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How do we define mathematics?

All humans are mortal, Socrates is human, thus Socrate is mortal.

correction : syntaxic criterion

FA=B FA
FB

The stones to build mathematical proofs

FVx.H(x) = M(x)
F H(s) = M(S)
= M(S)

A mathematical proof is a construction

- H(S)




Birth of modern mathematical logic

Mathematical truth defined through totally objective rules

1872 : The Begriffsschrift of Frege
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mechanical verification

proof = tree structure



A century later

Mechanical verification
becomes real

First proof system : Automath (1968)

N. G. de Bruijn

‘ Formal proofs are actually built. ‘

A modern proof system : Coq
» Same principle

» More modern formalism



What do we ask from a formalism

Before (informal proofs) : we want the formalism to be expressive
(many theorems)

Now (formal proofs) we want also :
» Concise proofs
» Close to our intuition (no spurious syntactical hacking)
> ...

This course : study formalisms with these aims in mind



First-order logic - language

A set of variables : x,y,z,...

A set of function symbols : f, g, h,... each function symbol has an
arity (number of arguments).

A set of predicate symbols : A, B, C, P, R... each with an arity.

Objects :
» a variable is a term,

» if fis of arity n and t1,...,t, are terms, then f(t1,...,t,) is
a term.

Propositions :
» if Pis of arity n then P(t1,...,t,) is a (atomic) proposition

» is A and B are propositions,
AANB, AV B, A= B, 1, Vx.A, 3x.B are propositions.



Examples (languages of FOL)

Arithmetic (Peano, 1889)
Function symbols : 0,5, +, x
Predicate symbol : =

Set Theory (Cantor, Russell, Zermelo, Fraenkel...)
Predicate symbols : €, =



A theory is :
» A language (functions + predicate symbols)
> A set of axioms (propositions of the language)

Axioms of arithmetic :

Vx,0+ x = x Vx,0x x =0
Vx y,S(x)+y=S(x+y) Vxy,S(xX)xy=y+xxy

Vx,=(0 = S(x))
Vx y,S5(x) =S(y) = x=y

P(0) A (¥x, P(x) = P(S(x))) = Vx, P(x).

Vx,x = x
Vx y,P(x) Ax =y = P(y).



Truth : natural deduction

I" set of propositions
A Ais provable under hypothesises+axioms I
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(this gives classical logic)



Relating correctness and truth : models and semantics

A set U (universe)
For every f of arity n, a function |f| : U" — U
For every P of arity n, a function |P|:U" — {0,1} (equivalently
[Pl CPU"))
Given any Z mapping variables x to U we define |t|z € U by :
> x|z = Z(x)

> |f(tr,...,tn)|lz = |f|(|talz, - - - |talT)
Given any Z we define |A| € {0,1} by :
> P(ty,...,tn)|lz = |P|(|t1|z, - - - [talT)
> |AAB|z = |Alz A Bz
» similar for vV, =, 1L ...
> |Vx.Alz = mingey|Alzxa
» |Ix.Alz = maxaecu|Alz:xa (this is very much classical logic)



Model of a theory

A model is a triple : U, interpretation of fs, interpretation of Ps.
It is a model of a theory T if forany A€ T, |Alz =1 (for any Z
since A is closed)

Correctness : If T = A, and VB €T, |B|z =1, then |Alz = 1.
proof : quite straightforward (good exercise)

Coherence : There is no proof of 7 F L (easy consequence of
correctness)

Completeness : If for any model validating I', |A|z = 1, then
I Ais provable.
proof : more difficult (Godel's PhD)

» Relates correctness with truth

» incompleteness : limit of « truth » in math



An extension of first-order logic

Deduction modulo : we add rewrite rules to the language

0+x > x
SxX)+y > S(x+vy)

Oxx > 0
S(xX)xy > y+xxy

we allow reasoning modulo the rewrite rules :

MN=¢
M=

if g =gt

How to prove 2 +2 =47



Replacing more axioms by rewrite rules

How to ensure 0 #£ 17

Vx.0 # S(x)
Add a new predicate symbol EQZ

EQZ(0)

> T
EQZ(S(x)) > L

Exercise : finish the proof

Important : avoiding messy rewrite rules (AN B> L ...



