \Pi x : A.U$

Other additions: inductive, co-inductive types...

Original terminology: Extended Calculus of Constructions

Without going into details We mimick everything in Set Theory:

$$\begin{split} |\operatorname{Prop}| &= \{0; 1\} \\ |\Pi \ x:A.B|_{I} &= \prod_{\alpha \in |A|} |B|_{I; \ x \leftarrow \alpha} \\ |\lambda \ x:T.t|_{I} &= \alpha \in |T|_{I} \quad \mapsto \quad |t|_{I; \ x \to \alpha} \\ \text{etc...} \end{split}$$

- Not deep
- Some technical details must be taken care of
- Allows to easily validate some axioms
- Not possible with an impredicative sort Set in which $0 \neq 1$!

Computational Proofs

Simple purely computational proof

refl 400 : 200+200 = 4

5 is prime because :

- 2 does not divide 5
- 3 does not divide 5
- 4 does not divide 5
- 0 does not divide 5
- all other natural numbers are either 1, 5, or strictly larger than 5
- and if they are > 5, they do not divide 5

How do we formalize this in Coq?

- Write test : nat -> bool
- ▶test n tries to divide n by 2, 3, ..., n-1 and returns true iff it finds no diviso
- ▶ prove:
- test corr : forall n, test n = true -> prime n what is a proof of prime 5?
 - test corr 5 (refl true) : prime 5

needs to check refl true : test 5 = true needs to compute test 5 < true

Going further

is prime !

Largest known prime number in $1951 : (2^{148} + 1) / 17$ (44 digits)

 $today: 2^{82,589,933} - 1$ (24,862,048 digits)

Why such progress ? obvious But also new mathematics

Let n > 1 and natural numbers a, $(p_1, \alpha_1), \ldots, (p_k, \alpha_k)$; n is prime if :

 $p_1 \dots p_k$ are prime numbers $(p_1^{\alpha_1} \dots p_k^{\alpha_k}) \mid (n-1)$ $a^{n-1} = 1 \pmod{n}$ $\forall i \in \{1, \dots, k\} \ \gcd(a^{\frac{n-1}{p_i}} - 1, n) = 1$ $p_1^{\alpha_1} \dots p_k^{\alpha_k} > \sqrt{n}.$

 $a, p_1, \alpha_1, \ldots, p_k, \alpha_k$ is a Pocklington *certificate* for n.

(0)(1)(2)(3)(4)

Plan of action

- prove Pocklington's theorem : done by Oostdijk and Caprotti (2001)
- define a data-structure for representing certificates
- write a certificate checker in Coq. prove it correct
- build certificates outside Coq
- Sit back and relax

A certificate for n is some tupple : $a, p_1, \alpha_1, \ldots, p_k, \alpha_k$. self-contained certificate : recursively add certificates for each p_i :

$$c = \{n, a, [c_1^{\alpha_1}; \ldots; c_k^{\alpha_k}]\}$$

a certificate for 127 is :

 $\{127, 3, [\{7, 2, [\{3, 2, [(2, prime2)]\}; (2, prime2)]\};$ $\{3, 2, [(2, prime2)]\};$ $(2, prime2)]\}$

Share the certificates by flattening the list :

 $[\{127, 3, [7; 3; 2]\}; \{7, 2, [3; 2]\}; \{3, 2, [2]\}; (2, prime2)].$

such a certificate is a mini-data-base containing all prime numbers used in proving that n is prime.

Checking certificates

 $\forall l$, Check $l = true \Rightarrow \forall c \in l$, prime $(n \ c)$

recursion over the list (certificate); test the computational conditions.

only difficulty : time&space of the calculations

Inductive positive : Set :=

- | xH : positive
- | x0 : positive -> positive
- | xI : positive -> positive.

 $a^{n-1} = 1 \pmod{n}$ main trick : keep things small by calculating modulo n

a C program builds the certificate and prints it as a Coq term. Different recipes : generic : find a factorization using ECM (Elliptic Curve Library)

Mersenne : for $2^{m} - 1$. various tricks $2^{n} - 1 - 1 = 2(2^{n-1} - 1)$

and $2^{2p} - 1 = (2^p - 1)(2^p + 1)$, $2^{3p} - 1 = (2^p - 1)(2^{2p} + 2^p + 1)$;

help find a decomposition.

Lucas criterion

Proth numbers

Can be the critical step.

For random prime numbers, up to 200 digits.

For the largest Mersenne primes we treat, some hack was needed.

POSTES

proved in Coq!

is prime !

Going further

This is actually old. Since more technology has been brought in:

- more efficient coding of numbers in Cog
- add more efficient representation of these numbers to Coq
- using more modern results about prime numbers (elliptic curves)

Some theorems seem non-computational in nature; yet their (known) proofs rely on heavy computations.

- The four color theorem (1976) done in Coq
- The Kepler conjecture (Thomas Hales, 1998) Interesting because the exposition of the arguments mixes mathematics and ad-hoc programs; both sophisticated.

there is a real problem of verification standarts

Computational Reflection

Using computation can also be useful for some automations. Like the Ring tactic

