
Learning with Persistence Diagrams



this one possible solution among othersPros:

• information of a different nature

• strong invariance and stability:

Persistence diagrams as descriptors for data

1

• flexible and versatile

dataset 1-parameter family of spaces persistence diagram

Cons:

• space of diagrams is not linear

• positive intrinsic curvature

• slow to compare

dp(dgmX, dgmY ) ≤ cst dGH(X,Y )



Persistence diagrams as descriptors for data

1

dataset 1-parameter family of spaces persistence diagram

A solution: map diagrams to Hilbert space and use kernel trick

D

H

Φ

k(·, ·) := 〈Φ(·),Φ(·)〉H

(ideally: Φ quasi-isometry)



Transition: RKHS are spaces of real-valued functions on X, where evaluation on points of x is given by their inner product

The kernel k is the pullback of the inner product onto the space of observations

H is a subspace of functions X → R

H contains the functions kx = k(x, ·)

Reproducing Kernel Hilbert Space

Def: Let H ⊂ RX Hilbert, with inner product 〈·, ·〉H
Then, H is a RKHS on X if ∃Φ : X → H s.t.:

∀x ∈ X, ∀f ∈ H, f(x) = 〈f,Φ(x)〉H

Terminology:

• feature space H, feature map Φ

• feature vector Φ(x)

• kernel k = 〈Φ(·), Φ(·)〉H : X ×X → R

X

H

Φ

2

reproducing
property



Transition: RKHS are spaces of real-valued functions on X, where evaluation on points of x is given by their inner product

H is a subspace of functions X → R

H contains the functions kx = k(x, ·)

Reproducing Kernel Hilbert Space

Def: Let H ⊂ RX Hilbert, with inner product 〈·, ·〉H
Then, H is a RKHS on X if ∃Φ : X → H s.t.:

∀x ∈ X, ∀f ∈ H, f(x) = 〈f,Φ(x)〉H

• linear: k(x, y) = 〈x, y〉

k(x, y) = (1 + 〈x, y〉)N =
∑

n1+···+nd=N

(
N

n1,··· ,nd

)
xn1

1 · · ·x
nd
d yn1

1 · · · y
nd
d

• Gaussian: k(x, y) = exp

(
− ‖x−y‖

2
2

2σ2

)
, σ > 0.

Thm: [Moore 1950] k : X × X → R is a kernel iff it is positive
(semi-)definite, i.e. ∀n ∈ N, ∀x1, · · · , xn ∈ X, the Gram matrix
(k(xi, xj))i,j is positive semi-definite.

H = (Rd)∗, Φ(x) = 〈x, ·〉

• polynomial:

∝ Φ(x)

H ⊂ L2(Rd)

2

reproducing
property

Examples in X = (Rd, 〈·, ·〉):



Transition: RKHS are spaces of real-valued functions on X, where evaluation on points of x is given by their inner product

H is a subspace of functions X → R

H contains the functions kx = k(x, ·)

Reproducing Kernel Hilbert Space

Def: Let H ⊂ RX Hilbert, with inner product 〈·, ·〉H
Then, H is a RKHS on X if ∃Φ : X → H s.t.:

∀x ∈ X, ∀f ∈ H, f(x) = 〈f,Φ(x)〉H

Thm: (Representer) [Schölkopf et al 2001]
Given RKHS H with kernel k, any function f∗ ∈ H minimizing

1
n

∑n
i=1 L(yi, f(xi)) + Ω(‖f‖H)

is of the form f∗(·) =
∑n
j=1 αjk(xj , ·), where α1, · · · , αn ∈ R.

Thm: [Moore 1950] k : X × X → R is a kernel iff it is positive
(semi-)definite, i.e. ∀n ∈ N, ∀x1, · · · , xn ∈ X, the Gram matrix
(k(xi, xj))i,j is positive semi-definite.
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property



Kernels for persistence diagrams

Three approaches:

• build kernel from kernels (algebraic operations)

- sum of kernels ←→ concatenation of feature spaces

- product of kernels ←→ tensor product of feature spaces

k1(x, y) + k2(x, y) =
〈(

Φ1(x)
Φ2(x)

)
,
(

Φ1(y)
Φ2(y)

)〉

k1(x, y)k2(x, y) =
〈
Φ1(x)Φ2(x)T ,Φ1(y)Φ2(y)T

〉

3



Kernels for persistence diagrams

Three approaches:

• define explicit feature map Φ : X → H (vectorization)

X

H

Φ

k(·, ·) := 〈Φ(·),Φ(·)〉H

• build kernel from kernels (algebraic operations)

3



Kernels for persistence diagrams

Thm: [Kimeldorf, Wahba 1971]

If d : X ×X → R+ symmetric is conditionally negative semidefinite, i.e.:

∀n ∈ N, ∀x1, · · · , xn ∈ X,
n∑
i=1

αi = 0 =⇒
n∑
i=1

n∑
j=1

αiαj d(xi, xj) ≤ 0,

then k(x, y) = exp
(
− d(x,y)

2σ2

)
is positive definite for all σ > 0.

Three approaches:

• define explicit feature map Φ : X → H (vectorization)

• define kernel from metric via radial basis function

• build kernel from kernels (algebraic operations)

3



Kernels for persistence diagrams

Thm: [Kimeldorf, Wahba 1971]

If d : X ×X → R+ symmetric is conditionally negative semidefinite, i.e.:

∀n ∈ N, ∀x1, · · · , xn ∈ X,
n∑
i=1

αi = 0 =⇒
n∑
i=1

n∑
j=1

αiαj d(xi, xj) ≤ 0,

then k(x, y) = exp
(
− d(x,y)

2σ2

)
is positive definite for all σ > 0.

Q: does this apply to persistence diagrams?

Three approaches:

• define explicit feature map Φ : X → H (vectorization)

• define kernel from metric via radial basis function

• build kernel from kernels (algebraic operations)

3



Space of persistence diagrams
Persistence diagram ≡ finite multiset in the open half-plane ∆× R>0

4

cost of a matched pair (x, y) ∈M : cp(x, y) := ‖x− y‖p∞

cost of an unmatched point z ∈ X t Y : cp(z) := ‖z − z̄‖p∞

cost of M :

cp(M) :=

 ∑
(x, y) matched

cp(x, y) +
∑

z unmatched

cp(z)

1/p

Def: p-th diagram distance (extended metric):

dp(X,Y ) := inf
M :X↔Y

cp(M)

Given a partial matching M : X ↔ Y :

x
yz

z̄

∆(2)

Def: bottleneck distance:

d∞(X,Y ) := lim
p→∞

dp(X,Y )



Space of persistence diagrams
Persistence diagram ≡ finite multiset in the open half-plane ∆× R>0

4

cost of a matched pair (x, y) ∈M : cp(x, y) := ‖x− y‖p∞

cost of an unmatched point z ∈ X t Y : cp(z) := ‖z − z̄‖p∞

cost of M :

cp(M) :=

 ∑
(x, y) matched

cp(x, y) +
∑

z unmatched

cp(z)

1/p

Def: p-th diagram distance (extended metric):

dp(X,Y ) := inf
M :X↔Y

cp(M)

Given a partial matching M : X ↔ Y :

x
yz

z̄

∆(2)

Def: bottleneck distance:

d∞(X,Y ) := lim
p→∞

dp(X,Y )

unbalanced optimal transport

dp is NOT cnsd, ∀p ∈ R>0 ∪ {∞}

⇒ previous theorem is not applicable



diagrams are turned into 2-d density functions

diagrams are turned into families of 1-d functions

diagrams are turned into sequences of values

diagrams are turned into finite-dimensional vectors

diagrams are turned into pixelized images → finite-dimensional vectors

if you do the convolution naively as in [Chepushtanova et al. 2015] you don’t get stability; however, a more careful convolution with a carefully weighted kernel allows you to regain stability

• landscapes [Bubenik 2012] [Bubenik, D lotko 2015]

• images [Adams et al. 2015]

• discrete measures:

→ histogram [Bendich et al. 2014]

→ convolution with fixed kernel [Chepushtanova et al. 2015]

→ heat diffusion [Reininghaus et al. 2015] + exponential [Kwit et al. 2015]

→ convolution with weighted kernel [Kusano, Fukumisu, Hiraoka 2016-17]

State of the Art: define φ explicitly (vectorization) via:

Kernels for persistence diagrams

5

• finite metric spaces [Carrière, O., Ovsjanikov 2015]