Replacing more axioms by rewrite rules(2)

How to ensure Vx.Vy.S(x) = S(y) = x=y?
(injectivity of S)
Add a new function symbol pred

pred(S(x)) > x
pred(0) > 0 (or whatever)

Exercise : finish the proof



A "simple” presentation of Arithmetic

Rules :
0+x > x EQZ(0)
Sx)+y > S(x+y) EQZ(5(x))
Oxx > 0 pred(S(x))
Sx)xy > y+xxy pred(0)
Axioms :
Vx.x = x

Vx.Vy.x =y A P(x) = P(y)
P(0) A (Vx.P(x) = P(5(x))) = Vy.P(y)

v Vv VvV V

S

o



Cuts in proofs

Another form of dynamics / computation / transformation in
proofs

What is a cut?

1. Prove Va.Vb.(a+ b)? = 2 + b? 4 2ab (ends with V-intro)
2. Deduces Yb.(3 + b)?> = 9 + b? + 6b (use V-elim)

We could have proved (2) directly (following the same scheme as

1)



Logical Cut

An introduction rule followed by the corresponding elimination rule

o1 02

Mr=A M- B
FrN-AAB
Tra (el

(A1)

Simplifies to :
01

r-A
exercise : find the simplification for the other logical cuts




Cut Elimination

» Does this process terminate ?
» If we have a proof of ' - A, can we find a cut-free proof?

Termination : a major point of this course



Cut-free proofs

Why does it matter to us?

In a cut-free proof, there are only axiom rules above elimination
rules (or the EM)

If a proof is cut-free, without axiom and constructive, it ends with
an introduction rule.

A proof of = AV B that is constructive and cut-free ends with
V—ilofVv—i2

A proof of - Ix.A(x) that is constructive and cut-free contains a
witness.



Cut Free - axiom free proofs

Lemma : a cut free derivation (proof) of [| - A always ends
with an introduction rule.

Proof : by induction over the derivation (could be the length of
the derivation, but not necessary).

Let us do a few cases.



Why "natural” deduction ?

The ND rules aim at corresponding to actual (human) deduction
steps.
Indeed :

Coq's formalism includes / extends first-order logic with some
rewrite/computation rules.

Proofs are built top-down (goal-driven) and basic tactics
correspond to ND rules

Next : : cuts and constructivity in Heyting Arithmetic



VIPRI
2-7-1

Benjamin Werner
Cuts in Heyting Arithmetic

Sept. 2024




e A presentation of Heyting Arithmetic
! Axioms | N

|V X, X=X

V X.V V. X=yA P(x) = P(y)

closed normal object:
0, S(0), S(S(O)), ...

,i closed normal atomic proposition
i POA(VY X.P(xX)= P(S(x)) = vy.P(y) ? n=m (T and L are not atomic)

N > < % ~

| Rewrite rules
- 0+X = X Oxx = 0

S(X) +Vy = S(X+Y) S(X) XY =XXVY+V

ored(S(x)) = X ored(0) = O

' EQZ(S(X) = L FQZ(0) =~



Cuts in deduction modulo

Previous presentation: new additional rule

(conv) — g f A=rB
we do not want it to interfere with cuts. A A__ A/l\_g =
(conv)— ,
shouldbeacut = AAB
AN
We can rather reformulate the rules:
e A B IS NOW a cut
A~ |_|_C |f C —R A/\B /\_i |—|_ A |—|_ B
[~ A'AB
A-€

(we do the same for all rules) = A



Axiomatic Cuts



Equality Cut

t=t A P(Y) t=t A P(t) = P(1)
P(t)
‘\~ Op
R E T >



Induction Cut (1)
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Induction cut (2)

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
*

v y.P(y)
................................................ ) eeeeeeeeasseeeeesseeeeeesseee et
| Oo OS
' 2(P0) AV XPX)=P(S(X) ) = VY.PY)  PO) ¥ xPx)=P(S(x))
I'\ OS v y.P(y)
‘\. v v X P(X)=P(S(x))




