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How do we define mathematics ?

All humans are mortal, Socrates is human, thusthus Socrate is mortal.

correction : syntaxic criterion

⊢ A ⇒ B ⊢ A

⊢ B

The stones to build mathematical proofs

⊢ ∀x .H(x) ⇒ M(x)

⊢ H(s) ⇒ M(S)
⊢ H(S)

⊢ M(S)

A mathematical proof is a construction



Birth of modern mathematical logic

Mathematical truth defined through totally objective rules

1872 : The Begriffsschrift of Frege

proof = tree structure

mechanical verification



A century later

Mechanical verification
becomes real

First proof system : Automath (1968)

N. G. de Bruijn

Formal proofs are actually built.

Today
A modern proof system : Coq

▶ Same principle

▶ More modern formalism



What do we ask from a formalism

Before (informal proofs) : we want the formalism to be expressive
(many theorems)

Now (formal proofs) we want also :

▶ Concise proofs

▶ Close to our intuition (no spurious syntactical hacking)

▶ . . .

This course : study formalisms with these aims in mind



First-order logic - language

A set of variables : x , y , z , . . .
A set of function symbols : f , g , h, . . . each function symbol has an
arity (number of arguments).
A set of predicate symbols : A,B,C ,P,R . . . each with an arity.

Objects :

▶ a variable is a term,

▶ if f is of arity n and t1, . . . , tn are terms, then f (t1, . . . , tn) is
a term.

Propositions :

▶ if P is of arity n then P(t1, . . . , tn) is a (atomic) proposition

▶ is A and B are propositions,
A ∧ B, A ∨ B, A ⇒ B, ⊥, ∀x .A, ∃x .B are propositions.



Examples (languages of FOL)

Arithmetic (Peano, 1889)
Function symbols : 0, S ,+,×
Predicate symbol : =

Set Theory (Cantor, Russell, Zermelo, Fraenkel...)
Predicate symbols : ∈,=



A theory is :

▶ A language (functions + predicate symbols)

▶ A set of axioms (propositions of the language)

Axioms of arithmetic :

∀x , 0 + x = x
∀x y , S(x) + y = S(x + y)

∀x , 0× x = 0
∀x y , S(x)× y = y + x × y

∀x ,¬(0 = S(x))
∀x y ,S(x) = S(y) ⇒ x = y

P(0) ∧ (∀x ,P(x) ⇒ P(S(x))) ⇒ ∀x ,P(x).

∀x , x = x
∀x y ,P(x) ∧ x = y ⇒ P(y).



Truth : natural deduction

Γ set of propositions
Γ ⊢ A A is provable under hypothesises+axioms Γ

A ∈ Γ

Γ ⊢ A
(Ax)

Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧ B
(∧-I) Γ ⊢ A ∧ B

Γ ⊢ A
(∧-E1)

Γ ⊢ A ∧ B

Γ ⊢ B
(∧-E2)

Γ ⊢ A

Γ ⊢ A ∨ B
(∨-I1)

Γ ⊢ B

Γ ⊢ A ∨ B
(∨-I2)

Γ ⊢ A ∨ B Γ,A ⊢ C Γ,B ⊢ C

Γ ⊢ C
(∨-E)

Γ,A ⊢ B

Γ ⊢ A ⇒ B
(⇒-I)

Γ ⊢ A ⇒ B Γ ⊢ A

Γ ⊢ B
(⇒-E)



Γ ⊢ A

Γ ⊢ ∀x .A
(∀-I) if x not free in Γ

Γ ⊢ ∀x .A
Γ ⊢ A[x \ t]

(∀-E)

Γ ⊢ A[x \ t]
Γ ⊢ ∃x .A

(∃-I)

Γ,A ⊢ B Γ ⊢ ∃x .A
Γ ⊢ B

(∃-E) if x not free in Γ,B



Γ ⊢ ⊥
Γ ⊢ A

(⊥-E)

(this gives intuitionistic logic

Γ ⊢ A ∨ ¬A
(EM)

(this gives classical logic)



Relating correctness and truth : models and semantics

A set U (universe)
For every f of arity n, a function |f | : Un → U
For every P of arity n, a function |P| : Un → {0, 1} (equivalently
|P| ⊂ P(Un))
Given any I mapping variables x to U we define |t|I ∈ U by :

▶ |x |I ≡ I(x)
▶ |f (t1, . . . , tn)|I ≡ |f |(|t1|I , . . . |tn|I)

Given any I we define |A| ∈ {0, 1} by :

▶ P(t1, . . . , tn)|I ≡ |P|(|t1|I , . . . |tn|I)
▶ |A ∧ B|I ≡ |A|I ∧ |B|I
▶ similar for ∨, ⇒, ⊥ . . .

