Learning with Persistence Diagrams

Persistence diagrams as descriptors for data

Pros:

- strong invariance and stability: $d_p(\operatorname{dgm} X, \operatorname{dgm} Y) \leq \operatorname{cst} d_{\operatorname{GH}}(X, Y)$
- information of a different nature
- flexible and versatile

Cons:

- slow to compare
- space of diagrams is not linear
- positive intrinsic curvature

Persistence diagrams as descriptors for data

A solution: map diagrams to Hilbert space and use kernel trick

Reproducing Kernel Hilbert Space

Def: Let $\mathcal{H} \subset \mathbb{R}^X$ Hilbert, with inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ Then, \mathcal{H} is a **RKHS** on X if $\exists \Phi : X \to \mathcal{H}$ s.t.: $\forall x \in X, \forall f \in \mathcal{H}, f(x) = \langle f, \Phi(x) \rangle_{\mathcal{H}}$ reproducing property

Terminology:

- feature space $\mathcal H_{\text{\rm J}}$ feature map Φ
- feature vector $\Phi(x)$
- kernel $k = \langle \Phi(\cdot), \Phi(\cdot) \rangle_{\mathcal{H}} : X \times X \to \mathbb{R}$

Reproducing Kernel Hilbert Space

Def: Let $\mathcal{H} \subset \mathbb{R}^X$ Hilbert, with inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ Then, \mathcal{H} is a **RKHS** on X if $\exists \Phi : X \to \mathcal{H}$ s.t.: $\forall x \in X, \forall f \in \mathcal{H}, f(x) = \langle f, \Phi(x) \rangle_{\mathcal{H}}$ reproducing property

Thm: [Moore 1950] $k : X \times X \to \mathbb{R}$ is a kernel iff it is *positive (semi-)definite*, i.e. $\forall n \in \mathbb{N}, \forall x_1, \dots, x_n \in X$, the Gram matrix $(k(x_i, x_j))_{i,j}$ is positive semi-definite.

Examples in $X = (\mathbb{R}^d, \langle \cdot, \cdot \rangle)$:

• linear: $k(x,y) = \langle x,y \rangle$ $\mathcal{H} = (\mathbb{R}^d)^*, \ \Phi(x) = \langle x, \cdot \rangle$

• polynomial:
$$k(x,y) = (1 + \langle x,y \rangle)^N = \sum_{n_1 + \dots + n_d = N} {\binom{N}{n_1,\dots,n_d} \underbrace{x_1^{n_1} \cdots x_d^{n_d}}_{\propto \Phi(x)} y_1^{n_1} \cdots y_d^{n_d}}$$

• Gaussian:
$$k(x, y) = \exp\left(-\frac{\|x-y\|_2^2}{2\sigma^2}\right), \ \sigma > 0. \quad \mathcal{H} \subset L_2(\mathbb{R}^d)$$
 2

Reproducing Kernel Hilbert Space

Def: Let $\mathcal{H} \subset \mathbb{R}^X$ Hilbert, with inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ Then, \mathcal{H} is a **RKHS** on X if $\exists \Phi : X \to \mathcal{H}$ s.t.: $\forall x \in X, \forall f \in \mathcal{H}, f(x) = \langle f, \Phi(x) \rangle_{\mathcal{H}}$ reproducing property

Thm: [Moore 1950] $k : X \times X \to \mathbb{R}$ is a kernel iff it is *positive* (semi-)definite, i.e. $\forall n \in \mathbb{N}, \forall x_1, \dots, x_n \in X$, the Gram matrix $(k(x_i, x_j))_{i,j}$ is positive semi-definite.

Thm: (Representer) [Schölkopf et al 2001] Given RKHS \mathcal{H} with kernel k, any function $f^* \in \mathcal{H}$ minimizing

 $\frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) + \Omega(||f||_{\mathcal{H}})$

is of the form $f^*(\cdot) = \sum_{j=1}^n \alpha_j k(x_j, \cdot)$, where $\alpha_1, \cdots, \alpha_n \in \mathbb{R}$.