Cut Free Proofs

Properties
easy:
It tis a term without free variables, then t =" Sn(0)

Cut free proofs:
Take A without free variables. Any cut-free proot of A in HA either :
- ends with an introduction
- Is refl or t=t (from retfl)
- 1S Leibniz or partial application of L : v y. t=ya P(t) = P(y), u=ta P(t) = P(u)

- Is Induction or a partial application of it: VY. P(y)

by induction over the structure of the proof (somewhat tedious)



A without free variables. A cut-free proof of A in HA Is either :
- ends with an introduction
- 1s refl or t=t (from retl)
- Is Leibniz or partial application of L : v y. t=ya P(t) = P(y), u=ya P(t) = P(u)

- Is Induction of proof partial application: v V. P(y)

Constructivity :
- It =ua Av B, then either =xa A or s B

- if FHa 3 X. A(X) then we can extract n and a proof of +—xa A(N)

Consider : v x. 3y. x=y+y v X = S(y+V)



Heyting's semantics

To make the point of constructivity

» a proof of n=n is 0 (some trivial object)

» a proof of A A B is (can be reduced to) (a,b) with a:A and b:B
» a canonical proof of A v Bis (e,c) with e=0and c:A or e€=1and c:B

» a proof of A=B is a computational function f, s.t. if a:A, then f(a): B

» a canonical proof of 3 x.Ais a pair (t,a) s.t. a: A[x\ ]

» a proof of v x.A Is a computational function £, s.t. for all n, f(n): A[x\ n]



Why Is arithmetic undecidable ?

t=u IS decidable

In HA, we can prove Vv X, VY, X=Yy Vv X#Yy

(which is the good way to state decidability)
Let's do it

If A and B are decidable, so are AAB, AvB, A= B

Undecidability comes "only" from the quantitiers
Even it for all x, we can determine A(x) or - A(x), we do not know

whether v X.A(X) is true or not



Simple game semantics

Let us keep a first—order language (actually arithmetic)
We drop the implication =

For every predicate P we add its negation *P (same arity)
We define the negation of any proposition as:

- P(tq, ...,
- (AvB)=-A A-B
- (AAB)=-A v-B
VX A=3x. - A

- 3IX. A=V X A

Now ! Every closed proposition can be viewed as a game !
a game between the mathematician and nature



The game
The mathematician plays when the proposition Is:

» AX. A provides an object t, game becomes A[x \ ]

» A v B chose left or right, game becomes A or B

Nature plays when the proposition is:

» VX, A provides an object t, game becomes A[x \ 1]

» AAB chose left or right, game becomes A or B

The game stops when the proposition is atomic P(ty, ... t,)

» 1f P(t1, ... t,) IS true, mathematician wins
{Paul Lorenzen (1958)

» if P(t1, ... t,) IS false, nature wins




Going beyond intuitionistic logic

Remember we have classical logic in sequent calculus by authorizing
seguents with several conclusions: A, ..., A, B{, ... B,

We go to multigames: Aq, ..., An

iIdea: mathematician has to "prove” only one A,
- If nature has to play on at least one A;, it plays
- If not, mathematician plays on one A;

- It Ajis B v C, mathematician can break it without choosing
BvCw~ B, C
- If Ay Is 3 X.A, then mathematician can "keep" the existential for

another later attempt 3 x.A =~ I XA, A[X\{]
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Excluded Middle in multi-games

A =

nen natu

nen natu

Now let us look at A:

re p
re p

f v X.B, then natu
if 3 x.B, then nature plays —B[x\t]

A, - A

ays B or C
ays -B or -C

e plays B[x\t]

mat
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Mathematician wins |
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1P
1P
1P

1P

ays ~Bor-C
ays Bor C
ays —B[x\t]
ays B[x\t

when ~ A (in classical logic), there is a winning strategy (essentially a

termination argument)

see for instance the page of Thierry Coguand about game semantics



Links with Curry-Howard for classical logic



