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Random projection trees for vector quantization
Sanjoy Dasgupta and Yoav Freund

Abstract—A simple and computationally efficient scheme for
tree-structured vector quantization is presented. Unlike previous
methods, its quantization error depends only on the intrinsic
dimension of the data distribution, rather than the apparent
dimension of the space in which the data happen to lie.

Index Terms—Vector quantization, source coding, random
projection, manifolds, computational complexity.

I. I NTRODUCTION

We study algorithms for vector quantization codebook de-
sign, which we define as follows. Theinput to the algorithm is
a set ofn vectorsS = {x1, . . . , xn}, xi ∈ R

D. The output of
the algorithm is a set ofk vectorsR = {µ1, . . . , µk}, µi ∈ R

D,
where k is much smaller thann. The setR is called the
codebook. We say thatR is a good codebook forS if for
most x ∈ S there is arepresentativer ∈ R such that the
Euclidean distance betweenx and r is small. We define the
average quantization errorof R with respect toS as:

Q(R,S) = E

[
min

1≤j≤k
‖X − µj‖2

]
=

1

n

n∑

i=1

min
1≤j≤k

‖xi − µj‖2

where ‖ · ‖ denotes Euclidean norm and the expectation is
over X drawn uniformly at random fromS.1 The goal of the
algorithm is to construct a codebookR with a small average
quantization error. Thek-optimal set of centersis defined to
be the codebookR of sizek for which Q(R,S) is minimized;
the task of finding such a codebook is sometimes called the
k-meansproblem.

It is known that for general sets inRD of diameter one, the
average quantization error is roughlyk−2/D for large k[8].
This is discouraging whenD is high. For instance, ifD = 100,
andA is the average quantization error fork1 codewords, then
to guarantee a quantization error ofA/2 one needs a codebook
of size k2 ≈ 2D/2k1: that is, 250 times as many codewords
just to halve the error. In other words, vector quantizationis
susceptible to the samecurse of dimensionalitythat has been
the bane of other nonparametric statistical methods.

A recent positive development in statistics and machine
learning has been the realization that quite often, datasets that
are represented as collection of vectors inR

D for some large
value ofD, actually have lowintrinsic dimension, in the sense
of lying close to a manifold of dimensiond≪ D. We will give
several examples of this below. There has thus been increasing
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1The results presented in this paper generalize to the case where S is
infinite and the expectation is taken with respect to a probability measure
over S. However, as our focus is on algorithms whose input is a finite set,
we assume, throughout the paper, that the setS is finite.

Fig. 1. Spatial partitioning ofR2 induced by an RP tree with three levels.
The dots are data points; each circle represents the mean of the vectors in
one cell.

interest in algorithms thatlearn this manifold from data, with
the intention that future data can then be transformed into this
low-dimensional space, in which the usual nonparametric (and
other) methods will work well [19], [17], [2].

In this paper, we are interested in techniques that auto-
matically adapt to intrinsic low dimensional structure with-
out having to explicitly learn this structure. We describe
an algorithm for designing a tree-structured vector quantizer
whose quantization error isk−1/O(d) (times the quantization
error induced by a single codeword); that is to say, its error
rate depends only on the low intrinsic dimension rather than
the high apparent dimension. The algorithm is based on a
hierarchical decomposition ofRD: first the entire space is split
into two pieces, then each of these pieces is further split in
two, and so on, until a desired average quantization error is
reached. Each codeword is the average of the examples that
belong to a single cell.

Tree-structured vector quantizers abound; the power of our
approach comes from the particular splitting method. To divide
a regionS into two, we pick a random direction from the
surface of the unit sphere inRD, and splitS at the median
of its projection onto this direction (Figure 1).2 We call the
resulting spatial partition arandom projection treeor RP tree.

At first glance, it might seem that a better way to split a
region is to find the 2-optimal set of centers for it. However,
as we explain below, this is an NP-hard optimization problem,
and is therefore unlikely to be computationally tractable.
Although there are several algorithms that attempt to solve
this problem, such as Lloyd’s method [13], [12], they are
not in general able to find the optimal solution. In fact, they
are often far from optimal. A related option would be to
use an approximation algorithm for 2-means: an algorithm

2There is also a second type of split that we occasionally use.
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that is guaranteed to return a solution whose cost is at most
(1 + ǫ) times the optimal cost, for someǫ > 0. However, for
our purposes, we would needǫ ≈ 1/d, and the best known
algorithm at this time [11] would require a prohibitive running
time of O(2dO(1)

Dn).
For our random projection trees, we show that if the data

have intrinsic dimensiond (in a sense we make precise
below), then each split pares off about a1/d fraction of the
quantization error. Thus, afterlog k levels of splitting, there are
k cells and the multiplicative change in quantization error is of
the form (1 − 1/d)log k = k−1/O(d). There is no dependence
on the extrinsic dimensionalityD.

II. D ETAILED OVERVIEW

A. Low-dimensional manifolds

The increasing ubiquity of massive, high-dimensional data
sets has focused the attention of the statistics and machine
learning communities on the curse of dimensionality. A large
part of this effort is based on exploiting the observation that
many high-dimensional data sets have lowintrinsic dimension.
This is a loosely defined notion, which is typically used
to mean that the data lie near a smooth low-dimensional
manifold.

For instance, suppose that you wish to create realistic
animations by collecting human motion data and then fitting
models to it. A common method for collecting motion data
is to have a person wear a skin-tight suit with high contrast
reference points printed on it. Video cameras are used to track
the 3D trajectories of the reference points as the person is
walking or running. In order to ensure good coverage, a typical
suit has aboutN = 100 reference points. The position and
posture of the body at a particular point of time is represented
by a (3N)-dimensional vector. However, despite this seeming
high dimensionality, the number of degrees of freedom is
small, corresponding to the dozen-or-so joint angles in the
body. The positions of the reference points are more or less
deterministic functions of these joint angles.

Interestingly, in this example the intrinsic dimension be-
comes even smaller if wedoublethe dimension of the embed-
ding space by including for each sensor its relative velocity
vector. In this space of dimension6N the measured points
will lie very close to theonedimensional manifold describing
the combinations of locations and speeds that the limbs go
through during walking or running.

To take another example, a speech signal is commonly
represented by a high-dimensional time series: the signal is
broken into overlapping windows, and a variety of filters are
applied within each window. Even richer representations can
be obtained by using more filters, or by concatenating vectors
corresponding to consecutive windows. Through all this, the
intrinsic dimensionality remains small, because the system
can be described by a few physical parameters describing the
configuration of the speaker’s vocal apparatus.

In machine learning and statistics, almost all the work on
exploiting intrinsic low dimensionality consists of algorithms
for learning the structure of these manifolds; or more pre-
cisely, for learning embeddings of these manifolds into low-
dimensional Euclidean space. Our contribution is a simple

Fig. 2. Hilbert’s space filling curve. Large neighborhoods look2-dimensional,
smaller neighborhoods look1-dimensional, and even smaller neighborhoods
would in practice consist mostly of measurement noise and wouldtherefore
again be2-dimensional.

and compact data structure that automatically exploits thelow
intrinsic dimensionality of data on a local level without having
to explicitly learn the global manifold structure.

B. Defining intrinsic dimensionality

Low-dimensional manifolds are our inspiration and source
of intuition, but when it comes to precisely defining intrinsic
dimension for data analysis, the differential geometry con-
cept of manifold is not entirely suitable. First of all, any
data set lies on a one-dimensional manifold, as evidenced
by the construction of space-filling curves. Therefore, some
bound on curvature is implicitly needed. Second, and more
important, it is unreasonable to expect data to lieexactly
on a low-dimensional manifold. At a certain small resolu-
tion, measurement error and noise make any data set full-
dimensional. The most we can hope is that the data distribution
is concentratednear a low-dimensional manifold of bounded
curvature. Figure 2 illustrates how dimension can vary across
the different neighborhoods of a set, depending on the sizes
of these neighborhoods and also on their locations.

We address these various concerns with a statistically-
motivated notion of dimension: we sayT ⊂ S hascovariance
dimension(d, ǫ) if a (1− ǫ) fraction of its variance is concen-
trated in ad-dimensional subspace. To make this precise, let
σ2

1 ≥ σ2
2 ≥ · · · ≥ σ2

D denote the eigenvalues of the covariance
matrix of T (that is, the covariance matrix of the uniform
distribution over the points inT ); these are the variances in
each of the eigenvector directions.