Three approaches:

• build kernel from kernels (algebraic operations)

- sum of kernels \longleftrightarrow concatenation of feature spaces

$$k_1(x,y) + k_2(x,y) = \left\langle \left(\begin{array}{c} \Phi_1(x) \\ \Phi_2(x) \end{array} \right), \left(\begin{array}{c} \Phi_1(y) \\ \Phi_2(y) \end{array} \right) \right\rangle$$

- product of kernels \longleftrightarrow tensor product of feature spaces

$$k_1(x,y)k_2(x,y) = \langle \Phi_1(x)\Phi_2(x)^T, \Phi_1(y)\Phi_2(y)^T \rangle$$

Three approaches:

- build kernel from kernels (algebraic operations)
- define explicit feature map $\Phi: X \to \mathcal{H}$ (vectorization)

Three approaches:

- build kernel from kernels (algebraic operations)
- define explicit feature map $\Phi: X \to \mathcal{H}$ (vectorization)
- define kernel from metric via radial basis function

Thm: [Kimeldorf, Wahba 1971] If $d: X \times X \to \mathbb{R}_+$ symmetric is conditionally negative semidefinite, i.e.: $\forall n \in \mathbb{N}, \ \forall x_1, \cdots, x_n \in X, \ \sum_{i=1}^n \alpha_i = 0 \Longrightarrow \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j \ d(x_i, x_j) \le 0,$ then $k(x, y) = \exp\left(-\frac{d(x, y)}{2\sigma^2}\right)$ is positive definite for all $\sigma > 0.$

Three approaches:

- build kernel from kernels (algebraic operations)
- define explicit feature map $\Phi: X \to \mathcal{H}$ (vectorization)
- define kernel from metric via radial basis function

Thm: [Kimeldorf, Wahba 1971] If $d: X \times X \to \mathbb{R}_+$ symmetric is conditionally negative semidefinite, i.e.: $\forall n \in \mathbb{N}, \ \forall x_1, \cdots, x_n \in X, \ \sum_{i=1}^n \alpha_i = 0 \Longrightarrow \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j \ d(x_i, x_j) \le 0,$ then $k(x, y) = \exp\left(-\frac{d(x, y)}{2\sigma^2}\right)$ is positive definite for all $\sigma > 0.$

Q: does this apply to persistence diagrams?

Space of persistence diagrams

Persistence diagram \equiv finite multiset in the open half-plane $\Delta\times\mathbb{R}_{>0}$

Given a partial matching $M: X \leftrightarrow Y$:

cost of a matched pair $(x, y) \in M$: $c_p(x, y) := ||x - y||_{\infty}^p$

cost of an unmatched point $z \in X \sqcup Y$: $c_p(z) := ||z - \overline{z}||_{\infty}^p$

cost of M:

$$c_p(M) := \left(\sum_{(x, y) \text{ matched}} c_p(x, y) + \sum_{z \text{ unmatched}} c_p(z)\right)^{1/p}$$

Def: p-th diagram distance (extended metric): $d_p(X, Y) := \inf_{M: X \leftrightarrow Y} c_p(M)$

Def: bottleneck distance:

 $d_{\infty}(X,Y) := \lim_{p \to \infty} d_p(X,Y)$

Space of persistence diagrams

Persistence diagram \equiv finite multiset in the open half-plane $\Delta \times \mathbb{R}_{>0}$

Given a partial matching $M: X \leftrightarrow Y$:

cost of a matched pair $(x, y) \in M$: $c_p(x, y)$

cost of an unmatched point $z \in X \sqcup Y$: $c_p(z)$

unbalanced optimal transport d_p is **NOT** cnsd, $\forall p \in \mathbb{R}_{>0} \cup \{\infty\}$ \Rightarrow previous theorem is not applicable

cost of M:

$$c_p(M) := \left(\sum_{(x, y) \text{ matched}} c_p(x, y) + \sum_{z \text{ unmatched}} c_p(z) \right)$$

Def: *p*-th diagram distance (extended metric):

