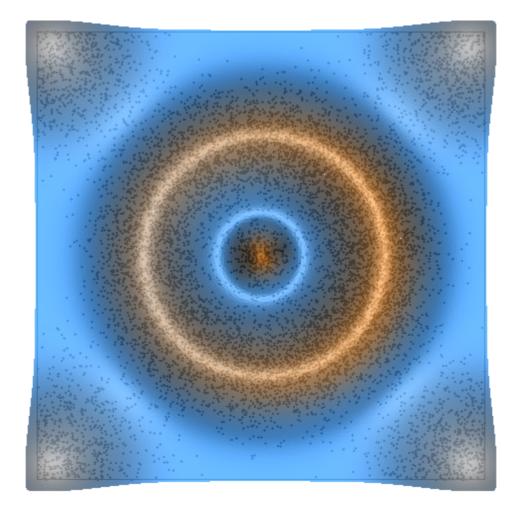
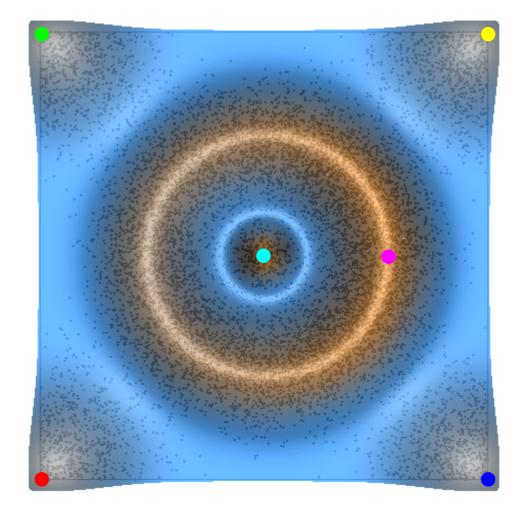
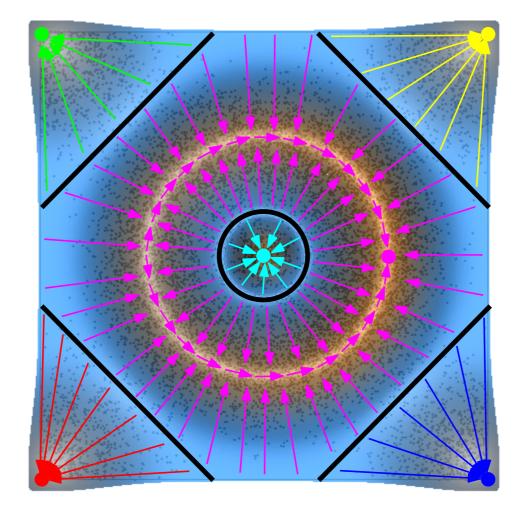
- Assume the data points are sampled from some unknown probability distribution
- Partition the data according to the basins of attraction of the peaks of the density



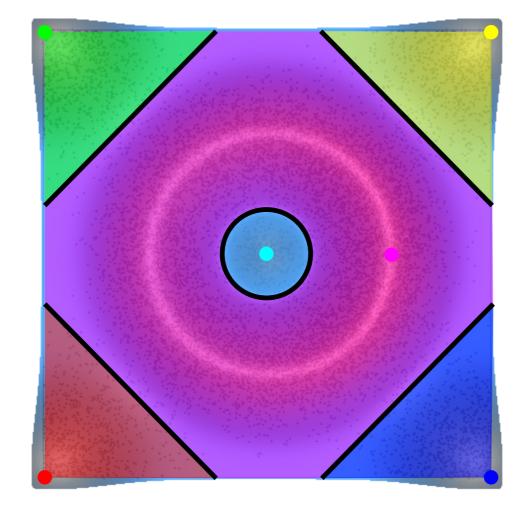
- Assume the data points are sampled from some unknown probability distribution
- Partition the data according to the basins of attraction of the peaks of the density