Definition 1: SetT ⊂ R
D hascovariance dimension(d, ǫ)

if the largestd eigenvalues of its covariance matrix satisfy

σ2
1 + · · ·+ σ2

d ≥ (1− ǫ) · (σ2
1 + · · ·+ σ2

D).

Put differently, this means thatT is well-approximated by an
affine subspace of dimensiond, in the sense that its average
squared distance from this subspace is at mostǫ times the
overall variance ofT .

It is often too much to hope that the entire data setS would
have low covariance dimension. The case of interest is when
this property holdslocally, for neighborhoods ofS.

Figure 3 depicts a setS ⊂ R
2 that lies close to a one

dimensional manifold. We can imagine thatS was generated
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Fig. 3. A data set that lies close to a one-dimensional manifold. Three
neighborhoods are shown, indicated by disks.ri indicate the radii of the
disks,Ci indicate the curvature of the set in the neighborhood.σ indicates
the standard deviation of the noise added to the manifold.

by selecting points on the manifold according to some distri-
bution and then adding spherical Gaussian noise with standard
deviationσ. Consider the restriction ofS to a neighborhood
defined by a ballBi of radius ri (three such disks are
shown). The radii of the first two neighborhoods (r1, r2) are
significantly larger than the noise levelσ and significantly
smaller than the local curvature radii of the manifold (C1, C2).
As a resultS ∩ B1 and S ∩ B2 have covariance dimension
(1, ǫ) for ǫ ≈ (σ/ri)

2 + (ri/Ci)
2. On the other hand,r3 ≈ σ

and therefore the covariance dimension ofS ∩ B3 is two. In
Appendix III, we formally prove a statement of this form for
arbitraryd-dimensional manifolds of bounded curvature.

The local covariance dimension captures the essence of
intrinsic dimension without being overly sensitive to noise in
the dataset. On the other hand, the notion lacks some of the
intuitions that we associate with manifolds. In particular, the
fact that a setS has covariance dimension(d, ǫ) doesnot imply
that subsets ofS have low dimension. Covariance dimension
is a natural way to characterize finite point sets, but not a good
way to characterize differentiable manifolds.

C. Random projection trees

Our new data structure, the random projection tree, is built
by recursive binary splits. The core tree-building algorithm is
called MAKETREE, which takes as input a data setS ⊂ R

D,
and repeatedly calls a splitting subroutine CHOOSERULE.

procedure MAKETREE(S)
if |S| < MinSize then return (Leaf)
Rule← CHOOSERULE(S)
LeftTree← MAKETREE({x ∈ S : Rule(x) = true})
RightTree← MAKETREE({x ∈ S : Rule(x) = false})
return ([Rule, LeftTree,RightTree])

The RP tree has two types of split. Typically, a direction
is chosen uniformly at random from surface of the unit

sphere and the cell is split at its median, by a hyperplane
orthogonal to this direction. Although this generally works
well in terms of decreasing vector quantization error, there are
certain situations in which it is inadequate. The prototypical
such situation is as follows: the data in the cell lie almost
entirely in a dense spherical cluster around the mean, but there
is also a concentric shell of points much farther away. This
outer shell has the effect of making the quantization error fairly
large, and any median split along a hyperplane creates two
hemispherical cells with the same balance of inner and outer
points, and thus roughly the same quantization error; so the
split is not very helpful. To see how such a data configuration
might arise in practice, consider a data set consisting of image
patches. The vast majority of patches are empty, forming the
dense cluster near the mean; the rest are much farther away.

The failure case for the hyperplane split is easy to charac-
terize: it happens only if the average interpoint distance within
the cell is much smaller than the diameter of the cell. In this
event, we use a different type of split, in which the cell is
partitioned into two pieces based on distance from the mean.

procedure CHOOSERULE(S)
if ∆2(S) ≤ c ·∆2

A(S)

then
{

choose a random unit directionv
Rule(x) := x · v ≤ medianz∈S(z · v)

else
{

Rule(x) :=
‖x−mean(S)‖ ≤ medianz∈S(‖z −mean(S)‖)

return (Rule)

In the code,c is a constant,∆(S) is the diameter ofS (the
distance between the two furthest points in the set), and∆A(S)
is theaveragediameter, that is, the average distance between
points ofS:

∆2
A(S) =

1

|S|2
∑

x,y∈S

‖x− y‖2.

D. Main result

Recall that an RP tree has two different types of split; let’s
call them splitsby distanceand splitsby projection.

Theorem 2:There are constants0 < c1, c2, c3 < 1 with the
following property. Suppose an RP tree is built using data set
S ⊂ R

D. Consider any cellC such thatS ∩C has covariance
dimension(d, ǫ), whereǫ < c1. Pick x ∈ S ∩ C at random,
and letC ′ be the cell containing it at the next level down.

• If C is split by distance,E
[
∆2(S ∩ C ′)

]
≤ c2∆

2(S∩C).
• If C is split by projection, thenE

[
∆2

A(S ∩ C ′)
]
≤

(1− (c3/d)) ∆2
A(S ∩ C).

In both cases, the expectation is over the randomization in
splitting C and the choice ofx ∈ S ∩ C.

To translate Theorem 2 into a statement about vector
quantization error, we combine the two notions of diameter
into a single quantity:Φ(S) = ∆2

A(S) + (1/cd)∆2(S).
Then Theorem 2 immediately implies that (under the given
conditions) there is a constantc4 = min{(1 − c2)/2, c3/2}
such that for either split,

E [Φ(S ∩ C ′)] ≤ (1− c4/d)Φ(S).
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Suppose we now built a treeT to l = log k levels, and that the
(d, ǫ) upper bound on covariance dimension holds throughout.
For a pointX chosen at random fromS, let C(X) denote the
leaf cell (of the2l = k possibilities) into which it falls. As we
will see later (Corollary 6), the quantization error withinthis
cell is precisely1

2∆2
A(C(X)). Thus,

ET [k-quantization error]

=
1

2
ET EX

[
∆2

A(S ∩ C(X))
]

≤ 1

2
ET EX [Φ(S ∩ C(X))]

≤ 1

2

(
1− c4

d

)l

· Φ(S)

≤ 1

2
· k−c4/d ·

(
∆2

A(S) + (1/cd)∆2(S)
)

whereET denotes expectation over the randomness in the tree
construction.

E. The hardness of finding optimal centers

Given a data set, the optimization problem of finding ak-
optimal set of centers is called thek-means problem. Here is
the formal definition.

k-MEANS CLUSTERING

Input: Set of pointsx1, . . . , xn ∈ R
D; integerk.

Output: A partition of the points into clusters
C1, . . . , Ck, along with a centerµj for each cluster,
so as to minimize

k∑

j=1

∑

i∈Cj

‖xi − µj‖2.

The typical method of approaching this task is to apply
Lloyd’s algorithm [13], [12], and usually this algorithm isitself
calledk-means. The distinction between the two is particularly
important to make because Lloyd’s algorithm is a heuristic that
often returns a suboptimal solution to thek-means problem.
Indeed, its solution is often very far from optimal.

What’s worse, this suboptimality is not just a problem with
Lloyd’s algorithm, but an inherent difficulty in the optimiza-
tion task.k-MEANS CLUSTERING is an NP-hard optimization
problem, which means that it is very unlikely that there exists
an efficient algorithm for it. To explain this a bit more clearly,
we delve briefly into the theory of computational complexity.

The running time of an algorithm is typically measured as
a function of its input/output size. In the case ofk-means,
for instance, it would be given as a function ofn, k, and
D. An efficient algorithm is one whose running time scales
polynomially with the problem size. For instance, there are
algorithms for sortingn numbers which take time proportional
to n log n; these qualify as efficient becausen log n is bounded
above by a polynomial inn.

For some optimization problems, the best algorithms we
know take timeexponential in problem size. The famous
traveling salesman problem (given distances betweenn cities,
plan a circular route through them so that each city is visited
once and the overall tour length is minimized) is one of these.
There are various algorithms for it that take time proportional

to 2n (or worse): this means each additional city causes the
running time to be doubled. Even small graphs are therefore
hard to solve.