5
4

3

a

b

c 0 4 5
4 0 3
5 3 0


a b c

a
b
c

• polynomial roots or evaluations [Di Fabio, Ferri 2015] [Kalǐsnik 2016]
{p1, · · · , pn} 7→ (P1(p1, · · · , pn), · · · , Pr(p1, · · · , pn), · · · )



Attention: L2 is not an RKHS, just an ambient Hilbert space in which the RKHS is embedded

note: injective kernels can be made universal by post-composition with a Gaussian kernel

L2(N× R) is defined by taking the product of the counting measure on N and the Lebesgue measure on R, that is:
∫
N×R λ(k, t)dµ =

∑∞
k=1

∫
R λ(k, t)dt

Kernels for persistence diagrams

5

positive (semi-)definiteness

ambient Hilbert space

‖φ(·)− φ(·)‖H ≤ C dp

‖φ(·)− φ(·)‖H ≥ cdp

universality

algorithmic cost

injectivity

landscapes
discretemetric

spaces

L2(N× R) L2(R2)(Rd, ‖.‖2)

O(n2) O(n2)
f. map: O(n2)

kernel: O(d)

measurespolynomials

`2(R)

f. map: O(nd)

kernel: O(d)

images

(Rd, ‖.‖2)

f. map: O(n2)

kernel: O(d)
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Kernels for persistence diagrams



Explicit Feature Map in Rd

Persistence Images [Adams et al. 2017]

Compute PD Rotate PD DiscretizationPixelate
+ concatenate into vector



Explicit Feature Map in Rd

Persistence Images [Adams et al. 2017]

Compute PD Rotate PD DiscretizationDiscretization

Discretize plane into one or several grid(s):

For each pixel P , compute I(P ) = # dgm ∩ P

Concatenate all I(P ) into a single vector PI(dgm )

Pixelate
+ concatenate into vector
Pixelate
+ concatenate into vector



Explicit Feature Map in Rd

Persistence Images [Adams et al. 2017]

Compute PD Rotate PD Discretization

Stability → weigh points: wt(x, y) = 1

t
y

Pixelate
+ concatenate into vector

→ blur image

(convolve with Gaussian)



Explicit Feature Map in Rd

Persistence Images [Adams et al. 2017]

Compute PD Rotate PD Discretization

Prop: [Adams et al. 2017]

• ‖PI(dgm )− PI(dgm ′)‖∞ ≤ C(w, φp) d1(dgm ,dgm ′)

• ‖PI(dgm )− PI(dgm ′)‖2 ≤
√
dC(w, φp) d1(dgm ,dgm ′)

Pixelate
+ concatenate into vector
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the idea here is to treat diagrams as measures and to take their densities as feature vectors (to build the feature map, from which the kernel itself is then derived)

δx

x

birth birth

de
at

h

de
at

h

∆

6

discreteD µD

µD :=
∑
x∈D δx

measure

∆

Explicit feature map
Persistence diagrams as discrete measures:



the idea here is to treat diagrams as measures and to take their densities as feature vectors (to build the feature map, from which the kernel itself is then derived)
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discrete weighting
D µD

µwD :=
∑
x∈D w(x)δx̄µD :=

∑
x∈D δx

Pb: µD is unstable (points on diagonal disappear)

measure

w(x) := arctan (c d(x,∆)r), c, r > 0

∆
∆

Explicit feature map
Persistence diagrams as discrete measures:
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discrete weighting
D µD

µwD :=
∑
x∈D w(x)δx̄µD :=

∑
x∈D δx

Pb: µD is unstable (points on diagonal disappear)

measure convolution

w(x) := arctan (c d(x,∆)r), c, r > 0

Def: φ(D) is the density function of µwD ∗ N (0, σ) w.r.t. Lebesgue measure:

µ̃wD := µwD ∗ N (0, σ)

∆
∆

φ(D) :=
1√
2πσ

∑
x∈D

arctan(cd(x,∆)r) exp

(
−‖ · −x‖

2

2σ2

)
k(D,D′) := 〈φ(D), φ(D′)〉L2(∆×R+)

Explicit feature map
Persistence diagrams as discrete measures:



the idea here is to treat diagrams as measures and to take their densities as feature vectors (to build the feature map, from which the kernel itself is then derived)
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discrete weighting

Prop.: [Kusano, Fukumisu, Hiraoka 2016-17]

• ‖φ(D)− φ(D′)‖H ≤ cst dp(D,D
′).