 $d_p(X,Y) := \inf_{M:X \leftrightarrow Y} c_p(M)$

Def: bottleneck distance:

 $d_{\infty}(X,Y) := \lim_{p \to \infty} d_p(X,Y)$

State of the Art: define ϕ explicitly (vectorization) via:

- images [Adams et al. 2015]
- finite metric spaces [Carrière, O., Ovsjanikov 2015]
- polynomial roots or evaluations [Di Fabio, Ferri 2015] [Kališnik 2016] $\{p_1, \dots, p_n\} \mapsto (P_1(p_1, \dots, p_n), \dots, P_r(p_1, \dots, p_n), \dots)$
- landscapes [Bubenik 2012] [Bubenik, Dłotko 2015]
- discrete measures:
 - \rightarrow histogram [Bendich et al. 2014]
 - \rightarrow convolution with fixed kernel [Chepushtanova et al. 2015]
 - ightarrow convolution with weighted kernel [Kusano, Fukumisu, Hiraoka 2016-17]
 - \rightarrow heat diffusion [Reininghaus et al. 2015] + exponential [Kwit et al. 2015]

		metric			discrete
	images	spaces	polynomials	landscapes	measures
ambient Hilbert space	$(\mathbb{R}^d, \ .\ _2)$	$(\mathbb{R}^d, \ .\ _2)$	$\ell_2(\mathbb{R})$	$L_2(\mathbb{N} \times \mathbb{R})$	$L_2(\mathbb{R}^2)$
positive (semi-)definiteness					
$\ \phi(\cdot) - \phi(\cdot)\ _{\mathcal{H}} \le C \mathrm{d}_p$					
$\ \phi(\cdot) - \phi(\cdot)\ _{\mathcal{H}} \ge c \mathrm{d}_p$	×	×	×	×	×
injectivity	×	×			
universality	×	×	×	×	
algorithmic cost	f. map: $O(n^2)$ kernel: $O(d)$	f. map: $O(n^2)$ kernel: $O(d)$	f. map: $O(nd)$ kernel: $O(d)$	$O(n^2)$	$O(n^2)$

	images	metric spaces	polynomials	landscapes	discrete measures
ambient Hilbert space	$(\mathbb{R}^d, \ .\ _2)$	$(\mathbb{R}^d, \ .\ _2)$	$\ell_2(\mathbb{R})$	$L_2(\mathbb{N} \times \mathbb{R})$	$L_2(\mathbb{R}^2)$
positive (semi-)definiteness				\checkmark	\checkmark
$\ \phi(\cdot) - \phi(\cdot)\ _{\mathcal{H}} \le C \mathrm{d}_p$				\checkmark	\checkmark
$\ \phi(\cdot) - \phi(\cdot)\ _{\mathcal{H}} \ge c \mathrm{d}_p$	×	×	×	×	×
injectivity	×	×		\checkmark	\checkmark
universality	×	×	×	×	\checkmark
algorithmic cost	f. map: $O(n^2)$ kernel: $O(d)$	f. map: $O(n^2)$ kernel: $O(d)$	f. map: $O(nd)$ kernel: $O(d)$	$O(n^2)$	$O(n^2)$

			metric			discrete
		images	spaces	polynomials	landscapes	measures
	ambient Hilbert space	$(\mathbb{R}^d, \ .\ _2)$	$(\mathbb{R}^d, \ .\ _2)$	$\ell_2(\mathbb{R})$	$L_2(\mathbb{N} \times \mathbb{R})$	$L_2(\mathbb{R}^2)$
ро	ositive (semi-)definiteness					
	$\ \phi(\cdot) - \phi(\cdot)\ _{\mathcal{H}} \le C d_p$					
	$\ \phi(\cdot) - \phi(\cdot)\ _{\mathcal{H}} \ge c \mathrm{d}_p$	×	×	×	×	×
	injectivity	×	×			
	universality	×	×	×	×	
	algorithmic cost	f. map: $O(n^2)$ kernel: $O(d)$	f. map: $O(n^2)$ kernel: $O(d)$	f. map: $O(nd)$ kernel: $O(d)$	$O(n^2)$	$O(n^2)$

ightarrow convolution with weighted kernel [Kusano, Fukumisu, Hiraoka 2016-17]

