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• Assume the data points are sampled from some unknown probability distribution

• Partition the data according to the basins of attraction of the peaks of the density
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Hill-Climbing Schemes

• Iterative, e.g. D. Comaniciu and P. Meer. Mean shift: A robust
approach toward feature space analysis. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 24(5):603619, May 2002.

• Non-iterative, e.g. W. L. Koontz, P. M. Narendra, and K. Fuku-
naga. A graph-theoretic approach to nonparametric cluster analysis.
IEEE Trans. on Computers, 24:936944, September 1976.
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[Koontz, Narendra, Fukunaga’76] in a Nutshell
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typically, one uses a Gaussian kernel estimator in practice
estimate density

at the data points
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typically, one builds a Rips or k-NN graph in practice, since these only require to use distance computations

typically, one uses a Gaussian kernel estimator in practice
estimate density

at the data points
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typically, one connects each vertex to its graph neighbor with highest density value. This neighbor is called the parent of the current vertex. If no neighbor is higher than the current vertex, then the latter is declared a peak. Note that [KNF’76] normalizes the difference in height by the edge length.

the set of pseudo-gradient edges forms a spanning forest of the graph, where each tree represents a cluster and its root is a (estimated) density peak within the graph and acts as cluster center

typically, one builds a Rips or k-NN graph in practice, since these only require to use distance computations

typically, one uses a Gaussian kernel estimator in practice
estimate density

at the data points

approximate gradient

by a graph edge

[Koontz, Narendra, Fukunaga’76] in a Nutshell

at each data point

build neighborhood graph
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The main reason why we got a wrong result here is that our estimator is very noisy, with many local peaks in the plane that create local peaks within the graph. Generally speaking, differential quantities like peaks and gradients are very unstable under C0 perturbations of the function, which is what happens when a density estimator is used.

transition: the result obtained depends on your choice of estimator, neighborhood graph and gradient approximation strategy.Why things are likely to go ill

estimated
density

• Noisy estimator
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But it is not the only reason. Even with a perfect estimator (i.e. the original density function, as shown below), the fact that we work in some neighborhood graph instead of the ambient space may create artificial peaks, such as for instance the saddle point on the edge of the crater which turns into a peak in the graph, or the actual peak of the crater which is duplicated into 3 peaks.
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in fact, it may even worsen the neighborhood graph issue, since smoothing the estimator tends to enlarge the areas where the norm of the gradient is small, which are typically the areas where the neighborhood graph may have spurious peaks.
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transition: the result obtained depends on your choice of estimator, neighborhood graph and gradient approximation strategy.Why things are likely to go ill

• Noisy estimator

• Neighborhood graph

Solutions:

1. Be proactive: act on approximate gradient flow (Mean-Shift [CM’02])

→ use kernel density estimator, with smoothing window parameter

→ work in ambient space to circumvent neighborhood graph issue
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more precisely: after the (non-iterative) mode-seeking step, move each point to its cluster center, then restart the process with this new, smaller, point cloud , thus obtaining a new spanning forest. Continue until no further changes occur. Note that the underlying neighborhood graph remains the complete graph throughout the process. This iterative process is applied blindly, with no control over the final number of clusters. Therefore proving anything regarding the quality of the output is difficult, and in the original Medoid-Shift paper [Sheikh, Khan, Kanade 2007] they merely prove a similar behavior to Mean-Shift asymptotically, i.e. as the number of data points tends to infinity.
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• Noisy estimator

• Neighborhood graph

Solutions:

1. Be proactive: act on approximate gradient flow (Mean-Shift [CM’02])

→ use kernel density estimator, with smoothing window parameter

→ work in ambient space to circumvent neighborhood graph issue

2. Be reactive: merge clusters after clustering, to regain some stability

→ use topological persistence to guide a single-pass merging step

5

→ repeat mode-seeking until convergence (Medoid-Shift [SKK’07])
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Mean-Shift in practice
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• Apply Mean-Shift hill-climbing to each input point pi ∈ P

query

shift
mean

(Epanechnikov kernel)
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→ use variant to guarantee cvgence to maximum [Huang et al. 2017]



Mean-Shift in practice
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• Apply Mean-Shift hill-climbing to each input point pi ∈ P

• Gaussian kernel ⇒ convergence at the limit (infinite time)

→ stopping criterion (convergence radius)

→ identification of modes (mode radius)

→ speed-up: hill-climbing gathers neighboring points (gathering radius)

 heuristic: make these radii proportional to the estimator’s bandwidth σ

• Epanechnikov kernel ⇒ convergence in finite time

→ may converge outside the set of critical points of the estimator

→ use variant to guarantee cvgence to maximum [Huang et al. 2017]
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