This lack of an efficient algorithm is not limited to just
a few pathological optimization problems, but recurs across
the entire spectrum of computational tasks. Moreover, it has
been shown that the fates of these diverse problems (called
NP-completeproblems) are linked: eitherall of them admit
efficient algorithms, or none of them do. The mathematical
community strongly believes the latter to be the case, although
it is has not been proved. Resolving this question is one of
the seven “grand challenges” of the new millenium identified
by the Clay Institute.

In Appendix II, we show the following.
Theorem 3:k-MEANS CLUSTERING is an NP-hard opti-

mization problem, even ifk is restricted to 2.
Thus we cannot expect to be able to find ak-optimal set of
centers; the best we can hope is to find some set of centers
that achieves roughly the optimal quantization error.

F. Related work

Quantization: The literature on vector quantization is sub-
stantial; see the wonderful survey of Gray and Neuhoff [9]
for a comprehensive overview. In the most basic setup, there
is some distributionP over R

D from which random vectors
are generated and observed, and the goal is to pick a finite
codebookC ⊂ R

D and an encoding functionα : R
D → C

such thatx ≈ α(x) for typical vectorsx. The quantization
error is usually measured by squared loss,E‖X − α(X)‖2.
An obvious choice is to letα(x) be the nearest neighbor ofx
in C. However, the number of codewords is often so enormous
that this nearest neighbor computation cannot be performedin
real time. A more efficient scheme is to have the codewords
arranged in a tree [4].

The asymptotic behavior of quantization error, assuming
optimal quantizers and under various conditions onP , has
been studied in great detail. A nice overview is presented in
the recent monograph of Graf and Luschgy [8]. The rates
obtained fork-optimal quantizers are generally of the form
k−2/D. There is also work on the special case of data that
lie exactly on a manifold, and whose distribution is within
some constant factor of uniform; in such cases, rates of the
form k−2/d are obtained, whered is the dimension of the
manifold. Our setting is considerably more general than this:
we do not assume optimal quantization (which is NP-hard), we
have a broad notion of intrinsic dimension that allows points
to merely be close to a manifold rather than on it, and we
make no other assumptions about the distributionP .

Compressed sensing:The field of compressed sensing has
grown out of the surprising realization that high-dimensional
sparse data can be accurately reconstructed from just a few
random projections [3], [5]. The central premise of this re-
search area is that the original data thus never even needs to
be collected: all one ever sees are the random projections.

RP trees are similar in spirit and entirely compatible with
this viewpoint. Theorem 2 holds even if the random projections
are forced to be the same across each entire level of the tree.
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For a tree of depthk, this means onlyk random projections
are ever needed, and these can be computed beforehand (the
split-by-distance can be reworked to operate in the projected
space rather than the high-dimensional space). The data are
not accessed in any other way.

III. A N RP TREE ADAPTS TO INTRINSIC DIMENSION

An RP tree has two varieties of split. If a cellC has much
larger diameter than average-diameter (average interpoint dis-
tance), then it is split according to the distances of pointsfrom
the mean. Otherwise, a random projection is used.

The first type of split is particularly easy to analyze.

A. Splitting by distance from the mean

This option is invoked when the points in the current cell,
call themS, satisfy∆2(S) > c∆2

A(S); recall that∆(S) is the
diameter ofS while ∆2

A(S) is the average interpoint distance.
Lemma 4:Suppose that∆2(S) > c∆2

A(S). Let S1 denote
the points inS whose distance to mean(S) is less than or
equal to the median distance, and letS2 be the remaining
points. Then the expected squared diameter after the split is

|S1|
|S| ∆

2(S1) +
|S2|
|S| ∆

2(S2) ≤
(

1

2
+

2

c

)
∆2(S).

The proof of this lemma is deferred to the Appendix, as are
all other proofs in this paper.

B. Splitting by projection: proof outline

Suppose the current cell contains a set of pointsS ⊂ R
D

for which ∆2(S) ≤ c∆2
A(S). We will show that a split by

projection has a constant probability of reducing the average
squared diameter∆2

A(S) by Ω(∆2
A(S)/d). Our proof has three

parts:

I. SupposeS is split intoS1 andS2, with meansµ1 andµ2.
Then the reduction in average diameter can be expressed
in a remarkably simple form, as a multiple of‖µ1−µ2‖2.

II. Next, we give a lower bound on the distance between
the projected means,(µ̃1 − µ̃2)

2. We show that the
distribution of the projected points is subgaussian with
varianceO(∆2

A(S)/D). This well-behavedness implies
that (µ̃1 − µ̃2)

2 = Ω(∆2
A(S)/D).

III. We finish by showing that, approximately,‖µ1−µ2‖2 ≥
(D/d)(µ̃1 − µ̃2)

2. This is becauseµ1 − µ2 lies close to
the subspace spanned by the topd eigenvectors of the
covariance matrix ofS; and with high probability,every
vector in this subspace shrinks byO(

√
d/D) when

projected on a random line.

We now tackle these three parts of the proof in order.

C. Quantifying the reduction in average diameter

The average squared diameter∆2
A(S) has certain reformu-

lations that make it convenient to work with. These properties
are consequences of the following two observations, the first of
which the reader may recognize as a standard “bias-variance”
decomposition of statistics.

Lemma 5:Let X,Y be independent and identically dis-
tributed random variables inRn, and letz ∈ R

n be any fixed
vector.

(a) E
[
‖X − z‖2

]
= E

[
‖X − EX‖2

]
+ ‖z − EX‖2.

(b) E
[
‖X − Y ‖2

]
= 2 E

[
‖X − EX‖2

]
.

This can be used to show that the averaged squared diameter,
∆2

A(S), is twice the average squared distance of points inS
from their mean.

Corollary 6: The average squared diameter of a setS can
also be written as:

∆2
A(S) =

2

|S|
∑

x∈S

‖x−mean(S)‖2.

At each successive level of the tree, the current cell is
split into two, either by a random projection or according to
distance from the mean. Suppose the points in the current cell
areS, and that they are split into setsS1 andS2. It is obvious
that the expected diameter is nonincreasing:

∆(S) ≥ |S1|
|S| ∆(S1) +

|S2|
|S| ∆(S2).

This is also true of the expected average diameter. In fact, we
can precisely characterize how much it decreases on account
of the split.

Lemma 7:Suppose setS is partitioned (in any manner) into
S1 andS2. Then

∆2
A(S)−

{ |S1|
|S| ∆

2
A(S1) +

|S2|
|S| ∆

2
A(S2)

}

=
2|S1| · |S2|
|S|2 ‖mean(S1)−mean(S2)‖2.

This completes part I of the proof outline.

D. Properties of random projections

Our quantization scheme depends heavily upon certain
regularity properties of random projections. We now review
these properties, which are critical for parts II and III of our
proof.

The most obvious way to pick a random projection from
R

D to R is to choose a projection directionu uniformly at
random from the surface of the unit sphereSD−1, and to send
x 7→ u · x.

Another common option is to select the projection
vector from a multivariate Gaussian distribution,u ∼
N(0, (1/D)ID). This gives almost the same distribution as
before, and is slightly easier to work with in terms of the
algorithm and analysis. We will therefore use this type of
projection, bearing in mind that all proofs carry over to the
other variety as well, with slight changes in constants.

The key property of a random projection fromRD to R is
that it approximately preserves the lengths of vectors, modulo
a scaling factor of

√
D. This is summarized in the lemma

below.
Lemma 8:Fix any x ∈ R

D. Pick a random vectorU ∼
N(0, (1/D)ID). Then for anyα, β > 0:

(a) P

[
|U · x| ≤ α · ‖x‖√

D

]
≤
√

2
π α
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(b) P

[
|U · x| ≥ β · ‖x‖√

D

]
≤ 2

β e−β2/2

Lemma 8 applies to any individual vector. Thus it also
applies, in expectation, to a vector chosen at random from
a setS ⊂ R

D. Applying Markov’s inequality, we can then
conclude that whenS is projected onto a random direction,
mostof the projected points will be close together, in acentral
interval of sizeO(∆(S)/

√
D).

Lemma 9:Suppose S ⊂ R
D lies within some ball

B(x0,∆). Pick any 0 < δ, ǫ ≤ 1 such thatδǫ ≤ 1/e2.
Let ν be any measure onS. Then with probability> 1 − δ
over the choice of random projectionU onto R, all but anǫ
fraction ofU ·S (measured according toν) lies within distance√

2 ln 1
δǫ · ∆√

D
of U · x0.