 \rightarrow heat diffusion [Reininghaus et al. 2015] + exponential [Kwit et al. 2015]

Persistence Images [Adams et al. 2017]

Persistence Images [Adams et al. 2017]

Concatenate all I(P) into a single vector PI(dgm)

Persistence Images [Adams et al. 2017]

Persistence Images [Adams et al. 2017]

Prop: [Adams et al. 2017]

- $\|\operatorname{PI}(\operatorname{dgm}) \operatorname{PI}(\operatorname{dgm}')\|_{\infty} \leq C(w, \phi_p) \operatorname{d}_1(\operatorname{dgm}, \operatorname{dgm}')$
- $\|\operatorname{PI}(\operatorname{dgm}) \operatorname{PI}(\operatorname{dgm}')\|_2 \le \sqrt{d}C(w, \phi_p) \operatorname{d}_1(\operatorname{dgm}, \operatorname{dgm}')$

State of the Art: define ϕ explicitly (vectorization) via:

- images [Adams et al. 2015]
- finite metric spaces [Carrière, O., Ovsjanikov 2015]
- polynomial roots or evaluations [Di Fabio, Ferri 2015] [Kališnik 2016] $\{p_1, \dots, p_n\} \mapsto (P_1(p_1, \dots, p_n), \dots, P_r(p_1, \dots, p_n), \dots)$
- landscapes [Bubenik 2012] [Bubenik, Dłotko 2015]
- discrete measures:
 - \rightarrow histogram [Bendich et al. 2014]

 \rightarrow convolution with fixed kernel [Chepushtanova et al. 2015]

 \rightarrow convolution with weighted kernel [Kusano, Fukumisu, Hiraoka 2016-17]

 \rightarrow heat diffusion [Reininghaus et al. 2015] + exponential [Kwit et al. 2015]

 $\begin{bmatrix} 0 & 4 & 5 \\ b & 4 & 0 & 3 \\ c & 5 & 3 & 0 \end{bmatrix}$

Persistence diagrams as discrete measures:

Persistence diagrams as discrete measures:

Pb: μ_D is unstable (points on diagonal disappear) $w(x) := \arctan{(c d(x, \Delta)^r)}, c, r > 0$

Persistence diagrams as discrete measures:

Pb: μ_D is unstable (points on diagonal disappear)

$$w(x) := \arctan{(c \operatorname{d}(x, \Delta)^r)}, c, r > 0$$

Def: $\phi(D)$ is the density function of $\mu_D^w * \mathcal{N}(0, \sigma)$ w.r.t. Lebesgue measure:

$$\langle \phi(D) := \frac{1}{\sqrt{2\pi\sigma}} \sum_{x \in D} \arctan(c \operatorname{d}(x, \Delta)^r) \exp\left(-\frac{\|\cdot - x\|^2}{2\sigma^2}\right)$$
$$\langle k(D, D') := \langle \phi(D), \phi(D') \rangle_{L_2(\Delta \times \mathbb{R}_+)}$$

Persistence diagrams as discrete measures:

$$\langle \phi(D) := \frac{1}{\sqrt{2\pi\sigma}} \sum_{x \in D} \arctan(c \operatorname{d}(x, \Delta)^r) \exp\left(-\frac{\|\cdot - x\|^2}{2\sigma^2}\right)$$
$$\langle k(D, D') := \langle \phi(D), \phi(D') \rangle_{L_2(\Delta \times \mathbb{R}_+)}$$

Persistence diagrams as discrete measures:

Pb: convolution reduces discriminativity \rightarrow use discrete measure instead

$$\langle \phi(D) := \frac{1}{\sqrt{2\pi\sigma}} \sum_{x \in D} \arctan(c \operatorname{d}(x, \Delta)^r) \exp\left(-\frac{\|\cdot - x\|^2}{2\sigma^2}\right)$$
$$\langle k(D, D') := \langle \phi(D), \phi(D') \rangle_{L_2(\Delta \times \mathbb{R}_+)}$$

			metric			discrete
		images	spaces	polynomials	landscapes	measures
	ambient Hilbert space	$(\mathbb{R}^d, \ .\ _2)$	$(\mathbb{R}^d, \ .\ _2)$	$\ell_2(\mathbb{R})$	$L_2(\mathbb{N} \times \mathbb{R})$	$L_2(\mathbb{R}^2)$
ро	ositive (semi-)definiteness					
	$\ \phi(\cdot) - \phi(\cdot)\ _{\mathcal{H}} \le C d_p$					
	$\ \phi(\cdot) - \phi(\cdot)\ _{\mathcal{H}} \ge c \mathrm{d}_p$	×	×	×	×	×
	injectivity	×	×			
	universality	×	×	×	×	
	algorithmic cost	f. map: $O(n^2)$ kernel: $O(d)$	f. map: $O(n^2)$ kernel: $O(d)$	f. map: $O(nd)$ kernel: $O(d)$	$O(n^2)$	$O(n^2)$

One kernel to rule them all...

Sliced Wasserstein Kernel [Carrière, Cuturi, O. 2017]

No feature map Provably stable Provably discriminative Mimicks the Gaussian kernel

View diagrams as discrete measures w/o density functions

Pb: $d_p(D, D') \not \propto W_p(\mu_D, \mu_{D'})$ (W_p does not even make sense here)

 $\mu_D := \sum_{x \in D} \delta_x$

birth

Pb: $d_p(D, D') \not \propto W_p(\mu_D, \mu_{D'})$ (W_p does not even make sense here)

$$\rightarrow \text{ given } D, D', \text{ let} \qquad \bar{\mu}_D := \sum_{x \in D} \delta_x + \sum_{y \in D'} \delta_{\pi_\Delta(y)}$$
$$\bar{\mu}_{D'} := \sum_{y \in D'} \delta_y + \sum_{x \in D} \delta_{\pi_\Delta(x)}$$

Then, $d_p(D, D') \le W_p(\bar{\mu}_D, \bar{\mu}_{D'}) \le 2 d_p(D, D')$

Pb: $d_p(D, D') \not \propto W_p(\mu_D, \mu_{D'})$ (W_p does not even make sense here)

$$\rightarrow \text{ given } D, D', \text{ let} \qquad \bar{\mu}_D := \sum_{x \in D} \delta_x + \sum_{y \in D'} \delta_{\pi_\Delta(y)}$$
$$\bar{\mu}_{D'} := \sum_{y \in D'} \delta_y + \sum_{x \in D} \delta_{\pi_\Delta(x)}$$

Then, $d_p(D, D') \le W_p(\bar{\mu}_D, \bar{\mu}_{D'}) \le 2 d_p(D, D')$

Pb: $\bar{\mu}_D$ depends on D'

Pb: $d_p(D, D') \not \propto W_p(\mu_D, \mu_{D'})$ (W_p does not even make sense here)

Solution: transfer mass negatively:

$$\tilde{\mu}_D := \mu_D - (\pi_\Delta)_* \, \mu_D = \sum_{x \in D} \delta_x - \sum_{x \in D} \delta_{\pi_\Delta(x)} \quad \in \mathcal{M}_0(\mathbb{R}^2)$$

 \rightarrow signed discrete measure of total mass zero Kantorovich norm: $\|\tilde{\mu}_D\|_K = W_1(\mu_D, (\pi_\Delta)_* \mu_D)$

A Wasserstein Gaussian kernel for PDs?

Thm.: [Kimeldorf, Wahba 1971] If $d: X \times X \to \mathbb{R}_+$ symmetric is conditionally negative semidefinite, i.e.: $\forall n \in \mathbb{N}, \ \forall x_1, \cdots, x_n \in X, \ \sum_{i=1}^n \alpha_i = 0 \Longrightarrow \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j \ d(x_i, x_j) \le 0,$ then $k(x, y) := \exp\left(-\frac{d(x, y)}{2\sigma^2}\right)$ is positive semidefinite.