▶ |∀x .A|I ≡ minα∈U |A|I;x←α

▶ |∃x .A|I ≡ maxα∈U |A|I;x←α (this is very much classical logic)



Model of a theory

A model is a triple : U , interpretation of f s, interpretation of Ps.
It is a model of a theory T if for any A ∈ T , |A|I = 1 (for any I
since A is closed)

Correctness : If Γ ⊢ A, and ∀B ∈ Γ, |B|I = 1, then |A|I = 1.
proof : quite straightforward (good exercise)

Coherence : There is no proof of T ⊢ ⊥ (easy consequence of
correctness)

Completeness : If for any model validating Γ, |A|I = 1, then
Γ ⊢ A is provable.
proof : more difficult (Gödel’s PhD)

▶ Relates correctness with truth

▶ incompleteness : limit of « truth » in math



An extension of first-order logic

Deduction modulo : we add rewrite rules to the language

0 + x ▷ x

S(x) + y ▷ S(x + y)

O × x ▷ 0

S(x)× y ▷ y + x × y

we allow reasoning modulo the rewrite rules :

Γ ⊢ ϕ
Γ ⊢ ψ

if ϕ =R ψ

How to prove 2 + 2 = 4 ?



Replacing more axioms by rewrite rules

How to ensure 0 ̸= 1?

∀x .0 ̸= S(x)

Add a new predicate symbol EQZ

EQZ(0) ▷ ⊤
EQZ(S(x)) ▷ ⊥

Exercise : finish the proof
Important : avoiding messy rewrite rules (A ∧ B ▷⊥ . . . )



Replacing more axioms by rewrite rules(2)

How to ensure ∀x .∀y .S(x) = S(y) ⇒ x = y ?
(injectivity of S)
Add a new function symbol pred

pred(S(x)) ▷ x

pred(0) ▷ 0 (or whatever)

Exercise : finish the proof



A ”simple”presentation of Arithmetic

Rules :

0 + x ▷ x EQZ(0) ▷ ⊤

S(x) + y ▷ S(x + y) EQZ(S(x)) ▷ ⊥

O × x ▷ 0 pred(S(x)) ▷ x

S(x)× y ▷ y + x × y pred(0) ▷ 0

Axioms :

∀x .x = x

∀x .∀y .x = y ∧ P(x) ⇒ P(y)

P(0) ∧ (∀x .P(x) ⇒ P(S(x))) ⇒ ∀y .P(y)



Cuts in proofs

Another form of dynamics / computation / transformation in
proofs

What is a cut ?

1. Prove ∀a.∀b.(a+ b)2 = a2 + b2 + 2ab (ends with ∀-intro)
2. Deduces ∀b.(3 + b)2 = 9 + b2 + 6b (use ∀-elim)

We could have proved (2) directly (following the same scheme as
1)



Logical Cut

An introduction rule followed by the corresponding elimination rule

σ1

Γ ⊢ A

σ2

Γ ⊢ B
Γ ⊢ A ∧ B

Γ ⊢ A
(∧-e1)

(∧-i)

Simplifies to :
σ1

Γ ⊢ A

exercise : find the simplification for the other logical cuts



Cut Elimination

▶ Does this process terminate ?

▶ If we have a proof of Γ ⊢ A, can we find a cut-free proof ?

Termination : a major point of this course



Cut-free proofs

Why does it matter to us ?

In a cut-free proof, there are only axiom rules above elimination
rules (or the EM)

If a proof is cut-free, without axiom and constructive, it ends with
an introduction rule.

A proof of ⊢ A ∨ B that is constructive and cut-free ends with
∨ − i1 of ∨ − i2.