As a corollary (takingν to be the uniform distribution over
S andǫ = 1/2), the median of the projected points must also
lie within this central interval.

Corollary 10: Under the hypotheses of Lemma 9, for any
0 < δ < 2/e2, the following holds with probability at least
1− δ over the choice of projection:

|median(U · S)− U · x0| ≤
∆√
D
·
√

2 ln
2

δ
.

Finally, we examine what happens when the setS is a
d-dimensional subspace ofRD. Lemma 8 tells us that the
projection of anyspecificvector x ∈ S is unlikely to have
length too much greater than‖x‖/

√
D, with high probability.

A slightly weaker bound can be shown to hold for all ofS
simultaneously; the proof technique has appeared before in
several contexts, including [15], [1].

Lemma 11:There exists a constantκ1 with the following
property. Fix anyδ > 0 and anyd-dimensional subspaceH ⊂
R

D. Pick a random projectionU ∼ N(0, (1/D)ID). Then
with probability at least1− δ over the choice ofU ,

sup
x∈H

|x · U |2
‖x‖2 ≤ κ1 ·

d + ln 1/δ

D
.

E. Properties of the projected data

Projection fromR
D into R

1 shrinks the average squared
diameter of a data set by roughlyD. To see this, we start with
the fact that when a data set with covarianceA is projected
onto a vectorU , the projected data have varianceUT AU .
We now show that for randomU , such quadratic forms are
concentrated about their expected values.

Lemma 12:SupposeA is an n × n positive semidefinite
matrix, andU ∼ N(0, (1/n)In). Then for anyα, β > 0:

(a) P[UT AU < α · E[UT AU ]] ≤ e−((1/2)−α)/2, and
(b) P[UT AU > β · E[UT AU ]] ≤ e−(β−2)/4.

Lemma 13:Pick U ∼ N(0, (1/D)ID). Then for anyS ⊂
R

D, with probability at least1/10, the projection ofS onto
U has average squared diameter

∆2
A(S · U) ≥ ∆2

A(S)

4D
.

Next, we examine the overall distribution of the projected
points. WhenS ⊂ R

D has diameter∆, its projection into the
line can have diameter upto∆, but as we saw in Lemma 9,
most of it will lie within a central interval of sizeO(∆/

√
D).

What can be said about points that fall outside this interval?
We can apply Lemma 9 to larger intervals of the form

[−k∆/
√

D, k∆/
√

D], with failure probability δ/2k. Taking
a union bound over all such intervals with integralk, we get
the following.

Lemma 14:SupposeS ⊂ B(0,∆) ⊂ R
D. Pick anyδ > 0

and chooseU ∼ N(0, (1/D)ID). Then with probability at
least 1 − δ over the choice ofU , the projectionS · U =
{x ·U : x ∈ S} satisfies the following property for all positive
integersk.

The fraction of points outside the interval(
− k∆√

D
,+ k∆√

D

)
is at most2

k

δ · e−k2/2.

F. Distance between the projected means

We are dealing with the case when∆2(S) ≤ c · ∆2
A(S),

that is, the diameter of setS is at most a constant factor
times the average interpoint distance. IfS is projected onto a
random direction, the projected points will have variance about
∆2

A(S)/D, by Lemma 13; and by Lemma 14, it isn’t too far
from the truth to think of these points as having roughly a
Gaussian distribution. Thus, if the projected points are split
into two groups at the mean, we would expect the means
of these two groups to be separated by a distance of about
∆A(S)/

√
D. Indeed, this is the case. The same holds if we

split at the median, which isn’t all that different from the mean
for close-to-Gaussian distributions.

Lemma 15:There is a constantκ2 for which the following
holds. Pick any0 < δ < 1/16c. Pick U ∼ N(0, (1/D)ID)
and splitS into two pieces:

S1 = {x ∈ S : x · U < s} and S2 = {x ∈ S : x · U ≥ s},

wheres is either mean(S · U) or median(S · U). Write p =
|S1|/|S|, and letµ̃1 and µ̃2 denote the means ofS1 · U and
S2 · U , respectively. Then with probability at least1/10− δ,

(µ̃2 − µ̃1)
2 ≥ κ2 ·

1

(p(1− p))2
· ∆

2
A(S)

D
· 1

c log(1/δ)
.

G. Distance between the high-dimensional means

Split S into two pieces as in the setting of Lemma 15, and
let µ1 and µ2 denote the means ofS1 and S2, respectively.
We already have a lower bound on the distance between the
projected means,̃µ2 − µ̃1; we will now show that‖µ2 − µ1‖
is larger than this by a factor of about

√
D/d. The main

technical difficulty here is the dependence between theµi and
the projectionU . Incidentally, this is the only part of the entire
argument that exploits intrinsic dimensionality.

Lemma 16:There exists a constantκ3 with the following
property. Suppose setS ⊂ R

D is such that the topd
eigenvalues of cov(S) account for more than1−ǫ of its trace.
Pick a random vectorU ∼ N(0, (1/D)ID), and splitS into
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two pieces,S1 and S2, in any fashion (which may depend
uponU ). Let p = |S1|/|S|. Let µ1 andµ2 be the means ofS1

andS2, and letµ̃1 and µ̃2 be the means ofS1 ·U andS2 ·U .
Then, for anyδ > 0, with probability at least1−δ over the

choice ofU ,

‖µ2−µ1‖2 ≥
κ3D

d + ln 1/δ

(
(µ̃2 − µ̃1)

2 − 4

p(1− p)

ǫ∆2
A(S)

δD

)
.

We can now finish off the proof of Theorem 2.
Theorem 17:Fix any ǫ ≤ O(1/c). Suppose setS ⊂ R

D

has the property that the topd eigenvalues of cov(S) account
for more than1 − ǫ of its trace. Pick a random vectorU ∼
N(0, (1/D)ID) and splitS into two parts,

S1 = {x ∈ S : x · U < s} and S2 = {x ∈ S : x · U ≥ s},

wheres is either mean(S · U) or median(S · U). Then with
probability Ω(1), the expected average diameter shrinks by
Ω(∆2

A(S)/cd).
Proof: By Lemma 7, the reduction in expected average

diameter is

∆2
A(S)−

{ |S1|
|S| ∆

2
A(S1) +

|S2|
|S| ∆

2
A(S2)

}

=
2|S1| · |S2|
|S|2 ‖mean(S1)−mean(S2)‖2,

or 2p(1 − p)‖µ1 − µ2‖2 in the language of Lemmas 15 and
16. The rest follows from those two lemmas.

IV. U SING RP TREES

RP trees are easily adapted to the setting ofstreamingdata:
situations where data points arrive one at a time, and must
be processed quickly and then discarded from memory. In
such a model, an RP tree can be built gradually, starting
with a single cell and splitting cells when there is enough
data to accurately assess the diameter, the mean, and the
median. These quantities can be computed approximately from
streaming data, without having to store all the data points.

In terms of choosing projection directions, the theorems
say that a random projection has a constant probability of
being useful. To significantly boost this probability of success,
we recommend maintaining a small dictionary of directions,
chosen randomly from the unit sphere at the very outset; when
it is time to split a cell, all these directions can be tried, and
the best one – the direction that most reduces the average
quantization error – can be chosen.

If a lot more time were available, a natural alternative to
random projection would be to split the cell along the principal
component direction, that is, along the primary eigenvector of
its covariance matrix. The intuition behind this choice is that
it is optimal for Gaussian data.

Theorem 18:Suppose the data distribution is a multivariate
GaussianN(0,Σ). Any directionv ∈ R

D defines a split into
two half-spaces,{x : x · v < 0} and {x : x · v ≥ 0}. Of all
such splits, the smallest average quantization error (for two
cells) is attained whenv is the principal eigenvector ofΣ.
The proof, as always, is in Appendix I.