• φ is injective and exp(k) is universal

D µD

µwD :=
∑
x∈D w(x)δx̄µD :=

∑
x∈D δx

measure convolution

µ̃wD := µwD ∗ N (0, σ)

∆
∆

φ(D) :=
1√
2πσ

∑
x∈D

arctan(cd(x,∆)r) exp

(
−‖ · −x‖

2

2σ2

)
k(D,D′) := 〈φ(D), φ(D′)〉L2(∆×R+)

Explicit feature map
Persistence diagrams as discrete measures:



... because points/modes start mixing up together. Weighting also reduces discriminativity to some extent, but motivated by stability constraint and not a pure choice of design. In the following we will try to use the discrete measure itself, to avoid convolutions. Moreover, we will bypass the weighting.

the idea here is to treat diagrams as measures and to take their densities as feature vectors (to build the feature map, from which the kernel itself is then derived)

δx

x

birth birth birth

de
at

h

de
at

h

de
at

h

∆

6

discrete weighting

Prop.: [Kusano, Fukumisu, Hiraoka 2016-17]

• ‖φ(D)− φ(D′)‖H ≤ cst dp(D,D
′).

• φ is injective and exp(k) is universal

D µD

µwD :=
∑
x∈D w(x)δx̄µD :=

∑
x∈D δx

measure convolution

µ̃wD := µwD ∗ N (0, σ)

∆
∆

φ(D) :=
1√
2πσ

∑
x∈D

arctan(cd(x,∆)r) exp

(
−‖ · −x‖

2

2σ2

)
k(D,D′) := 〈φ(D), φ(D′)〉L2(∆×R+)

Pb: convolution reduces discriminativity → use discrete measure instead

Explicit feature map
Persistence diagrams as discrete measures:



Attention: L2 is not an RKHS, just an ambient Hilbert space in which the RKHS is embedded

note: injective kernels can be made universal by post-composition with a Gaussian kernel

L2(N× R) is defined by taking the product of the counting measure on N and the Lebesgue measure on R, that is:
∫
N×R λ(k, t)dµ =

∑∞
k=1

∫
R λ(k, t)dt
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positive (semi-)definiteness

ambient Hilbert space

‖φ(·)− φ(·)‖H ≤ C dp

‖φ(·)− φ(·)‖H ≥ cdp

universality

algorithmic cost

injectivity

landscapes
discretemetric

spaces

L2(N× R) L2(R2)(Rd, ‖.‖2)

O(n2) O(n2)
f. map: O(n2)

kernel: O(d)

measurespolynomials

`2(R)

f. map: O(nd)

kernel: O(d)

images

(Rd, ‖.‖2)

f. map: O(n2)

kernel: O(d)



One kernel to rule them all...

Sliced Wasserstein Kernel [Carrière, Cuturi, O. 2017]

No feature map

Provably stable

Provably discriminative

Mimicks the Gaussian kernel

View diagrams as discrete measures w/o density functions



observation: taking densities might be the reason for the lack of discriminativity, since this requires to make some compromises. instead, now we deal with the discrete measures directly. The question is to be able to embed the metric space of diagrams into some metric space of measures, so that tools for these measures can then be used to define kernels for the diagrams. This may help us preserve the metric better.

this is because the two discrete measures have different masses. One could renormalize them and take the empirical measures, but then the optimal transport plan between them would be mass-splitting and therefore not equal to the metric between the diagrams

8

Persistence diagrams as discrete measures (II)
δx

x

birth birth

de
at

h

de
at

h

∆

µD :=
∑
x∈D δx

Pb: dp(D,D
′) 6∝ Wp(µD, µD′) (Wp does not even make sense here)

∆



this is a quasi-isometric embedding
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Persistence diagrams as discrete measures (II)
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µD :=
∑
x∈D δx

→ given D,D′, let µ̄D :=
∑
x∈D

δx+
∑
y∈D′

δπ∆(y)

µ̄D′ :=
∑
y∈D′

δy+
∑
x∈D

δπ∆(x)

Then, dp(D,D
′) ≤Wp(µ̄D, µ̄D′) ≤ 2 dp(D,D

′)

Pb: dp(D,D
′) 6∝ Wp(µD, µD′) (Wp does not even make sense here)

π∆(x)