A proof of ⊢ ∃x .A(x) that is constructive and cut-free contains a
witness.



Cut Free - axiom free proofs

Lemma : a cut free derivation (proof) of [] ⊢ A always ends
with an introduction rule.

Proof : by induction over the derivation (could be the length of
the derivation, but not necessary).

Let us do a few cases.



Why ”natural”deduction ?

The ND rules aim at corresponding to actual (human) deduction
steps.
Indeed :

Coq’s formalism includes / extends first-order logic with some
rewrite/computation rules.

Proofs are built top-down (goal-driven) and basic tactics
correspond to ND rules

Next : : cuts and constructivity in Heyting Arithmetic
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A presentation of Heyting Arithmetic
Axioms  
   ∀ x. x=x 
   ∀ x.∀ y. x=y∧ P(x) ⇒ P(y) 

   P(0)∧(∀ x.P(x)⇒ P(S(x))   ⇒  ∀ y. P(y)

Rewrite rules 
   0 + x    ⊳  x 
S(x) + y   ⊳ S(x+y)

   0 × x    ⊳  0 
S(x) × y   ⊳ x × y + y

  pred(S(x))   ⊳  x       pred(0) ⊳ 0

EQZ(S(x)) ⊳ ⊥          EQZ(0)  ⊳ ⊤

closed normal object: 
0, S(0), S(S(O)), …

closed normal atomic proposition: 
n=m   (⊤ and ⊥ are not atomic)



Cuts in deduction modulo
Previous presentation: new additional rule

Γ⊢ A   
Γ⊢ B if A =R B

we do not want it to interfere with cuts. 

(conv)

Γ⊢ A∧B 
Γ⊢ A'∧B 

Γ⊢ A       Γ⊢ B

Γ⊢ A'

(conv)
∧-i

∧-eshould be a cut

Γ⊢C
Γ⊢ A       Γ⊢ B

∧-i if C =R  A∧B

We can rather reformulate the rules:

Γ⊢ A'∧B 
Γ⊢ A       Γ⊢ B

Γ⊢ A'

∧-i
∧-e

is now a cut

(we do the same for all rules)



Axiomatic Cuts



Equality Cut

∀ x . x=x

t=t

σP

P(t) ∀ x y. x=y ∧ P(x) ⇒ P(y)

t=t ∧ P(t) ⇒ P(t)

P(t)

σP

P(t)

t=t ∧ P(t)

"introduction"

"elimination"



Induction Cut (1)

( P(0) ∧ ∀ x P(x)⇒P(S(x)) ) ⇒ ∀ y.P(y)

σ0

P(0)

σ0

P(0)

σS

∀ x P(x)⇒P(S(x)) 

∀ y.P(y)
P(0)

σ0

P(0)

σ0

P(0)



Induction cut (2)

( P(0) ∧ ∀ x P(x)⇒P(S(x)) ) ⇒ ∀ y.P(y)

σ0

P(0)

σ0

P(0)

σS

∀ x P(x)⇒P(S(x)) 

∀ y.P(y)
P(S(t))

σS

∀ x P(x)⇒P(S(x)) 

P(t)⇒P(S(t)) 
P(S(t)) 

( P(0) ∧ ∀ x P(x)⇒P(S(x)) ) ⇒ ∀ y.P(y)

σ0

P(0)

σ0

P(0)

σS

∀ x P(x)⇒P(S(x)) 

∀ y.P(y)

P(t)



Cut Free Proofs

Cut free proofs: 
Take A without free variables. Any cut-free proof of A in HA either : 
- ends with an introduction 
- is refl or t=t (from refl) 
- is Leibniz or partial application of L : ∀ y. t=y∧ P(t) ⇒ P(y), u=t∧ P(t) ⇒ P(u) 

- Is Induction or a partial application of it:  ∀ y.  P(y) 

by induction over the structure of the proof (somewhat tedious)

Properties 
easy: 
If t is a term without free variables, then t ⊳* Sn(0) 



A without free variables. A cut-free proof of A in HA is either : 
- ends with an introduction 
- is refl or t=t (from refl) 
- is Leibniz or partial application of L : ∀ y. t=y∧ P(t) ⇒ P(y), u=y∧ P(t) ⇒ P(u) 