A practical alternative to an expensive eigenvalue compu-
tation is to compute an approximate principal eigenvector by
stochastic gradient descent or some other such incrementalop-
timization method. [21] suggests initializing a vectorv0 ∈ R

D

randomly, and then performing an update

vt+1 = (1− γt)vt + γtXtX
T
t

vt

‖vt‖

when a new data pointXt is seen. We have found experimen-
tally that for step sizeγt = 1/t, vectorvt converges rapidly
to a good split direction.
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V. A PPENDIX I: PROOFS OF MAIN THEOREM

A. Proof of Lemma 4

Let random variableX be distributed uniformly overS.
Then

P
[
‖X − EX‖2 ≥ median(‖X − EX‖2)

]
≥ 1

2

by definition of median, soE
[
‖X − EX‖2

]
≥ median(‖X −

EX‖2)/2. It follows from Corollary 6 that

median(‖X − EX‖2) ≤ 2E
[
‖X − EX‖2

]
= ∆2

A(S).

Set S1 has squared diameter∆2(S1) ≤ (2 median(‖X −
EX‖))2 ≤ 4∆2

A(S). Meanwhile,S2 has squared diameter at
most∆2(S). Therefore,

|S1|
|S| ∆

2(S1) +
|S2|
|S| ∆

2(S2) ≤
1

2
· 4∆2

A(S) +
1

2
∆2(S)

and the lemma follows by using∆2(S) > c∆2
A(S).

B. Proofs of Lemma 5 and Corollary 6

Part (a) of Lemma 5 is immediate when both sides are
expanded. For (b), we use part (a) to assert that for any fixed
y, we haveE

[
‖X − y‖2

]
= E

[
‖X − EX‖2

]
+ ‖y − EX‖2.

We then take expectation overY = y.
Corollary 6 follows by observing that∆2

A(S) is simply
E
[
‖X − Y ‖2

]
, whenX,Y are i.i.d. draws from the uniform

distribution overS.

C. Proof of Lemma 7

Let µ, µ1, µ2 denote the means ofS, S1, and S2. Using
Corollary 6 and Lemma 5(a), we have

∆2
A(S)− |S1|

|S| ∆
2
A(S1)−

|S2|
|S| ∆

2
A(S2)

=
2

|S|
∑

S

‖x− µ‖2 − |S1|
|S| ·

2

|S1|
∑

S1

‖x− µ1‖2

−|S2|
|S| ·

2

|S2|
∑

S2

‖x− µ2‖2

=
2

|S|

{
∑

S1

(
‖x− µ‖2 − ‖x− µ1‖2

)

+
∑

S2

(
‖x− µ‖2 − ‖x− µ2‖2

)
}

=
2|S1|
|S| ‖µ1 − µ‖2 +

2|S2|
|S| ‖µ2 − µ‖2.

Writing µ as a weighted average ofµ1 andµ2 then completes
the proof.

D. Proof of Lemma 8

SinceU has a Gaussian distribution, and any linear combi-
nation of independent Gaussians is a Gaussian, it follows that
the projectionU · x is also Gaussian. Its mean and variance
are easily seen to be zero and‖x‖2/D, respectively. Therefore,
writing

Z =

√
D

‖x‖ (U · x)

we have thatZ ∼ N(0, 1). The bounds stated in the lemma
now follow from properties of the standard normal. In particu-
lar, N(0, 1) is roughly flat in the range[−1, 1] and then drops
off rapidly; the two cases in the lemma statement correspond
to these two regimes.

The highest density achieved by the standard normal is
1/
√

2π. Thus the probability mass it assigns to the interval
[−α, α] is at most2α/

√
2π; this takes care of (a). For (b),

we use a standard tail bound for the normal,P(|Z| ≥ β) ≤
(2/β)e−β2/2; see, for instance, page 7 of [7].

E. Proof of Lemma 9

Setc =
√

2 ln 1/(δǫ) ≥ 2.
Fix any pointx, and randomly choose a projectionU . Let

x̃ = U · x (and likewise, letS̃ = U · S). What is the chance
that x̃ lands far fromx̃0? Define the bad event to beFx =
1(|x̃− x̃0| ≥ c∆/

√
D). By Lemma 8(b), we have

EU [Fx] ≤ PU

[
|x̃− x̃0| ≥ c · ‖x− x0‖√

D

]
≤ 2

c
e−c2/2 ≤ δǫ.

Since this holds for anyx ∈ S, it also holds in expectation over
x drawn fromν. We are interested in bounding the probability
(over the choice ofU ) that more than anǫ fraction of ν
falls far from x̃0. Using Markov’s inequality and then Fubini’s
theorem, we have

PU [Eµ[Fx] ≥ ǫ] ≤ EU [Eµ[Fx]]

ǫ
=

Eµ[EU [Fx]]

ǫ
≤ δ,

as claimed.

F. Proof of Lemma 11

It is enough to show that the inequality holds forS = H ∩
(surface of the unit sphere inRD). Let N be any(1/2)-cover
of this set (that is,supz∈S infx∈N ‖x−z‖ ≤ 1/2); it is possible
to achieve|N | ≤ 10d [14]. Apply Lemma 8, along with a
union bound, to conclude that with probability at least1 − δ
over the choice of projectionU ,

sup
x∈N
|x · U |2 ≤ 2 · ln |N |+ ln 1/δ

D
.

Now, defineC by

C = sup
x∈S

(
|x · U |2 · D

ln |N |+ ln 1/δ

)
.

We’ll complete the proof by showingC ≤ 8. To this end,
pick thex∗ ∈ S for which the supremum is realized (noteS
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is compact), and choosey ∈ N whose distance tox∗ is at
most1/2. Then,

|x∗ · U | ≤ |y · U |+ |(x∗ − y) · U |

≤
√

ln |N |+ ln 1/δ

D

(
1

2

√
C +

√
2

)

From the definition ofx∗, it follows that
√

C ≤
√

2 +
√

C/2
and thusC ≤ 8.

G. Proof of Lemma 12

This follows by examining the moment-generating func-
tion of UT AU . Since the distribution ofU is spherically
symmetric, we can work in the eigenbasis ofA and assume
without loss of generality thatA = diag(a1, . . . , an), where
a1, . . . , an are the eigenvalues. Moreover, for convenience we
take

∑
ai = 1.

Let U1, . . . , Un denote the individual coordinates ofU . We
can rewrite them asUi = Zi/

√
n, whereZ1, . . . , Zn are i.i.d.

standard normal random variables. Thus

UT AU =
∑

i

aiU
2
i =

1

n

∑

i

aiZ
2
i .

This tells us immediately thatE[UT AU ] = 1/n.
We use Chernoff’s bounding method for both parts. For (a),

for any t > 0,

P
[
UT AU < α · E[UT AU ]

]

= P

[
∑

i

aiZ
2
i < α

]
= P

[
e−t

P

i aiZ
2
i > e−tα

]

≤
E

[
e−t

P

i aiZ
2
i

]

e−tα
= etα

∏

i

E

[
e−taiZ

2
i

]

= etα
∏

i

(
1

1 + 2tai

)1/2

and the rest follows by usingt = 1/2 along with the inequality
1/(1 + x) ≤ e−x/2 for 0 < x ≤ 1. Similarly for (b), for
0 < t < 1/2,

P
[
UT AU > β · E[UT AU ]

]

= P

[
∑

i

aiZ
2
i > β

]
= P

[
et

P

i aiZ
2
i > etβ

]

≤
E

[
et

P

i aiZ
2
i

]

etβ
= e−tβ

∏

i

E

[
etaiZ

2
i

]

= e−tβ
∏

i

(
1

1− 2tai

)1/2

and it is adequate to chooset = 1/4 and invoke the inequality
1/(1− x) ≤ e2x for 0 < x ≤ 1/2.

H. Proof of Lemma 13

By Corollary 6,

∆2
A(S ·U) =

2

|S|
∑

x∈S

((x−mean(S))·U)2 = 2UT cov(S)U.

where cov(S) is the covariance of data setS. This quadratic
term has expectation (over choice ofU )

E[2UT cov(S)U ] = 2
∑

i,j

E[UiUj ]cov(S)ij

=
2

D

∑

i

cov(S)ii =
∆2

A(S)

D
.

Lemma 12(a) then bounds the probability that it is much
smaller than its expected value.

I. Proof of Lemma 15

Let the random variablẽX denote a uniform-random draw
from the projected pointsS · U . Without loss of generality
mean(S) = 0, so thatEX̃ = 0 and thuspµ̃1 +(1− p)µ̃2 = 0.
Rearranging, we get̃µ1 = −(1−p)(µ̃2−µ̃1) andµ̃2 = p(µ̃2−
µ̃1).