∆



this is a quasi-isometric embedding

observation: taking densities might be the reason for the lack of discriminativity, since this requires to make some compromises. instead, now we deal with the discrete measures directly. The question is to be able to embed the metric space of diagrams into some metric space of measures, so that tools for these measures can then be used to define kernels for the diagrams. This may help us preserve the metric better.

this is because the two discrete measures have different masses. One could renormalize them and take the empirical measures, but then the optimal transport plan between them would be mass-splitting and therefore not equal to the metric between the diagrams

This is bad in practice because, basically, you need to make µD depend on all other diagrams at once, including the ones from the testing set (which you don’t know in advance) But this contradiction is only apparent, since, as we will see, it can be resolved using signed measures.
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Persistence diagrams as discrete measures (II)
δx

x

birth birth

de
at

h

de
at

h

∆

µD :=
∑
x∈D δx

→ given D,D′, let µ̄D :=
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µ̄D′ :=
∑
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δy+
∑
x∈D

δπ∆(x)

Then, dp(D,D
′) ≤Wp(µ̄D, µ̄D′) ≤ 2 dp(D,D

′)

Pb: dp(D,D
′) 6∝ Wp(µD, µD′) (Wp does not even make sense here)

Pb: µ̄D depends on D′

π∆(x)

∆



Indeed, the Kantorovich norm offers a lot of flexibility compared to other metrics between measures. In particular, it is compatible with signed measures. Note that it is a true norm only for W1

observation: taking densities might be the reason for the lack of discriminativity, since this requires to make some compromises. instead, now we deal with the discrete measures directly. The question is to be able to embed the metric space of diagrams into some metric space of measures, so that tools for these measures can then be used to define kernels for the diagrams. This may help us preserve the metric better.

this is because the two discrete measures have different masses. One could renormalize them and take the empirical measures, but then the optimal transport plan between them would be mass-splitting and therefore not equal to the metric between the diagrams

this is the space of measures with total mass zero over R2 note: we redefine µ̃D here

8

Persistence diagrams as discrete measures (II)
δx

x

birth birth
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µD :=
∑
x∈D δx

Pb: dp(D,D
′) 6∝ Wp(µD, µD′) (Wp does not even make sense here)

∆

Solution: transfer mass negatively:

µ̃D := µD − (π∆)∗ µD =
∑
x∈D

δx −
∑
x∈D

δπ∆(x) ∈M0(R2)

π∆(x)

→ signed discrete measure of total mass zero

Kantorovich norm: ‖µ̃D‖K = W1(µD, (π∆)∗ µD)



this is the path taken by [Aguey, Carlier] and [Ohta] for measures, by [Reiningshaus et al.] for PDs

it is indeed easy to generate counterexamples by randomly sampling the space of persistence diagrams.

9

A Wasserstein Gaussian kernel for PDs?

Pb: W1 is not cnsd, neither is d1

Solutions:

• relax the measures (e.g. convolution)

• relax the metric (e.g. regularization, slicing)

Thm.: [Kimeldorf, Wahba 1971]

If d : X ×X → R+ symmetric is conditionally negative semidefinite, i.e.:

∀n ∈ N, ∀x1, · · · , xn ∈ X,
n∑
i=1

αi = 0 =⇒
n∑
i=1

n∑
j=1

αiαj d(xi, xj) ≤ 0,

then k(x, y) := exp
(
− d(x,y)

2σ2

)
is positive semidefinite.



10

Sliced Wasserstein metric

one can then see P and Q as n-dimensional vectors

Special case: X = R, µ, ν discrete measures of same mass m

µ :=
∑m
i=1 δxi , ν :=

∑m
i=1 δyi

Sort the atoms of µ, ν along the real line: xi ≤ xi+1 and yi ≤ yi+1 for all i

Then: W1(µ, ν) =
∑m
i=1 |xi − yi| = ‖(x1, · · · , xm)− (y1, · · · , ym)‖1

µ

ν



10

Sliced Wasserstein metric

one can then see P and Q as n-dimensional vectors

Special case: X = R, µ, ν discrete measures of same mass m

µ :=
∑m
i=1 δxi , ν :=

∑m
i=1 δyi

Sort the atoms of µ, ν along the real line: xi ≤ xi+1 and yi ≤ yi+1 for all i

Then: W1(µ, ν) =
∑m
i=1 |xi − yi| = ‖(x1, · · · , xm)− (y1, · · · , ym)‖1

µ

ν

→ W1 is cnsd and easy to compute (same with ‖ · ‖K for signed measures)



Note : une idee naturelle serait d’integrer sur toutes les droites du plan, soit RP 1 × R, mais en fait : - la distance entre les mesures projetees orthogonalement sur la droite est invariante par translation de la droite, donc il suffit d’integrer sur RP 1 ; - pour simplifier on integre sur S1, ce qui ne fait que doubler la valeur de la distance.