- Is Induction of proof partial application:  ∀ y.  P(y) 

Constructivity : 
- If ⊢HA A∨ B, then either ⊢HA A or ⊢HA B 
- if ⊢HA ∃ x. A(x) then we can extract n and a proof of ⊢HA A(n)

Consider :  ∀ x. ∃ y. x=y+y ∨ x = S(y+y)



Heyting's semantics

‣ a proof of  n=n   is  0  (some trivial object) 
‣ a proof of A ∧ B is (can be reduced to)  (a,b) with a:A  and b:B 

‣ a canonical proof of A ∨ B is (ε,c) with    ε=0 and c:A   or   ε=1 and c:B 

‣ a proof of A⇒B  is a computational function f, s.t.  if a:A, then  f(a) : B 

‣ a canonical proof of ∃ x.A is a pair (t,a)  s.t.  a: A[x \ t] 

‣ a proof of ∀ x.A is a computational function f, s.t. for all n,  f(n) : A[x \ n] 

To make the point of constructivity 



Why is arithmetic undecidable ?
t=u  is decidable 

If A  and B are decidable, so are  A∧B,  A∨B,   A⇒ B

Undecidability comes "only" from the quantifiers 

Even if for all x, we can determine  A(x)  or  ¬ A(x),  we do not know 

whether ∀ x.A(x) is true or not

In HA, we can prove  ∀ x, ∀ y,  x=y ∨ x≠y 
(which is the good way to state decidability) 
Let's do it



Simple game semantics
Let us keep a first−order language (actually arithmetic)  
We drop the implication ⇒ 
For every predicate P we add its negation *P (same arity) 
We define the negation of any proposition as:

¬ P(t₁, … , tₙ) ≡ *P(t₁, … , tₙ) 
¬ (A ∨ B) ≡ ¬ A  ∧ ¬ B 
¬ (A ∧ B) ≡ ¬ A  ∨ ¬ B 
¬ ∀ x. A ≡ ∃ x. ¬ A  
¬ ∃ x. A ≡ ∀ x. ¬ A

Now !   Every closed proposition can be viewed as a game ! 
a game between the mathematician and nature



The game
The mathematician plays when the proposition is: 
‣ ∃ x . A 

‣ A ∨ B 
Nature plays when the proposition is: 
‣ ∀ x. A  

‣ A ∧ B  

The game stops when the proposition is atomic P(t₁, … tₙ) 
‣ if P(t₁, … tₙ) is true, mathematician wins 
‣ if P(t₁, … tₙ) is false, nature wins

provides an object t, game becomes A[x \ t] 
chose left or right, game becomes A or B

provides an object t, game becomes A[x \ t] 
chose left or right, game becomes A or B

A true intuitionistically: mathematician has a winning strategy

Paul Lorenzen (1958)



Going beyond intuitionistic logic
Remember we have classical logic in sequent calculus by authorizing 
sequents with several conclusions:      A₁, … , Aₙ  ⊢  B₁, … Bₘ

We go to multigames:     A₁, … , Aₙ 
idea: mathematician has to "prove" only one  Aᵢ 

- if nature has to play on at least one  Aᵢ,  it plays 

- if not, mathematician plays on one Aᵢ 

- if Aᵢ is  B ∨ C, mathematician can break it without choosing                
B ∨ C ⇝  B, C 

- if Aᵢ  is ∃ x.A, then mathematician can "keep" the existential for 
another later attempt    ∃ x.A ⇝  ∃ x.A, A[x \ t]



Excluded Middle in multi-games
A ∨ ¬ A    ⇝    A, ¬ A

Now let us look at A: 
if B ∧ C, then nature plays B or C 
if B ∨ C, then nature plays ¬B or ¬C 
if ∀ x.B, then nature plays B[x\t] 
if ∃ x.B, then nature plays ¬B[x\t] 

mathematician plays ¬ B or ¬ C 
mathematician plays     B or  C 
mathematician plays    ¬B[x\t] 
mathematician plays     B[x\t]

when ⊢ A (in classical logic), there is a winning strategy (essentially a 
termination argument)

see for instance the page of Thierry Coquand about game semantics

Mathematician wins !



Links with Curry-Howard for classical logic