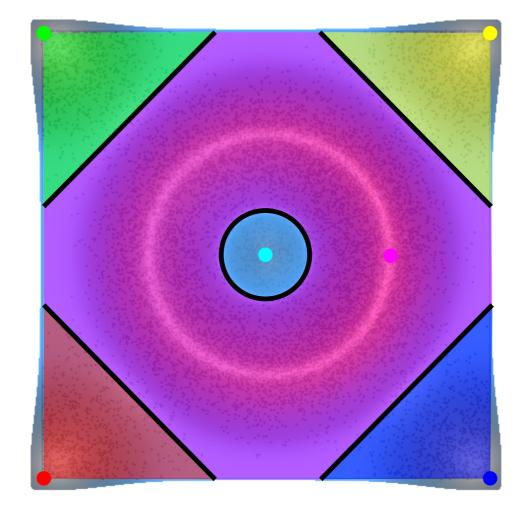
- Assume the data points are sampled from some unknown probability distribution
- Partition the data according to the basins of attraction of the peaks of the density



- Assume the data points are sampled from some unknown probability distribution
- Partition the data according to the basins of attraction of the peaks of the density



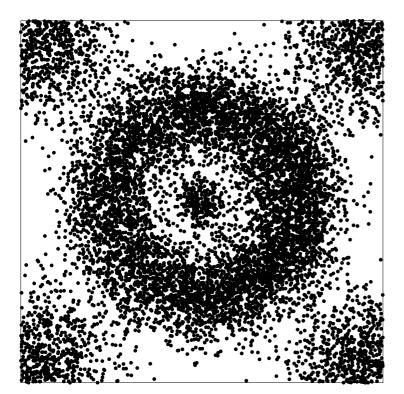
- Assume the data points are sampled from some unknown probability distribution
- Partition the data according to the basins of attraction of the peaks of the density

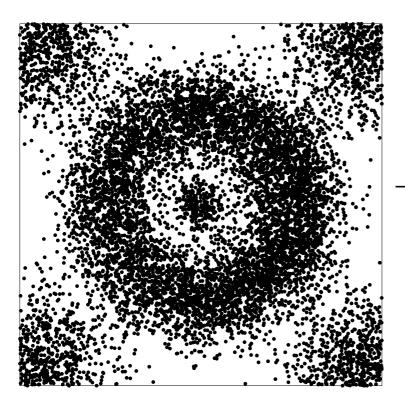


Hill-Climbing Schemes

• Iterative, e.g. D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis. *IEEE Trans. on Pattern Analysis and Machine Intelligence*, 24(5):603619, May 2002.

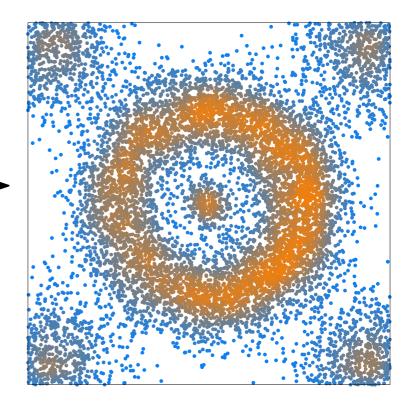
• **Non-iterative**, e.g. W. L. Koontz, P. M. Narendra, and K. Fukunaga. A graph-theoretic approach to nonparametric cluster analysis. *IEEE Trans. on Computers*, 24:936944, September 1976.

