
Martin-Löf's Type Theory



From λ→Σ+ to Type Theory
We have: 

- Dependent types, encodes FOL up to cut−elimination for logical cuts 

(for ∧, ∨, ⇒, ∀, ∃)


- System T: allows the definition of complex computations
RT : T → (N → T → T) → N → T

Let us add the induction axiom :


RP : (P 0) → (Π x : N . (P n) → (P (S n))) → Π n : N . (P n)

(RP  p0 pS  0)   ▷  p0  


                        (RP  p0 pS  (S n))   ▷  pS n  (RP  p0 pS n)



Subject reduction 
(RP  p0 pS  0)   ▷  p0  

RP : (P 0) → (Π x : N . (P n) → (P (S n))) → Π n : N . (P n) 

Suppose   (RP  p0 pS  0) : T

so p0:  (P 0)

so pS: (Π x : N . (P n) → (P (S n)))

so: 0 : N  (it is)

so:  T =β P 0

so: p0 : T

Obviously similar for 

                        (RP  p0 pS  (S n))   ▷  pS n  (RP  p0 pS n)



Equality and equality cuts
IT :  T → T → Type     (provided T : Type)

refT : Π x : T . IT x x

LP : Π x : T. Π y : T. P x → IP x y → P y

LP a b p (refT c) ▷ p

LP a b p (refT c) : Q

so :    P : T → Type,   a : T,   b : T,   p : P a,   Q =β P b

since   (refT c): IT c c, we have  IT c c =β IT a b,    so a =β b =β c

so by conversion,    p : P b

Γ⊢ T : Type

Γ⊢ IT: T → T → Type

formally:



A last detail

Γ wf 

Γ⊢⊥:Type

Γ⊢t:⊥   Γ⊢ T:Type

Γ⊢efqT(t) : T

We want to talk about falsity 

Nothing more to be added



Normalization
We can still map normalization to the corresponding system without 
dependent types. That is System T with product and sum types

N N

IT t u N

Σ x:A.B A×B

A+B A+B

Π x:A.B A→B



Closed normal terms
A closed normal term of type …  is of the form(s) …

N 0, S(t)

IT t u refT v

Σ x:A.B (a, b)

A+B i(a),  j(b)

Π x:A.B λ x:A'.t

⊥ none



The constructive paradise
By normalizing a proof of  Σ x:A.B, we obtain  t:A  and  p : B[x\ t]

By normalizing a proof of A+B, we obtain either  i(A)  or  j(b)

From a proof    t : Π x:A. Σ y:B.C    we can obtain:

  f : A → B

  p : Π x:A. C[y \ (f x)]

(furthermore f is typable in System T)

There is no term t   s.t.   [A:Type] ⊢ t : A + (A → ⊥)

There are closed A:Type with no term t   s.t.   [A:Type] ⊢ t : A + (A → ⊥)

(and other variants)

f ≡ λ x:A . π₁(t x)

p ≡ λ x:A . π2(t x)



Limits of this Type Theory
Suppose we have        [] ⊢ p : IN 0 (S 0) → ⊥

by erasing type dependencies, we get:     [] ⊢ |p| : N → ⊥

and thus a closed term of type ⊥ (in System T or MLTT)

Hence: 0≠1 is not provable in MLTT.


Indeed having a discrimination predicate means having "really dependent 
types" :

     EQZ 0 ▷ ⊤ 

EQZ (S _)▷ ⊥

What happens in Coq ?



Historical Coq
nat_rec : Π P : nat→ Type. P 0 → 

                (Π m : nat. P m → P (S m)) → 

                  Π n:nat. P n

nat_rect : Π P : nat→ Kind. P 0 → 

                (Π m : nat. P m → P (S m)) → 

                  Π n:nat. P n

We can then define 

EQZ ≡ (nat_rect  λ x:nat.Type 

                           True 

                            λ m:nat. λ X:Type. False)                        



Modern Coq

Definition EQZ (n:nat) : Type :=

  match n with

  | 0 => True

  | S _ => False

end.

In Coq, operators like RT are not primitive, but built by combining:

- pattern-matching

- structural recursion



Universes
In Coq:   Type1 : Type2 : Type3 : …

together with pattern-matching (R operators) towards all Typei

n:U

bot : U

π : Π a:U. (tr a)→ U) → U

…

It is interesting to look at the restrictions over eliminations of inductive 
types to keep the system consistent (but done in 2-7-2 ?)

tr : U → Type

tr n ▷ nat


tr bot ▷ ⊥


tr (π a f) → Π x:tr a. tr(f x)

with:Martin-Löf's proposal:

An addition type U: Type   (universe)

"constructors" for this type:




Type Universes in Martin-Löf style
Martin-Löf's proposal:

An addition type U: Type   (universe)

"constructors" for this type:

n:U

bot : U

π : Π a:U. (tr a)→ U) → U

…

tr : U → Type

tr n ▷ nat


tr bot ▷ ⊥


tr (π a f) → Π x:tr a. tr(f x)

with:

U is an inductive type which allows to model all types (except U)

tr is defined by pattern-matching + recursion

but tr occurs in the definition of U: so-called inductive-recursive type

(this last feature is not available in Coq)

What does a universe hierarchy look like in this setting ?

Which extension would be paradoxical ?



Coq Exercise
Construct div2 using only:

- Definition

- nat_rec (or match with + Fixpoint)

Definition P2 n :=  

         {p : nat & {n = p + p}+{ n = S (p + p)}} .


div2 (n : nat) : P2 n 