We already know from Lemma 13 (and Corollary 6) that
with probability at least1/10, the variance of the projected
points is significant: var(X̃) ≥ ∆2

A(S)/8D. We’ll show this
implies a similar lower bound on(µ̃2 − µ̃1)

2.
Using 1(·) to denote0− 1 indicator variables,

var(X̃) ≤ E[(X̃ − s)2]

≤ E[2t|X̃ − s|+ (|X̃ − s| − t)2 · 1(|X̃ − s| ≥ t)]

for anyt > 0. This is a convenient formulation since the linear
term gives us̃µ2 − µ̃1:

E[2t|X̃ − s|] = 2t(p(s− µ̃1) + (1− p)(µ̃2 − s))

= 4t · p(1− p) · (µ̃2 − µ̃1) + 2ts(2p− 1).

The last term vanishes since the split is either at the mean of
the projected points, in which cases = 0, or at the median,
in which casep = 1/2.

Next, we’ll choose

t = to
∆(S)√

D
·
√

log
1

δ

for some suitable constantto, so that the quadratic term in
var(X̃) can be bounded using Lemma 14 and (if the split
point is the median) Corollary 10: with probability at least
1− δ,

E[(|X̃ − s| − t)2 · 1(|X̃ − s| ≥ t)] ≤ δ · ∆
2(S)

D

(this is a simple integration). Putting the pieces together, we
have

∆2
A(S)

8D
≤ var(X̃) ≤ 4t ·p(1−p) ·(µ̃2− µ̃1)+δ ·∆

2(S)

D
.

The result now follows immediately by algebraic manipula-
tion, using the relation∆2(S) ≤ c∆2

A(S).
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J. Proof of Lemma 16

Assume without loss of generality thatS has zero mean.
Let H denote the subspace spanned by the topd eigenvectors
of the covariance matrix ofS, and letH⊥ be its orthogonal
subspace. Write any pointx ∈ R

D as xH + x⊥, where each
component is seen as a vector inR

D that lies in the respective
subspace.

Pick the random vectorU ; with probability ≥ 1 − δ it
satisfies the following two properties.
Property 1: For some constantκ′ > 0, for everyx ∈ R

D

|xH ·U |2 ≤ ‖xH‖2 ·κ′ · d + ln 1/δ

D
≤ ‖x‖2 ·κ′ · d + ln 1/δ

D
.

This holds (with probability1− δ/2) by Lemma 11.
Property 2: LettingX denote a uniform-random draw fromS,
we have

EX [(X⊥ · U)2] ≤ 2

δ
· EUEX [(X⊥ · U)2]

=
2

δ
· EXEU [(X⊥ · U)2]

=
2

δD
· EX [‖X⊥‖2] ≤

ǫ∆2
A(S)

δD
.

The first step is Markov’s inequality, and holds with probabil-
ity 1−δ/2. The last inequality comes from the local covariance
condition.

So assume the two properties hold. Writingµ2 − µ1 as
(µ2H − µ1H) + (µ2⊥ − µ1⊥),

(µ̃2 − µ̃1)
2 = ((µ2H − µ1H) · U + (µ2⊥ − µ1⊥) · U)2

≤ 2((µ2H − µ1H) · U)2 + 2((µ2⊥ − µ1⊥) · U)2.

The first term can be bounded by Property 1:

((µ2H − µ1H) · U)2 ≤ ‖µ2 − µ1‖2 · κ′ · d + ln 1/δ

D
.

For the second term, letEX denote expectation overX chosen
uniformly at random fromS. Then

((µ2⊥ − µ1⊥) · U)2

≤ 2(µ2⊥ · U)2 + 2(µ1⊥ · U)2

= 2(EX [X⊥ · U | X ∈ S2])
2 + 2(EX [X⊥ · U | X ∈ S1])

2

≤ 2EX [(X⊥ · U)2 | X ∈ S2] + 2EX [(X⊥ · U)2 | X ∈ S1]

≤ 2

1− p
· EX [(X⊥ · U)2] +

2

p
· EX [(X⊥ · U)2]

=
2

p(1− p)
EX [(X⊥ · U)2] ≤ 2

p(1− p)
· ǫ∆

2
A(S)

δD
.

by Property 2. The lemma follows by putting the various
pieces together.

K. Proof of Theorem 18

Let X ∈ R
D be a random data vector; by assumption, it is

drawn from a multivariate GaussianN(0,Σ). Let u1, . . . , uD

denote the eigenvectors ofΣ, with corresponding eigenvalues
λ1 ≥ · · · ≥ λD. The principal eigenvector isu1 (without loss
of generality), and by Lemma 7 the reduction in quantization
error from splitting along this direction is‖µpca‖2, where

µpca = E[X | X · u1 ≥ 0].

Now consider any other split direction (unit vector)v and
the corresponding half-space{x : x · v ≥ 0}. The reduction in
quantization error it induces is‖µ‖2, for µ = E[X | X ·v ≥ 0].
We’ll show ‖µ‖ ≤ ‖µpca‖.

Our proof technique is to show that‖µ‖ can be written in
the form E[X · u | X · v ≥ 0] for some unit directionu,
and to argue that this is maximized whenv = u. Thereupon,
‖µ‖ = E[X · u | X · u ≥ 0], which is maximized foru = u1.

In what follows, defineρ = E[Z | Z ≥ 0] where Z is
a standard normal. It is easy to computeρ, but we will not
need its numerical value; what matters is that the reductionin
quantization error for different split directions turns out to be
a multiple ofρ.

Lemma 19:Pick any unit directionu. For X ∼ N(0,Σ),

E[X · u | X · u ≥ 0] = ρ
√

uT Σu.

Proof: X · u has distributionN(0, uT Σu), which in turn
is equal in distribution to a standard normal times

√
uT Σu.

Lemma 20:For any directionv, let µ = E[X | X · v ≥ 0].
Then‖µ‖ ≤ ‖µpca‖.

Proof: By symmetry, µpca lies in the direction of the
principal eigenvectoru1. Thus,

‖µpca‖ = µpca · u1

= E[X · u1 | X · u1 ≥ 0]

= ρ
√

uT
1 Σu1 = ρ

√
λ1

Now, supposeµ lies in some (unit) directionu. Then

‖µ‖ = µ · u
= E[X · u | X · v ≥ 0]

≤ E[X · u | X · u ≥ 0]

= ρ
√

uT Σu ≤ ρ
√

λ1.

The second-last inequality follows from Lemma 21 and the
last is a consequence ofλ1 being the largest eigenvalue.

Lemma 21:Suppose random vectorY ∈ R
D is drawn from

a symmetric density (that is,Y has the same distribution as
−Y ). Consider any two unit directionsu, v ∈ R

D. Then

E[Y · u | Y · v ≥ 0] ≤ E[Y · u | Y · u ≥ 0].

Proof: Let P denote the distribution ofY . Consider the
regions

A = {y : y · u ≥ 0, y · v ≥ 0}
A+ = {y : y · u ≥ 0, y · v < 0}
A− = {y : y · u < 0, y · v ≥ 0}

SinceA+ = −A− (upto sets of measure zero), it follows by
symmetry thatP (A+) = P (A−). Likewise by symmetry, we
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have thatP (A ∪A+) = P (A ∪A−) = 1/2. Thus

E[Y · u | Y · u ≥ 0]− E[Y · u | Y · v ≥ 0]

=
E[Y · u | Y ∈ A]P (A) + E[Y · u | Y ∈ A+]P (A+)

1/2

−E[Y · u | Y ∈ A]P (A) + E[Y · u | Y ∈ A−]P (A−)

1/2

= 2
(
E[Y · u | Y ∈ A+]− E[Y · u | Y ∈ A−]

)
P (A+)

≥ 0

where the last inequality follows by observing that the first
term in the parenthesis is nonnegative while the second is
negative.

VI. A PPENDIX II: T HE HARDNESS OFk-MEANS

CLUSTERING

k-MEANS CLUSTERING

Input: Set of pointsx1, . . . , xn ∈ R
d; integerk.

Output: A partition of the points into clusters
C1, . . . , Ck, along with a centerµj for each cluster,
so as to minimize

k∑

j=1

∑

i∈Cj

‖xi − µj‖2.

(Here ‖ · ‖ is Euclidean distance.) It can be checked that in
any optimal solution,µj is the mean of the points inCj . Thus
the{µj} can be removed entirely from the formulation of the
problem. From Lemma 5(b),

∑

i∈Cj

‖xi − µj‖2 =
1

2|Cj |
∑

i,i′∈Cj

‖xi − xi′‖2.