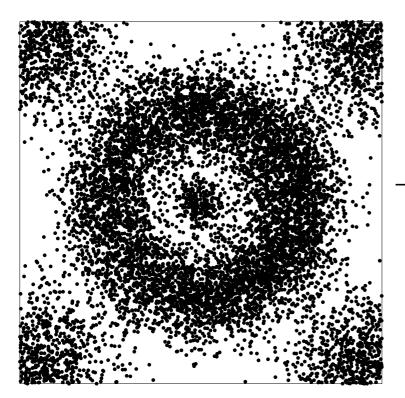




estimate density

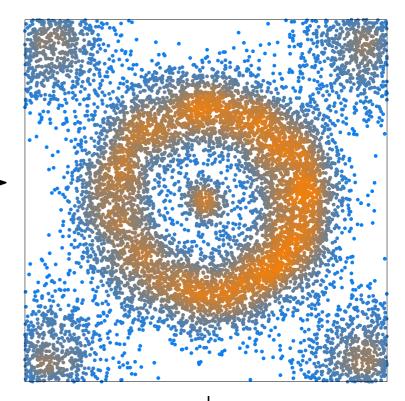
at the data points



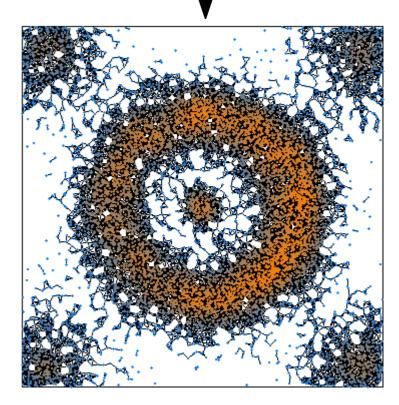


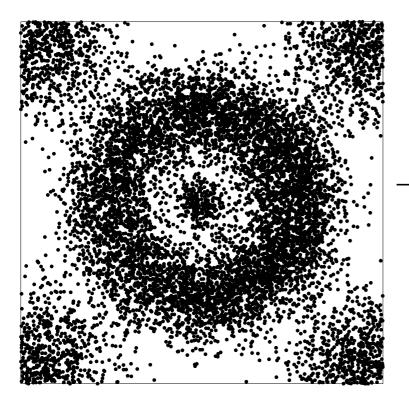
estimate density

at the data points



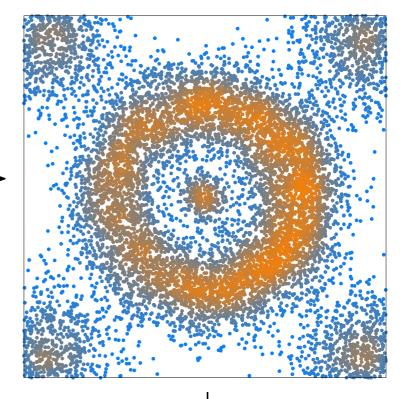
build neighborhood graph



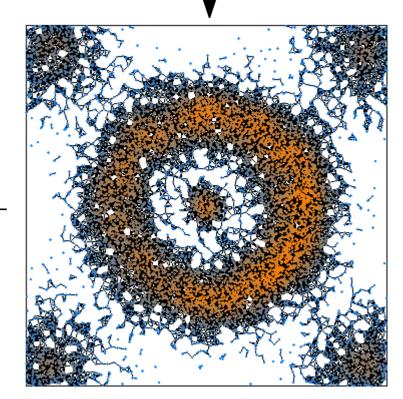


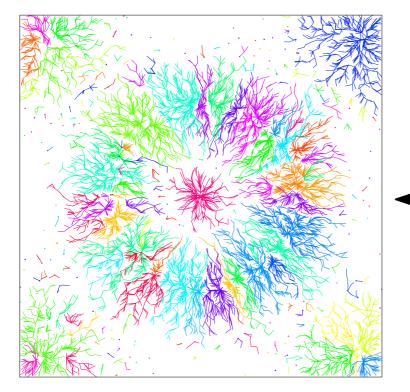
estimate density

at the data points



build neighborhood graph

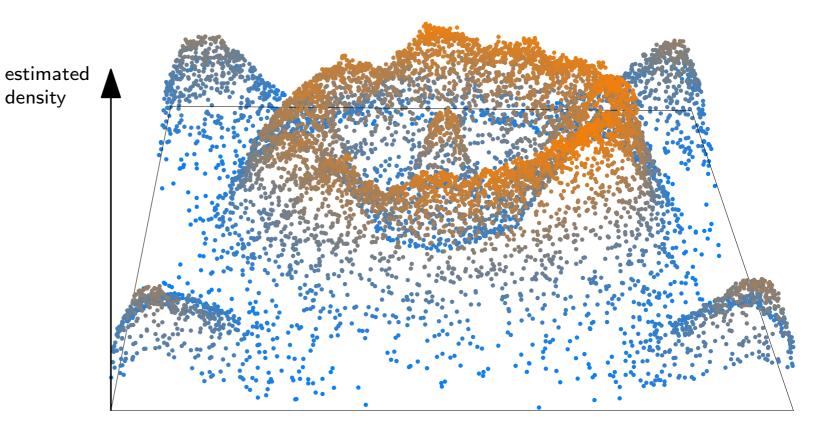


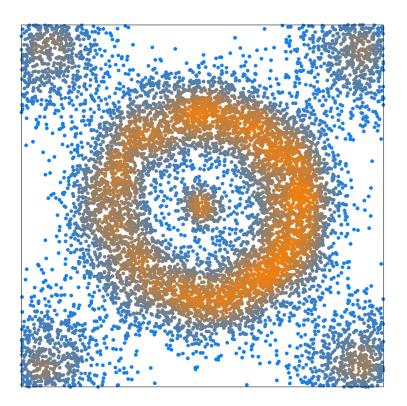