This is very much like a (inverse) Radon transform

Def (sliced Wasserstein distance): for µ, ν ∈M+(R2),

SW1(µ, ν) :=
1

2π

∫
θ∈S1

W1((πθ)∗ µ, (πθ)∗ ν) dθ

where πθ = orthogonal projection onto line passing through origin with angle θ.

10

Sliced Wasserstein metric

θ

→ from integral geometry:

∫
Gr(1,2)

· · ·



Note : une idee naturelle serait d’integrer sur toutes les droites du plan, soit RP 1 × R, mais en fait : - la distance entre les mesures projetees orthogonalement sur la droite est invariante par translation de la droite, donc il suffit d’integrer sur RP 1 ; - pour simplifier on integre sur S1, ce qui ne fait que doubler la valeur de la distance.

Def (sliced Wasserstein distance): for µ, ν ∈M+(R2),

SW1(µ, ν) :=
1

2π

∫
θ∈S1

W1((πθ)∗ µ, (πθ)∗ ν) dθ

where πθ = orthogonal projection onto line passing through origin with angle θ.

10

Sliced Wasserstein metric

Props: (inherited from W1 over R) [Rabin, Peyré, Delon, Bernot 2011]

- satisfies the axioms of a metric

- conditionally negative semidefinite

- well-defined barycenters, fast to compute via stochastic gradient descent, etc.
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Sliced Wasserstein kernel

Def: Given σ > 0, for any µ, ν ∈M+(R2):

kSW (µ, ν) := exp

(
−SW1(µ, ν)

2σ2

)
Corollary: [Kolouri, Zou, Rohde]
kSW is positive semidefinite.



11

Sliced Wasserstein kernel

Def: Given σ > 0, for any µ, ν ∈M+(R2):

kSW (µ, ν) := exp

(
−SW1(µ, ν)

2σ2

)
Corollary: [Kolouri, Zou, Rohde]
kSW is positive semidefinite.

Thm.: [Carrière, Cuturi, O. 2017]
The metrics d1 and SW1 on the space DN of persistence diagrams of size
bounded by N are strongly equivalent, namely: for D,D′ ∈ DN ,

1

2 + 4N(2N − 1)
d1(D,D′) ≤ SW1(D,D′) ≤ 2

√
2 d1(D,D′)

Corollary: the feature map φ associated with kSW is weakly metric-preserving:
∃g, h nonzero except at 0 such that g ◦ d1 ≤ ‖φ(·)− φ(·)‖H ≤ h ◦ d1.
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Metric distortion in practice
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Application to supervised shape segmentation

13

Goal: segment 3d shapes based on examples

Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes

- apply classifier to PDs extracted from query shape

Foot

Head Torso

Hand

Label = ?

Training Test



Application to supervised shape segmentation

13

Goal: segment 3d shapes based on examples

Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes

- apply classifier to PDs extracted from query shape
(training data)



Application to supervised shape segmentation

13

Goal: segment 3d shapes based on examples

Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes

- apply classifier to PDs extracted from query shape

Accuracies (%) using TDA descriptors (kernels on barcodes):

TDA geometry TDA + geometry

Human 74.0 78.7 88.7
Airplane 72.6 81.3 90.7
Ant 92.3 90.3 98.5
FourLeg 73.0 74.4 84.2
Octopus 85.2 94.5 96.6
Bird 72.0 75.2 86.5
Fish 79.6 79.1 92.3



the two given shapes X,Y (seen as measured spaces) are replaced by the functional spaces L2(X), L2(Y ), and correspondences m : X → Y are replaced by linear maps L2(Y )→ L2(X) via the pullback m−1. The spaces L2(X) and L2(Y ) are assign bases from the Laplace-Beltrami operator → reduction to finite dimensions by tail-cutting. Then, every linear map is a matrix in these bases.