Therefore, thek-means cost function can equivalently be
rewritten as

k∑

j=1

1

2|Cj |
∑

i,i′∈Cj

‖xi − xi′‖2.

We consider the specific case whenk is fixed to 2.
Theorem 22:2-means clustering is an NP-hard optimiza-

tion problem.
This was recently asserted in [6], but the proof was flawed.
One of the authors privately communicated an alternative
argument to us [20], but since this is as yet unpublished, we
give our own proof here.

We establish hardness by a sequence of reductions. Our
starting point is a standard restriction of 3SAT that is well
known to be NP-complete.

3SAT

Input: A Boolean formula in 3CNF, where each
clause has exactly three literals and each variable
appears at least twice.
Output: true if formula is satisfiable,false if
not.

By a standard reduction from 3SAT, we show that a special
case ofNOT-ALL -EQUAL 3SAT is also hard. For completeness,
the details are laid out in the next section.

NAESAT*

Input: A Boolean formulaφ(x1, . . . , xn) in 3CNF,
such that (i) every clause contains exactly three
literals, and (ii) each pair of variablesxi, xj appears
together in at most two clauses, once as either
{xi, xj} or {xi, xj}, and once as either{xi, xj} or
{xi, xj}.
Output:true if there exists an assignment in which
each clause contains exactly one or two satisfied
literals; false otherwise.

Finally, we get to a generalization of 2-MEANS.

GENERALIZED 2-MEANS

Input: An n× n matrix of interpoint distancesDij .
Output: A partition of the points into two clusters
C1 andC2, so as to minimize

2∑

j=1

1

2|Cj |
∑

i,i′∈Cj

Dii′ .

We reduce NAESAT* to GENERALIZED 2-MEANS. For any
input φ to NAESAT*, we show how to efficiently produce a
distance matrixD(φ) and a thresholdc(φ) such thatφ satisfies
NAESAT* if and only if D(φ) admits a generalized 2-means
clustering of cost≤ c(φ).

Thus GENERALIZED 2-MEANS CLUSTERING is hard. To
get back to 2-MEANS (and thus establish Theorem 22), we
prove that the distance matrixD(φ) can in fact be realized
by squared Euclidean distances. This existential fact is also
constructive, because in such cases, the embedding can be
obtained in cubic time by classical multidimensional scaling
[10].

A. Hardness ofNAESAT*

Suppose we are given an inputφ(x1, . . . , xn) to 3SAT. If
some variable appears just once in the formula, it (and its
containing clause) can be trivially removed, so we assume
there are no such variables. We construct an intermediate
formulaφ′ that is satisfiable if and only ifφ is, and additionally
has exactly three occurrences of each variable: one in a clause
of size three, and two in clauses of size two. Thisφ′ is then
used to produce an inputφ′′ to NAESAT*.

1) Constructingφ′.
Suppose variablexi appearsk ≥ 2 times in φ. Create
k variablesxi1, . . . , xik for use in φ′: use the same
clauses, but replace each occurrence ofxi by one of
the xij . To enforce agreement between the different
copiesxij , addk additional clauses(xi1 ∨ xi2), (xi2 ∨
xi3), . . . , (xik, xi1). These correspond to the implica-
tions x1 ⇒ x2, x2 ⇒ x3, . . . , xk ⇒ x1.
By design,φ is satisfiable if and only ifφ′ is satisfiable.

2) Constructingφ′′.
Now we construct an inputφ′′ for NAESAT*. Supposeφ′

hasm clauses with three literals andm′ clauses with two
literals. Create2m + m′ + 1 new variables:s1, . . . , sm

andf1, . . . , fm+m′ andf .
If the jth three-literal clause inφ′ is (α∨β∨γ), replace
it with two clauses inφ′′: (α∨β∨sj) and(sj ∨γ∨fj).
If the jth two-literal clause inφ′ is (α ∨ β), replace it
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with (α∨β ∨ fm+j) in φ′′. Finally, addm+m′ clauses
that enforce agreement among thefi: (f1∨f2∨f), (f2∨
f3 ∨ f), . . . , (fm+m′ ∨ f1 ∨ f).
All clauses inφ′′ have exactly three literals. Moreover,
the only pairs of variables that occur together (in clauses)
more than once are{fi, f} pairs. Each such pair occurs
twice, as{fi, f} and{f i, f}.

Lemma 23:φ′ is satisfiable if and only ifφ′′ is not-all-equal
satisfiable.

Proof: First suppose thatφ′ is satisfiable. Use the same
settings of the variables forφ′′. Setf = f1 = · · · = fm+m′ =
false. For thejth three-literal clause(α ∨ β ∨ γ) of φ′, if
α = β = false then setsj to true, otherwise setsj to
false. The resulting assignment satisfies exactly one or two
literals of each clause inφ′′.

Conversely, supposeφ′′ is not-all-equal satisfiable. Without
loss of generality, the satisfying assignment hasf set to
false (otherwise flip all assignments). The clauses of the
form (f i ∨ fi+1 ∨ f) then enforce agreement among all the
fi variables. We can assume they are allfalse (otherwise,
once again, flip all assignments; this would makef true,
but it wouldn’t matter, since we will henceforth consider only
the clauses that don’t containf ). This means the two-literal
clauses ofφ′ must be satisfied. Finally, consider any three-
literal clause(α∨β∨γ) of φ′. This was replaced by(α∨β∨sj)
and(sj∨γ∨fj) in φ′′. Sincefj is false, it follows that one
of the literalsα, β, γ must be satisfied. Thusφ′ is satisfied.

B. Hardness ofGENERALIZED 2-MEANS

Given an instanceφ(x1, . . . , xn) of NAESAT*, we construct
a 2n × 2n distance matrixD = D(φ) where the (implicit)
2n points correspond to literals. Entries of this matrix will
be indexed asDα,β , for α, β ∈ {x1, . . . , xn, x1, . . . , xn}.
Another bit of notation: we writeα ∼ β to mean that either
α andβ occur together in a clause orα andβ occur together
in a clause. For instance, the clause(x ∨ y ∨ z) allows one
to assertx ∼ y but not x ∼ y. The input restrictions on
NAESAT* ensure that every relationshipα ∼ β is generated
by a unique clause; it is not possible to have two different
clauses that both contain either{α, β} or {α, β}.

Define

Dα,β =





0 if α = β

1 + ∆ if α = β
1 + δ if α ∼ β
1 otherwise

Here 0 < δ < ∆ < 1 are constants such that4δm < ∆ ≤
1 − 2δn, wherem is the number of clauses ofφ. One valid
setting isδ = 1/(5m + 2n) and∆ = 5δm.

Lemma 24:If φ is a satisfiable instance of NAESAT*, then
D(φ) admits a generalized 2-means clustering of costc(φ) =
n− 1 + 2δm/n, wherem is the number of clauses ofφ.

Proof: The obvious clustering is to make one cluster
(say C1) consist of the positive literals in the satisfying not-
all-equal assignment and the other cluster (C2) the negative
literals. Each cluster hasn points, and the distance between
any two distinct pointsα, β within a cluster is either1 or,
if α ∼ β, 1 + δ. Each clause ofφ has at least one literal

in C1 and at least one literal inC2, since it is a not-all-equal
assignment. Hence it contributes exactly one∼ pair toC1 and
one∼ pair to C2. The figure below shows an example with a
clause(x∨y∨z) and assignmentx = true, y = z = false.

C1
C2

z

x

x

y

z

y

Thus the clustering cost is

1

2n

∑

i,i′∈C1

Dii′ +
1

2n

∑

i,i′∈C2

Dii′ = 2 · 1

n

((
n

2

)
+ mδ

)

= n− 1 +
2δm

n
.

Lemma 25:Let C1, C2 be any 2-clustering ofD(φ). If C1

contains both a variable and its negation, then the cost of this
clustering is at leastn− 1 + ∆/(2n) > c(φ).

Proof: SupposeC1 hasn′ points whileC2 has2n − n′

points. Since all distances are at least1, and sinceC1 contains
a pair of points at distance1 + ∆, the total clustering cost is
at least

1

n′

((
n′

2

)
+ ∆

)
+

1

2n− n′

(
2n− n′

2

)

= n− 1 +
∆

n′ ≥ n− 1 +
∆

2n
.

