
From F to Fω
F for cut elimination of 2nd order arithmetic (can quantify over propositions, 
predicates, but not properties of properties)

A:Type, P : nat→Type  are mapped to  Types (after erasing dependency)


CR : (term→Type)→Type  would be mapped to some Type→Type

In Fω : simple calculus of types

K ::= Type | K→K

T ::=  α | T→ T | ∀ α:K.T |  Λ α:K.T |  T T

t ::= x | λ x:T.t | t t | Λ α:K.t | t T



Fω  rules
Γ wf 


Γ (α:K) wf
Γ wf 


Γ ⊢ α:K
Γ ⊢ T1:Type   Γ ⊢ T1:Type 


Γ ⊢ T1→T2:Type
Γ (α:K)⊢ T:Type  

Γ ⊢ ∀ α:K.T:Type

Γ (α:K1)⊢ T:K2 

Γ ⊢Λ α:K1.T : K1→K2

Γ ⊢ T1:K1       Γ⊢ T2 : K1→K2

Γ ⊢ T1 T2 : K2

Γ ⊢ T : Type 

Γ (x:T) wf

Γ wf 

Γ ⊢ x : T

(x:T)
Γ (x:U)⊢ t : T


Γ⊢ λ x:U.t : U→ T

Γ⊢ t : U→ T    Γ⊢ u : U

Γ⊢ t u: T

Γ(α:K)⊢ t : T

Γ⊢Λ α:K.t:∀α:K.T

Γ⊢t:∀α:K.T  Γ⊢U:K

Γ⊢ t U :T[α \ U]

Λ α:K.T U ▷β T [α \ U]



From a programming language point of view

We can talk about parametrized types:

list : Type → Type

list ≡   Λα:Type. ∀ X:Type. X →(α →X →X) →X

From a programming language point of view:

- the impredicative encoding is not practically useful

- but talking about functions from types to types is



PTSs
Sorts S

t ::= s | x | λ x:t.t | t t | Π x:T.t

[] wf
Γ⊢ T:s 

Γ(x:T) wf

Γ wf

Γ⊢ x:T

S = {Type; Kind} (a.o.)

A ⊂ SxS  (= {(Type,Kind)} )

R ⊂ SxS

Γ⊢Π x:T.U : s Γ(x:T)⊢ t : U

Γ⊢ λx:T.t:Π x:T.U 

Γ⊢u : Π x:T.U   Γ⊢ t : T

Γ⊢ u t : U[x \ t]

Γ⊢ T : s1       Γ(x:T)⊢ U:s2


Γ⊢Π x:T.U : s2
(s1,s2)∈ R

Γ wf

Γ⊢ s1:s2

(s1,s2)∈ A

Γ⊢t:T   Γ⊢ T':s

Γ⊢ t :T'

T=ᵦ T'



PTSs
Sorts S

t ::= s | x | λ x:t.t | t t | Π x:T.t

Γ⊢ T : s1       Γ(x:T)⊢ U:s2


Γ⊢Π x:T.U : s2

Γ wf

Γ⊢ s1:s2

R = {(Type, Type)}

 {(Type, Type); (Type, Kind)}

 {(Type, Type); (Kind, Type)}

 {(Type, Type); (Kind, Type); (Kind,Kind)}

 {(Type, Type); (Kind, Type); (Kind,Kind); (Type, Kind)}

Simply typed calculu    λ→

LF aka  λ Π

 System F

Fω

Calculus of Constructions

Calculus of Constructions: Coquand & Huet, 1985



Barendregt's Cube

λ→

F

Fω

λΠ

CoC

Dimensions:

- Impredicativity

- Type constructors (?)

- Dependent Types



Other PTSs

Underlying Coq:


Prop : Type1 : Type2 : Type3 : …


Rules: (Typei, Prop, Prop)  (polymorphism / impredicativity)

(Typei, Typej, Typemax(i,j))    (predicative universes)


Additional subtyping: Typei ⊂ Typei+1

covariance: T⊂ U ⇒ Π x:A.T ⊂ Π x : A.U

Γ⊢ T : s1       Γ(x:T)⊢ U:s2


Γ⊢Π x:T.U : s3
(s1, s2, s3)∈ R

Other additions: inductive, co-inductive types…

Original terminology:

Extended Calculus of Constructions

(ECC, Luo)



Simple Model of Coq
Without going into details

We mimick everything in Set Theory:


|Prop| = {0; 1}

|Π x:A.B|I = ∏α∈|A| |B|I; x← α

|λ x:T.t|I =    α∈|T|I   ↦   |t|I; x→ α

etc…

‣ Not deep

‣ Some technical details must be taken care of

‣ Allows to easily validate some axioms

‣ Not possible with an impredicative sort Set in which 0≠1 !



Computational Proofs



Simple purely computational proof
2 + 2      4

2 + 2 = 4

refl 4 : 4 = 4 refl 4 : 2+2 = 4

refl 400 : 200+200 = 4

4 = 4



Why is a number prime ?
5 is prime because :


- 2 does not divide 5

- 3 does not divide 5

- 4 does not divide 5

- 0 does not divide 5

- all other natural numbers are 

either 1, 5, or strictly larger 
than 5


- and if they are > 5, they do 
not divide 5

How do we formalize this in Coq ?



A more computational proof
‣Write  test : nat -> bool
‣test n tries to divide n by 2, 3, … , n-1 and returns true iff it finds no divisor

‣prove:

      test_corr : forall n, test n = true -> prime n
what is a proof of prime 5 ?

test_corr 5 (refl true) : prime 5

needs to check refl true : test 5 = true
  needs to compute  test 5 ▸  true



Going further

is prime !



When the computer helps us

Largest known prime number in 1951 : (2148 + 1) / 17   (44 digits)


today : 282,589,933 − 1 (24,862,048 digits)

Why such progress ? obvious

But also new mathematics



Pocklington's theorem (1914)



Plan of action



Defining certificates



Formalizing certificates



Checking certificates



How are certificates built ?



is prime !

  proved in Coq!  



Going further

This is actually old. Since more technology has been brought in:


- more efficient coding of numbers in Coq


- add more efficient representation of these numbers to Coq


- using more modern results about prime numbers (elliptic curves)



It is not just about the numbers



Computational Reflection
Using computation can also be useful for some automations. Like 
the Ring tactic


