
Martin-Löf's Type Theory

From λ→Σ+ to Type Theory
We have:

- Dependent types, encodes FOL up to cut−elimination for logical cuts

(for ∧, ∨, ⇒, ∀, ∃)

- System T: allows the definition of complex computations
RT : T → (N → T → T) → N → T

Let us add the induction axiom :

RP : (P 0) → (Π x : N . (P n) → (P (S n))) → Π n : N . (P n)

(RP p0 pS 0) ▷ p0

 (RP p0 pS (S n)) ▷ pS n (RP p0 pS n)

Subject reduction
(RP p0 pS 0) ▷ p0

RP : (P 0) → (Π x : N . (P n) → (P (S n))) → Π n : N . (P n)

Suppose (RP p0 pS 0) : T

so p0: (P 0)

so pS: (Π x : N . (P n) → (P (S n)))

so: 0 : N (it is)

so: T =β P 0

so: p0 : T

Obviously similar for

 (RP p0 pS (S n)) ▷ pS n (RP p0 pS n)

Equality and equality cuts
IT : T → T → Type (provided T : Type)

refT : Π x : T . IT x x

LP : Π x : T. Π y : T. P x → IP x y → P y

LP a b p (refT c) ▷ p

LP a b p (refT c) : Q

so : P : T → Type, a : T, b : T, p : P a, Q =β P b

since (refT c): IT c c, we have IT c c =β IT a b, so a =β b =β c

so by conversion, p : P b

Γ⊢ T : Type

Γ⊢ IT: T → T → Type

formally:

A last detail

Γ wf

Γ⊢⊥:Type

Γ⊢t:⊥ Γ⊢ T:Type

Γ⊢efqT(t) : T

We want to talk about falsity

Nothing more to be added

Normalization
We can still map normalization to the corresponding system without
dependent types. That is System T with product and sum types

N N

IT t u N

Σ x:A.B A×B

A+B A+B

Π x:A.B A→B

Closed normal terms
A closed normal term of type … is of the form(s) …

N 0, S(t)

IT t u refT v

Σ x:A.B (a, b)

A+B i(a), j(b)

Π x:A.B λ x:A'.t

⊥ none

The constructive paradise
By normalizing a proof of Σ x:A.B, we obtain t:A and p : B[x\ t]

By normalizing a proof of A+B, we obtain either i(A) or j(b)

From a proof t : Π x:A. Σ y:B.C we can obtain:

 f : A → B

 p : Π x:A. C[y \ (f x)]

(furthermore f is typable in System T)

There is no term t s.t. [A:Type] ⊢ t : A + (A → ⊥)

There are closed A:Type with no term t s.t. [A:Type] ⊢ t : A + (A → ⊥)

(and other variants)

f ≡ λ x:A . π₁(t x)

p ≡ λ x:A . π2(t x)

Limits of this Type Theory
Suppose we have [] ⊢ p : IN 0 (S 0) → ⊥

by erasing type dependencies, we get: [] ⊢ |p| : N → ⊥

and thus a closed term of type ⊥ (in System T or MLTT)

Hence: 0≠1 is not provable in MLTT.

Indeed having a discrimination predicate means having "really dependent
types" :

 EQZ 0 ▷ ⊤

EQZ (S _)▷ ⊥

What happens in Coq ?

Historical Coq
nat_rec : Π P : nat→ Type. P 0 →

 (Π m : nat. P m → P (S m)) →

 Π n:nat. P n

nat_rect : Π P : nat→ Kind. P 0 →

 (Π m : nat. P m → P (S m)) →

 Π n:nat. P n

We can then define

EQZ ≡ (nat_rect λ x:nat.Type

 True

 λ m:nat. λ X:Type. False)

Modern Coq

Definition EQZ (n:nat) : Type :=

 match n with

 | 0 => True

 | S _ => False

end.

In Coq, operators like RT are not primitive, but built by combining:

- pattern-matching

- structural recursion

Universes
In Coq: Type1 : Type2 : Type3 : …

together with pattern-matching (R operators) towards all Typei

n:U

bot : U

π : Π a:U. (tr a)→ U) → U

…

It is interesting to look at the restrictions over eliminations of inductive
types to keep the system consistent (but done in 2-7-2 ?)

tr : U → Type

tr n ▷ nat

tr bot ▷ ⊥

tr (π a f) → Π x:tr a. tr(f x)

with:Martin-Löf's proposal:

An addition type U: Type (universe)

"constructors" for this type:

Type Universes in Martin-Löf style
Martin-Löf's proposal:

An addition type U: Type (universe)

"constructors" for this type:

n:U

bot : U

π : Π a:U. (tr a)→ U) → U

…

tr : U → Type

tr n ▷ nat

tr bot ▷ ⊥

tr (π a f) → Π x:tr a. tr(f x)

with:

U is an inductive type which allows to model all types (except U)

tr is defined by pattern-matching + recursion

but tr occurs in the definition of U: so-called inductive-recursive type

(this last feature is not available in Coq)

What does a universe hierarchy look like in this setting ?

Which extension would be paradoxical ?

Coq Exercise
Construct div2 using only:

- Definition

- nat_rec (or match with + Fixpoint)

Definition P2 n :=

 {p : nat & {n = p + p}+{ n = S (p + p)}} .

div2 (n : nat) : P2 n