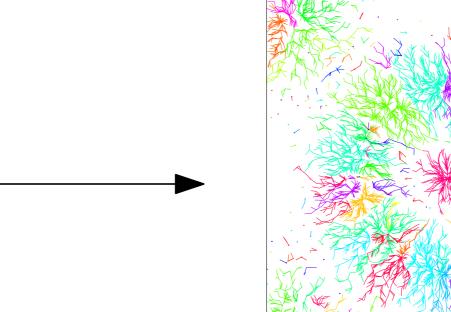
approximate gradient

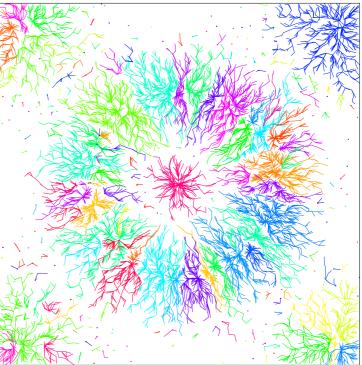
by a graph edge at each data point

• Noisy estimator

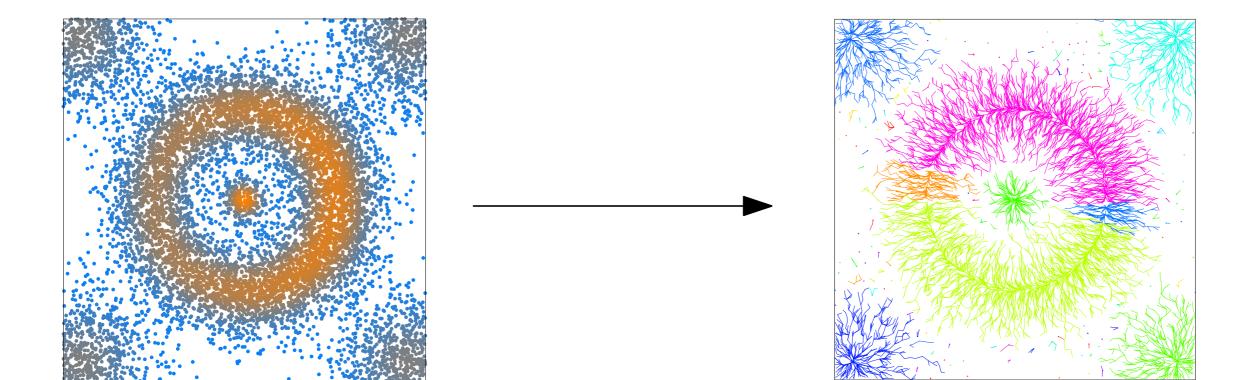








- Noisy estimator
- Neighborhood graph



- Noisy estimator
- Neighborhood graph

Solutions:

1. Be proactive: act on approximate gradient flow (Mean-Shift [CM'02]) \rightarrow use kernel density estimator, with smoothing window parameter \rightarrow work in ambient space to circumvent neighborhood graph issue