14

Approach: use framework of functional maps [Ovsjanikov et al. 2012]

- compute an optimal linear map that best preserves a set of signatures (vectors)

- derive a point-to-point correspondence from this map (via indicator functions)

- evaluate the quality of the correspondence

Application to non-rigid shape matching

Given a point-to-point map m : X → Y (seen as measured spaces), consider

the linear map m∗ : L2(Y )→ L2(X) induced by composition with m

- reduce the dimensionality by taking the first k eigenfunctions

of the Laplace-Beltrami operator



14

Approach: use framework of functional maps [Ovsjanikov et al. 2012]

topological signatures (last 30 indices) have a high influence on the choice of optimal map

Application to non-rigid shape matching



each plot corresponds to a particular class of shapes - blue curve = ground truth (derived from the optimal correspondence) → not perfect because of tail-cutting in Laplace-Beltrami eigenbasis - yellow curve = optimum w/o topological signatures - red curve = optimal adding in the topological signatures

14

Approach: use framework of functional maps [Ovsjanikov et al. 2012]

distance to ground-truth correspondence
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Application to non-rigid shape matching
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Approach: use framework of functional maps [Ovsjanikov et al. 2012]

correspondences in flat regions are improved by topological signatures

Application to non-rigid shape matching



Application to supervised time series analysis

(time-delay
embedding)

window Rm+1

f : N→ R

TDm,τ (f) :=


f(t)
f(t+τ)

...
f(t+mτ)



TDm,τ

signal embedded data

periodicity circularity

# prominent harmonics (N) min. ambient dimension
(m ≥ 2N)

# non-commensurate freq. intrinsic dimension
(S1 × · · · × S1)

τ : step / delay

mτ : window size

m+ 1: embedding dimension

[J. Perea et al.:”SW1PerS: Sliding windows and 1-persistence scoring”, 2015]

f



Taken’s theorem: under sufficient conditions, the map x 7→ TDm,τ (fx) is an embedding of the state space X. Note: instead of varying x, one can also vary the window and step sizes

this is for when the data come from some unknown discrete dynamical system. Formalism: - a state space X - a self map φ : X → X - an observation function g : X → R - an origin x0 ∈ X  discrete time series: f : N→ R defined by f(n) := g ◦ φn(x0), where n stands for the n-th iteration. Then, under regularity conditions on the state space and dynamical system in general (strange attractor), the delay embedding will be a diffeomorphic embedding into Rk if m ≥ 2d where d is the intrinsic dimension of X.

hence no need of a vector space structure on X (no coordinates)

Application to supervised time series analysis

(time-delay
embedding)

window Rm+1

TDm,τ

Contributions of TDA:

inference of:

- periodicity

- harmonics

- non-commensurate freq.

no Fourier transform needed

- underlying state space

X

x

f

φ

R

α

fx(n) := α(φn(x))

Dynamical system:



hence no need of a vector space structure on X (no coordinates)

Application to supervised time series analysis

(time-delay
embedding)

window Rm+1

TDm,τ

Contributions of TDA:

inference of:

- periodicity

- harmonics

- non-commensurate freq.

no Fourier transform needed

- underlying state space

f

Dynamical system:

Thm: [Nash, Takens]
Given a Riemannian manifold X of dimension
m
2

, it is a generic property of φ ∈ Diff2(X)
and α ∈ C2(X,R) that

X → Rm+1

x 7→ (α(x), α ◦ φ(x), · · · , α ◦ φm(x))

is an embedding.



Application to supervised time series analysis

(time-delay
embedding)

window Rm+1

TDm,τ
f

method / dataset Gyro sensor EEG dataset EMG dataset

SVM + statistical features 67.6± 4.7 44.4± 19.8 15.0± 10.0
SVM + Betti sequence 63.5± 11.3 66.7± 5.6 49.6± 18.2

1-d CNN + dynamic time warping 6.4± 5.1 72.4± 6.1 15.0± 10.0
imaging CNN 18.9± 5.2 48.9± 4.2 10.0± 0.0

1-d CNN + Betti sequence 79.8± 5.0 75.38± 5.7 74.4± 10.6

[Y. Umeda:”Time Series Classification via Topological Data Analysis”, 2017]



• kernels for persistence diagrams:

Wrap’up

15

- stable

- discriminative

- easy to compute (closed-form expr., finite-dim. vectors)

- additive, universal, etc.

dataset filtration persistence diagram

H

• other topic: integration of TDA into learning methods (clustering, NNs, etc.)


