Martin-Lot's Type Theory



From A=+ to Type Theory

We have:
- Dependent types, encodes FOL up to cut—elimination for logical cuts
(for A, v, =, Vv, 3)

- System T: allows the definition of complex computations
Rr: T-(N—-T—>T)—>N-—=>T

| et us add the induction axiom :
Rp:(P0)—- (IIx:N.(Pn)— (P(Sn))) >IIn:N. (P n)

(Re pops 0) D po
(Rp pops (Sn)) D> psn (Re po ps n)




Subject reduction

‘s |P PAR

(Re pops 0) D po

Rp:(PO)—-(IIx:N.(Pn)—-(P(Sn))) >IIn:N. (P n)

Suppose (Rppops 0): T

SO po: (P 0)

sops: (IIx:N.(Pn)— (P (Sn)))
so: 0 : N (itis)

so: T —0 PO

SO:p0 : T

Obviously similar for
(R pops (Sn)) D> psn (Rp popsn)



Fquality and equality cuts

It: T—T — Type (provided T : Type) formally:
reflr : Il x: T .Irxx

I'= T : Type
lp:lIx:T.lly: T.Px—=Ipxy—Py

I'=Ir: T — T — Type

Lp a b p (reflt c) > p

Lpabp (reflrc) : Q

so: P:T —=Type, a:T, b:T, p:Pa, Q=Pb

since (reflrc): Ircc,wehave Ircc=glrab, Soa=gb=gc
SO by conversion, p:Pb



@lp PARIS

We want to talk about falsity

[ wi [Ht:L [+ T:Type
L1 Type [—efgr(t) : T

Nothing more to be added



Normalization

We can still map normalization to the corresponding system without
dependent types. That is System T with product and sum types

N N

IT t u N
Y. x:A.B AxB
A+B A+B
IT x:A.B A—B




Closed normal terms

A closed normal term of type ... is of the form(s) ...

N 0, S(t)
ITtu reflt v
> x:A.B (a, b)
A+B i(a), j(b)
II x:A.B A XA
1 none




The constructive paradise

By normalizing a proof of ¥ x:A.B, we obtain t:A and p : Blx\ t]
By normalizing a proof of A+B, we obtain either i(A) or j(b)
-rom a proof  t: II x:A. ¥ yv:B.C we can obtain:

t:A—=DB f=AxtA . n(tx)

p: I x:A. Cly \ (fx) p=AxA. mtx)
(furthermore f is typable in System T)

nereisnotermt s.it. [A:Typel -t: A+ (A — 1)
nere are closed A:Type withnotermt s.t. [A:Type|l —t: A + (A — 1)
(and other variants)




Limits of this Type Theory

Suppose we have | =p:INnO(SO) = L

by erasing type dependencies, we get:  [] = |p|: N = L
and thus a closed term of type L (in System T or MLTT)
Hence: O=1 Is not provable in MLTT.

Indeed having a discrimination predicate means having "really dependen
types” :
EQZO D T

FQZ (S )DL

What happens in Coq 7



Historical Cog

nat rec : II P : nat- Type. P 0 -
(Il m : nat. Pm > P (S m)) -
[ n:nat. P n

nat rect : II P : nat- Kind. P 0 -
(I m : nat. Pm > P (S m)) —
[l n:nat. P n

We can then define
EQZ = (nat_rect A x:nat.Type

True
A m:nat. A X:Type. False)



Modern Coqg

Definition EQZ (n:nat) : Type :=
match n with
| 0 => True
| S => False

end.

In Coq, operators like Rt are not primitive, but built by combining:
- pattern-matching
- structural recursion



Universes

In Coq: Typer: Typez: Types: ...
together with pattern-matching (R operators) towards all Type;

't Is interesting to look at the restrictions over eliminations of inductive
types to keep the system consistent (but done in 2-7-2 ?)

Martin-Lof's proposal: with:

An addition type U: Type (universe) tr : U — Type

"constructors" for this type: tr n > nat
n:U tr bot > L
bot : U

- I a:U. (tr a)% U) U tr (naf) — 11 x:tr a. tl‘(fX)



Type Universes in Martin-Lof style

I\/Iartln L&f's proposal: with:
An addition type U: Type (universe)

"constructors” for this type: tr: U — Type
n:U tr n > nat
bot : U tr bot > L

11 a:U.
T a:U (tr a)% U)%U tr (naf)eﬂxztr a. tr(fx)

U is an inductive type which allows to model all types (except U)

tr is defined by pattern-matching + recursion
but tr occurs in the definition of U: so-called inductive-recursive type

(this last feature is not available in Coq)

What does a universe hierarchy look like in this setting ?
Which extension would be paradoxical ?



Coqg Exercise

Construct div2 using only:
- Definition
- nat_rec (or match with + Fixpoint)

Definition P2 n :=
{p : nat & {n =p + p}+{ n =5 (p + p)}}

div2 (n : nat) : P2 n