- Noisy estimator
- Neighborhood graph

Solutions:

- 1. Be proactive: act on approximate gradient flow (Mean-Shift [CM'02]) \rightarrow use kernel density estimator, with smoothing window parameter \rightarrow work in ambient space to circumvent neighborhood graph issue
- 2. Be reactive: merge clusters after clustering, to regain some stability
 - \rightarrow repeat mode-seeking until convergence (Medoid-Shift [SKK'07]) \rightarrow use topological persistence to guide a single-pass merging step

- Noisy estimator
- Neighborhood graph

Solutions:

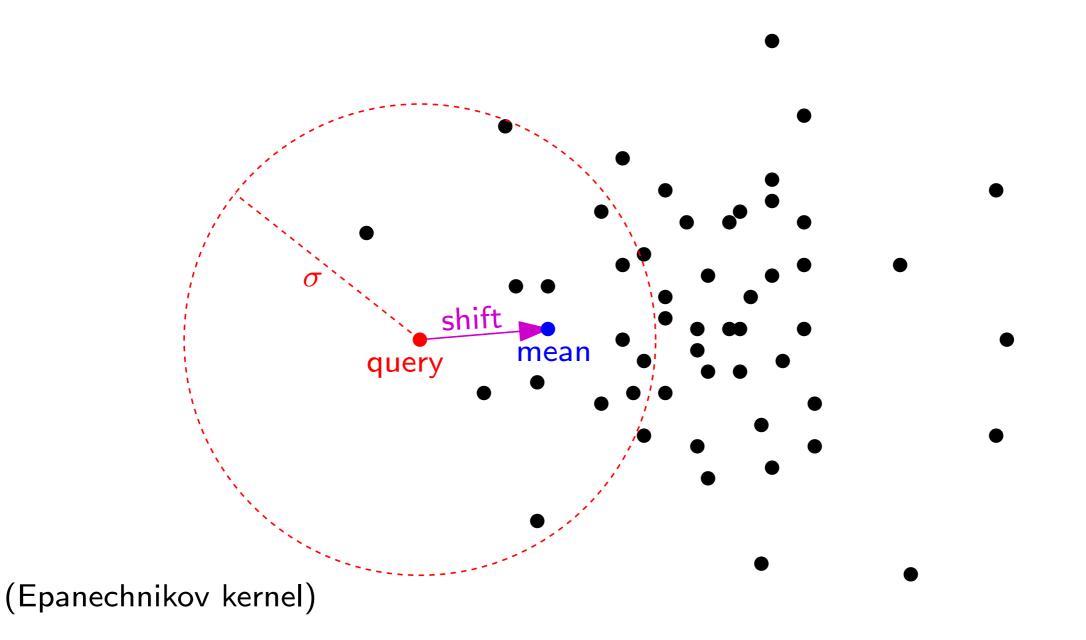
1. Be proactive: act on approximate gradient flow (Mean-Shift [CM'02]) \rightarrow use kernel density estimator, with smoothing window parameter \rightarrow work in ambient space to circumvent neighborhood graph issue

2. Be reactive: merge clusters after clustering, to regain some stability

 \rightarrow repeat mode-seeking until convergence (Medoid-Shift [SKK'07]) \rightarrow use topological persistence to guide a single-pass merging step

Mean-Shift in practice

• Apply Mean-Shift hill-climbing to each input point $p_i \in P$



Mean-Shift in practice

- Apply Mean-Shift hill-climbing to each input point $p_i \in P$
- Epanechnikov kernel \Rightarrow convergence in finite time

 \rightarrow may converge outside the set of critical points of the estimator

 \rightarrow use variant to guarantee cvgence to maximum [Huang et al. 2017]