Pb: W_1 is not cnsd, neither is d_1

Solutions:

- relax the measures (e.g. convolution)
- relax the metric (e.g. regularization, slicing)

Special case: $X = \mathbb{R}$, μ, ν discrete measures of same mass m

$$\mu := \sum_{i=1}^m \delta_{x_i}$$
, $\nu := \sum_{i=1}^m \delta_{y_i}$

Sort the atoms of μ, ν along the real line: $x_i \leq x_{i+1}$ and $y_i \leq y_{i+1}$ for all i

Then:
$$W_1(\mu,\nu) = \sum_{i=1}^m |x_i - y_i| = ||(x_1,\cdots,x_m) - (y_1,\cdots,y_m)||_1$$

Special case: $X = \mathbb{R}$, μ, ν discrete measures of same mass m

$$\mu := \sum_{i=1}^m \delta_{x_i}, \ \nu := \sum_{i=1}^m \delta_{y_i}$$

Sort the atoms of μ, ν along the real line: $x_i \leq x_{i+1}$ and $y_i \leq y_{i+1}$ for all i

Then:
$$W_1(\mu,\nu) = \sum_{i=1}^m |x_i - y_i| = ||(x_1,\cdots,x_m) - (y_1,\cdots,y_m)||_1$$

 $\rightarrow W_1$ is considered and easy to compute (same with $\|\cdot\|_K$ for signed measures)

Def (sliced Wasserstein distance): for $\mu, \nu \in \mathcal{M}_+(\mathbb{R}^2)$,

$$SW_1(\mu,\nu) := \frac{1}{2\pi} \int_{\theta \in S^1} W_1((\pi_\theta)_* \mu, \, (\pi_\theta)_* \nu) \, d\theta$$

where π_{θ} = orthogonal projection onto line passing through origin with angle θ .

Def (sliced Wasserstein distance): for $\mu, \nu \in \mathcal{M}_+(\mathbb{R}^2)$,

$$SW_1(\mu,\nu) := \frac{1}{2\pi} \int_{\theta \in \mathbb{S}^1} W_1((\pi_\theta)_* \mu, (\pi_\theta)_* \nu) d\theta$$

where π_{θ} = orthogonal projection onto line passing through origin with angle θ .

Props: (inherited from W_1 over \mathbb{R}) [Rabin, Peyré, Delon, Bernot 2011]

- satisfies the axioms of a metric
- well-defined barycenters, fast to compute via stochastic gradient descent, etc.
- conditionally negative semidefinite

Sliced Wasserstein kernel

Def: Given
$$\sigma > 0$$
, for any $\mu, \nu \in \mathcal{M}_+(\mathbb{R}^2)$:
 $k_{SW}(\mu, \nu) := \exp\left(-\frac{SW_1(\mu, \nu)}{2\sigma^2}\right)$

Corollary: [Kolouri, Zou, Rohde] k_{SW} is positive semidefinite.

Sliced Wasserstein kernel

Def: Given
$$\sigma > 0$$
, for any $\mu, \nu \in \mathcal{M}_+(\mathbb{R}^2)$:
 $k_{SW}(\mu, \nu) := \exp\left(-\frac{SW_1(\mu, \nu)}{2\sigma^2}\right)$

Corollary: [Kolouri, Zou, Rohde] k_{SW} is positive semidefinite.

Thm.: [Carrière, Cuturi, O. 2017] The metrics d_1 and SW_1 on the space \mathcal{D}_N of persistence diagrams of size bounded by N are strongly equivalent, namely: for $D, D' \in \mathcal{D}_N$,

$$\frac{1}{2+4N(2N-1)} d_1(D,D') \leq SW_1(D,D') \leq 2\sqrt{2} d_1(D,D')$$

Corollary: the feature map ϕ associated with k_{SW} is weakly metric-preserving: $\exists g, h$ nonzero except at 0 such that $g \circ d_1 \leq \|\phi(\cdot) - \phi(\cdot)\|_{\mathcal{H}} \leq h \circ d_1$.