Since∆ > 4δm, this is always more thanc(φ).
Lemma 26:If D(φ) admits a 2-clustering of cost≤ c(φ),

thenφ is a satisfiable instance of NAESAT*.
Proof: Let C1, C2 be a 2-clustering of cost≤ c(φ). By the

previous lemma, neitherC1 norC2 contain both a variable and
its negation. Thus|C1| = |C2| = n. The cost of the clustering
can be written as

2

n

((
n

2

)
+ δ

∑

clauses

{
1 if clause split betweenC1, C2

3 otherwise

})

Since the cost is≤ c(φ), it follows that all clauses are split
betweenC1 andC2, that is, every clause has at least one literal
in C1 and one literal inC2. Therefore, the assignment that sets
all of C1 to true and all ofC2 to false is a valid NAESAT*
assignment forφ.

C. Embeddability ofD(φ)

We now show thatD(φ) can be embedded intol22, in the
sense that there exist pointsxα ∈ R

2n such thatDα,β =
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‖xα− xβ‖2 for all α, β. We rely upon the following classical
result [18].

Theorem 27 (Schoenberg):Let H denote the matrixI −
(1/N)11

T . An N×N symmetric matrixD can be embedded
into l22 if and only if −HDH is positive semidefinite.
The following corollary is immediate.

Corollary 28: An N × N symmetric matrixD can be
embedded intol22 if and only if uT Du ≤ 0 for all u ∈ R

N

with u · 1 = 0.
Proof: Since the range of the mapv 7→ Hv is precisely

{u ∈ R
N : u · 1 = 0}, we have

−HDH is positive semidefinite

⇔ vT HDHv ≤ 0 for all v ∈ R
N

⇔ uT Du ≤ 0 for all u ∈ R
N with u · 1 = 0.

Lemma 29:D(φ) can be embedded intol22.
Proof: If φ is a formula with variablesx1, . . . , xn, then

D = D(φ) is a 2n × 2n matrix whose firstn rows/columns
correspond tox1, . . . , xn and remaining rows/columns corre-
spond tox1, . . . , xn. The entry for literals(α, β) is

Dαβ = 1− 1(α = β) + ∆ · 1(α = β) + δ · 1(α ∼ β),

where1(·) denotes the indicator function.
Now, pick anyu ∈ R

2n with u · 1 = 0. Let u+ denote the
first n coordinates ofu andu− the lastn coordinates.

uT Du

=
∑

α,β

Dαβuαuβ

=
∑

α,β

uαuβ −
∑

α

u2
α + ∆

∑

α

uαuα +

δ
∑

α,β

uαuβ1(α ∼ β)

≤
(
∑

α

uα

)2

− ‖u‖2 + 2∆(u+ · u−) + δ
∑

α,β

|uα||uβ |

≤ −‖u‖2 + ∆(‖u+‖2 + ‖u−‖2) + δ

(
∑

α

|uα|
)2

≤ −(1−∆)‖u‖2 + 2δ‖u‖2n
where the last step uses the Cauchy-Schwarz inequality. Since
2δn ≤ 1−∆, this quantity is always≤ 0.

VII. A PPENDIX III: C OVARIANCE DIMENSION OF A

SMOOTH MANIFOLD

Here we show that that a distribution concentrated near
a smoothd-dimensional manifold of bounded curvature has
neighborhoods of covariance dimensiond. The first step
towards establishing this result is to generalize our notion
of covariance dimension slightly, from finite point sets to
arbitrary distributions:

Definition 30: Probability measureν over R
D hascovari-

ance dimension(d, ǫ) if the eigenvaluesσ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
D

of its covariance matrix satisfy

σ2
1 + · · ·+ σ2

d ≥ (1− ǫ) · (σ2
1 + · · ·+ σ2

D).

In the same way, the notion of average diameter extends
naturally to distributions:

∆2
A(ν) = EX,Y ∼ν‖X − Y ‖2.

A. Curvature and covariance dimension

SupposeM is ad-dimensional Riemannian submanifold of
R

D. We would like to show that sufficiently small neighbor-
hoodsM ∩ B(x, r) (whereB(x, r) is the Euclidean ball of
radiusr centered atx) have covariance dimension(d, ǫ) for
very smallǫ.

The relation ofǫ to r depends crucially on how curved the
manifold M is locally. A convenient notion of curvature was
recently introduced in [16]:

Definition 31: Thecondition numberof M is defined to be
1/τ , whereτ is the largest number such that: the open normal
bundle aboutM of radiusr is imbedded inRD for all r < τ .

With this notion in hand, we can state our main result.
Theorem 32:Let M be ad-dimensional Riemannian sub-

manifold of R
D with finite condition number1/τ , and letν

be any probability measure onM .
Pick anyr > 0 and any pointp ∈ M . Then the restriction

of ν to the neighborhoodN = M ∩ B(p, r) has covariance
dimension(d, 2(r/τ)2).

Proof: Let ν|N be a shorthand for the restriction ofν to
N . Clearly, there exists somexo ∈ N such that

EX,X′∼ν|N [‖X −X ′‖2] ≥ EX∼ν|N [‖X − xo‖2].
Let T denote the tangent plane toM at xo; this is a d-
dimensional affine subspace. Consider the projection fromN
onto this plane,f : N → T . Lemmas 5.3 and 5.4 of [16]
(implicitly) assert that ifr ≤ τ/2, then (i) f is 1− 1 and (ii)
for any x ∈ N ,

‖x− f(x)‖ ≤ r

τ
· ‖x− xo‖.

If X is drawn fromν restricted toN , its expected squared
distance fromT is quite small:

EX∼ν|N [dist(X,T )2] = EX∼ν|N [‖X − f(X)‖2]

≤ r2

τ2
· EX∼ν|N [‖X − xo‖2]

≤ r2

τ2
· EX,X′∼ν|N [‖X −X ′‖2]

=
r2

τ2
·∆2

A(ν|N ).

Thus ν|N is well-approximated by ad-dimensional affine
subspace. The bound on its covariance dimension then follows
from Lemma 33.
What if the distribution of interest does not lie exactly on
a low-dimensional manifoldM , but close to it? One way
to formalize this situation is to imagine that there is an
underlying distributionν on M , but that we only get to
observe noisy vectorsX + Z, whereX ∼ ν andE[Z | X] =
0, E[‖Z‖2 | X] ≤ σ2. In such situations, Theorem 32 con-
tinues to hold, although the covariance dimension becomes
(d, 2((r/τ)2+(σ2/∆2

A(ν|N )))); the proof is exactly as before,
except that the expected squared distance of each pointX +Z
from the tangent planeT increases by (at most)σ2.
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B. Covariance dimension and approximating subspaces

Earlier, we asserted that a set has low covariance dimen-
sion if it is well approximated by a low-dimensional affine
subspace. We now formalize this intuition.

Lemma 33:A probability measureν over R
D has covari-

ance dimension(d, ǫ) if and only if there exists an affined-
dimensional subspaceT ⊂ R

D such that

EX∼ν [(distance fromX to T )2] ≤ ǫ

2
∆2

A(ν).

Proof: Assume without loss of generality thatν has mean
zero and covariance diag(σ2

1 , . . . , σ2
D), whereσ2

1 ≥ · · · ≥ σ2
D.

The d-dimensional subspace chosen by principal component
analysis (PCA) would then be that spanned by the firstd
coordinate axes; call thisT ∗. Then

ν has covariance dimension(d, ǫ)

⇔ (σ2
1 + · · ·+ σ2

d) ≥ (1− ǫ)(σ2
1 + · · ·+ σ2

D)

⇔ (σ2
d+1 + · · ·+ σ2

D) ≤ ǫ(σ2
1 + · · ·+ σ2

D)

⇔ EX∼ν [X2
d+1 + · · ·+ X2

D] ≤ ǫEX∼ν [‖X‖2]
⇔ EX∼ν [dist(X,T ∗)2] ≤ ǫ

2
∆2

A(ν)

⇔ EX∼ν [dist(X,T )2] ≤ ǫ

2
∆2

A(ν) for some affine

subspaceT of dimensiond.

The last implication follows from the well-known fact that
EX∼ν [dist(X,T )2] is minimized by the PCA subspace.
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