Mean-Shift in practice

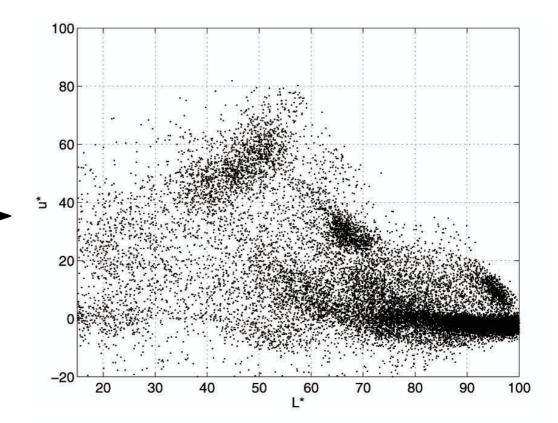
- Apply Mean-Shift hill-climbing to each input point $p_i \in P$
- Epanechnikov kernel \Rightarrow convergence in finite time

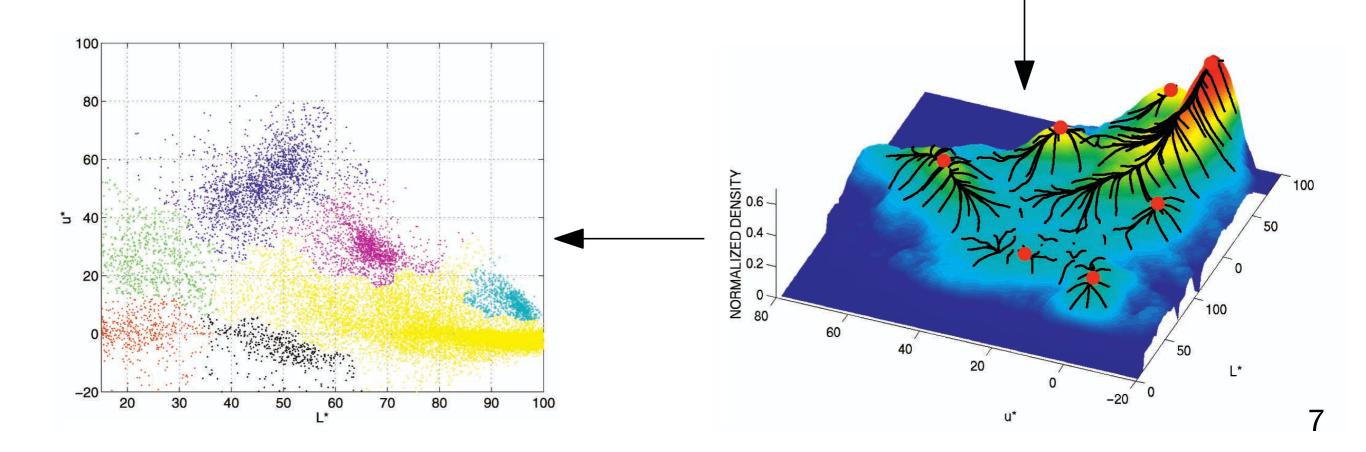
 \rightarrow may converge outside the set of critical points of the estimator

- \rightarrow use variant to guarantee cvgence to maximum [Huang et al. 2017]
- Gaussian kernel \Rightarrow convergence at the limit (infinite time)
 - \rightarrow stopping criterion (convergence radius)
 - \rightarrow identification of modes (mode radius)
 - \rightarrow speed-up: hill-climbing gathers neighboring points (gathering radius)

 \leadsto heuristic: make these radii proportional to the estimator's bandwidth σ

Examples [Comaniciu, Meer 2002]



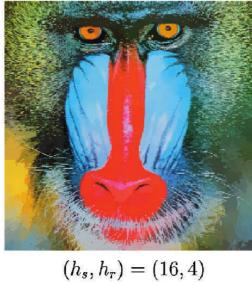


Examples [Comaniciu, Meer 2002]

Original

 $\left(h_{s},h_{r}
ight) =\left(8,8
ight)$

 $\left(h_{s},h_{r}
ight) =\left(8,16
ight)$



 $(h_s,h_r)=(16,8)$

 $(h_s, h_r) = (16, 16)$

1:46:1:24

 $(h_s, h_r) = (32, 4)$

 $(h_s, h_r) = (32, 8)$

 $(h_s, h_r) = (32, 16)$