Metric distortion in practice

Application to supervised shape segmentation

Goal: segment 3d shapes based on examples Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes
- apply classifier to PDs extracted from query shape

Application to supervised shape segmentation

Goal: segment 3d shapes based on examples Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes
- apply classifier to PDs extracted from query shape

(training data)

Application to supervised shape segmentation

Goal: segment 3d shapes based on examples Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes
- apply classifier to PDs extracted from query shape

Accuracies	(%)	using	TDA	descriptors	(kernels	on	barcodes):
------------	-----	-------	-----	-------------	----------	----	----------	----

	TDA	geometry	TDA + geometry
Human	74.0	78.7	88.7
Airplane	72.6	81.3	90.7
Ant	92.3	90.3	98.5
FourLeg	73.0	74.4	84.2
Octopus	85.2	94.5	96.6
Bird	72.0	75.2	86.5
Fish	79.6	79.1	92.3

Approach: use framework of *functional maps* [Ovsjanikov et al. 2012]

Given a point-to-point map $m: X \to Y$ (seen as measured spaces), consider the linear map $m^*: L^2(Y) \to L^2(X)$ induced by composition with m

- compute an optimal linear map that best preserves a set of signatures (vectors)
- derive a point-to-point correspondence from this map (via indicator functions)
- evaluate the quality of the correspondence
- reduce the dimensionality by taking the first k eigenfunctions of the Laplace-Beltrami operator

Approach: use framework of *functional maps* [Ovsjanikov et al. 2012]

Approach: use framework of *functional maps* [Ovsjanikov et al. 2012]

correspondences in flat regions are improved by topological signatures

 $f:\mathbb{N}\to\mathbb{R}$

ð	signal	embedded data
$\mathrm{TD}_{m,\tau}(f) := \begin{bmatrix} f(t) \\ f(t+\tau) \\ \vdots \\ \vdots \\ f(t+\tau) \end{bmatrix}$	periodicity	circularity
$\int f(t+m au) \int$ au: step / delay	# prominent harmonics (N)	min. ambient dimension $(m \ge 2N)$
m au: window size	# non-commensurate freq.	intrinsic dimension
m+1: embedding dimension		$(\mathbb{S}^1 \times \cdots \times \mathbb{S}^1)$

[J. Perea et al.:"SW1PerS: Sliding windows and 1-persistence scoring", 2015]

Contributions of TDA:

inference of:

- periodicity
- harmonics
- non-commensurate freq.
- underlying state space
- no Fourier transform needed

Contributions of TDA:

inference of:

- periodicity
- harmonics
- non-commensurate freq.
- underlying state space

no Fourier transform needed

Dynamical system:

Thm: [Nash, Takens] Given a Riemannian manifold X of dimension $\frac{m}{2}$, it is a **generic property** of $\phi \in \text{Diff}_2(X)$ and $\alpha \in C^2(X, \mathbb{R})$ that

$$X \to \mathbb{R}^{m+1}$$
$$x \mapsto (\alpha(x), \alpha \circ \phi(x), \cdots, \alpha \circ \phi^m(x)$$

is an embedding.

method / dataset	Gyro sensor	EEG dataset	EMG dataset
SVM + statistical features	67.6 ± 4.7	44.4 ± 19.8	15.0 ± 10.0
SVM + Betti sequence	63.5 ± 11.3	66.7 ± 5.6	49.6 ± 18.2
1-d CNN + dynamic time warping	6.4 ± 5.1	72.4 ± 6.1	15.0 ± 10.0
imaging CNN	18.9 ± 5.2	48.9 ± 4.2	10.0 ± 0.0
1-d CNN + Betti sequence	79.8 \pm 5.0	75.38 \pm 5.7	74.4 \pm 10.6

[Y. Umeda:" Time Series Classification via Topological Data Analysis", 2017]

Wrap'up

- kernels for persistence diagrams:
 - stable
 - discriminative
 - easy to compute (closed-form expr., finite-dim. vectors)
 - additive, universal, etc.
- other topic: integration of TDA into learning methods (clustering, NNs, etc.)

