INF631 – Data Analysis: Geometry and Topology in Arbitrary Dimensions

Delaunay-Based Reconstruction

Steve Oudot

Q What do you see? Why?

Input: point cloud $P \subset \mathbb{R}^d$ finite

Prior: points of P are sampled along some *unknown shape* M (manifold, compact set etc.), according to some *unknown measure* μ .

Goal: (support estimation) build an *approximation* (implicit, PL, simplicial, etc.) that is *structurally faithful* (homotopic, homeomorphic, isotopic, etc.) and *close* (in Hausdorff distance, in ℓ^2 -distance, etc.) to M.

Reconstruction problem is ill-posed by nature.

Reconstruction problem is ill-posed by nature.

 \rightarrow make *regularity assumptions* on M (fixed dimension, topological type, differentiability, etc.) and *sampling assumptions* (uniform measure, growth rate, etc.)

Reconstruction problem is ill-posed by nature.

 \rightarrow make *regularity assumptions* on M (fixed dimension, topological type, differentiability, etc.) and *sampling assumptions* (uniform measure, growth rate, etc.)

 \rightarrow for a suitable choice of hypotheses, the solution becomes unique **up to a set of deformations** (solution never unique!)

Reconstruction problem is ill-posed by nature.

 \rightarrow make *regularity assumptions* on M (fixed dimension, topological type, differentiability, etc.) and *sampling assumptions* (uniform measure, growth rate, etc.)

 \rightarrow for a suitable choice of hypotheses, the solution becomes unique **up to a set of deformations** (solution never unique!)

clustering topological inference

clustering topological inference reconstruction

Where do the data come from? 3D scans Sources LASER stereo vision mechanical sensor Applications Reverse engineering Prototyping Quality control Cultural heritage

Stanford Michelangelo Project

(raw data with 2 billion polygons, sampling with a precision of $0.25~\rm{mm})$

Where do the data come from? Medical Imaging

Sources

MRI scan echograph

Applications

Intraoral 3d scanner

Diagnostic

- Endoscopy simulation
- Chirurgical intervention planning

Where do the data come from? Geography, Geology

Sources

satellite/aerial images ground probing seismograph

Applications

Maps making / Terrain modeling Prospection (tunnels, oil)

Where do the data come from? Higher-Dimensions Sources

Data bases

Simulations

Applications

Machine Learning

Robotics

Image processing

Biocomputing

conformation space of cyclo-octane

Topological Criteria

Geometric Criteria

Normals (order 1):

Curvature (order 2):

Geometric simplicial complexes

vertex set:
$$V = \{v_0, v_1, \dots, v_{n-1}\} \subset \mathbb{R}^d$$

k-simplex: $\sigma = CH\{v_{i_0}, v_{i_1}, \cdots, v_{i_k}\}$

inclusion property (τ *face* of σ): $\sigma \in K$ and $V(\tau) \subseteq V(\sigma) \Longrightarrow \tau \in K$

intersection property:

 $\sigma_1, \sigma_2 \in K \text{ and } \sigma_1 \cap \sigma_2 \neq \emptyset \Longrightarrow$ $\sigma_1 \cap \sigma_2 \in K \text{ and is a face of both}$

0-simplex 1-simplex 2-simplex 3-simplex

valid simplicial complex

Reconstruction using Delaunay

What Delaunay has to do with reconstruction

 \rightarrow faithful approximation of the curve appears as a subcomplex of the Delaunay \rightarrow should hold whenever the point cloud is sufficiently densely sampled

What Delaunay has to do with reconstruction

 \rightarrow faithful approximation of the curve appears as a subcomplex of the Delaunay \rightarrow should hold whenever the point cloud is sufficiently densely sampled **Q** What is this *good* subcomplex? Can it be defined in some canonical way?

Restricted Delaunay triangulation

Restricted Delaunay triangulation

Def: $\mathcal{D}^M(P) := \{ \sigma \in \mathcal{D}(P) \mid \sigma^* \cap M \neq \emptyset \}$

Restricted Delaunay triangulation

Def: $\mathcal{D}^M(P) := \{ \sigma \in \mathcal{D}(P) \mid \sigma^* \cap M \neq \emptyset \}$

Sampling Condition

Def: *P* is an ε -sample of *M* if $\forall x \in M$, $\min\{||x - p|| \mid p \in P\} \le \varepsilon$.

Medial axis: $\Gamma_M = \operatorname{cl}\{x \in \mathbb{R}^d \mid |\operatorname{NN}_M(x)| \ge 2\}$

Local feature size: $\forall x \in \mathbb{R}^d$, $lfs(x) = min\{||x - m|| \mid m \in \Gamma_M\}$

Reach: $\varrho_M = \min\{ lfs(x) \mid x \in M \}$

Medial axis: $\Gamma_M = \operatorname{cl}\{x \in \mathbb{R}^d \mid |\operatorname{NN}_M(x)| \ge 2\}$

Local feature size: $\forall x \in \mathbb{R}^d$, $lfs(x) = min\{||x - m|| \mid m \in \Gamma_M\}$

Reach: $\varrho_M = \min\{ lfs(x) \mid x \in M \}$

 \rightarrow Fundamental properties: (see [Federer 1958])

Tangent Ball Lemma: $\forall x \in M, \forall c \in M^{\perp}(x), ||x - c|| < lfs(x) \Rightarrow$

 $B^{o}(c, \|x - c\|) \cap M = \emptyset.$

 \rightarrow Fundamental properties: (see [Federer 1958])

Tangent Ball Lemma: $\forall x \in M, \forall c \in M^{\perp}(x), ||x - c|| < lfs(x) \Rightarrow$

 $B^{o}(c, \|x - c\|) \cap M = \emptyset.$

Theorem: [Amenta et al. 1998-99]

If M is a closed curve or surface with positive reach ϱ_M , and if P is an ε -sample of M with $\varepsilon < \varrho_M$ (curve) or $\varepsilon < 0.1 \varrho_M$ (surface), then:

- $\mathcal{D}^M(P)$ is homeomorphic to M (denoted $\mathcal{D}^M(P) \simeq M$),
- $\mathsf{d}_{\mathrm{H}}(\mathcal{D}^{M}(P), M) \in O(\varepsilon^{2})$,
- $\forall \sigma \in \mathcal{D}^M(P)$, $\forall p \in V(\sigma)$, $\angle \sigma^{\perp} M^{\perp}(p) \in O(\varepsilon)$,
- · · · (similar areas, curvature estimation, etc.)

Theorem: [Amenta et al. 1998-99]

If M is a closed curve or surface with positive reach ϱ_M , and if P is an ε -sample of M with $\varepsilon < \varrho_M$ (curve) or $\varepsilon < 0.1 \, \varrho_M$ (surface), then:

- $\mathcal{D}^M(P)$ is homeomorphic to M (denoted $\mathcal{D}^M(P) \simeq M$),
- $\mathsf{d}_{\mathrm{H}}(\mathcal{D}^{M}(P), M) \in O(\varepsilon^{2})$,
- $\forall \sigma \in \mathcal{D}^M(P)$, $\forall p \in V(\sigma)$, $\angle \sigma^{\perp} M^{\perp}(p) \in O(\varepsilon)$,
- · · · (similar areas, curvature estimation, etc.)

Reconstruction is uncertain if ε is not small enough compared to ρ_M

Proof for curves:

show that every edge of $\mathcal{D}^M(P)$ connects consecutive points of P along M, and vice-versa

Proof for curves:

show that every edge of $\mathcal{D}^M(P)$ connects consecutive points of P along M, and vice-versa

Proof for curves:

show that every edge of $\mathcal{D}^M(P)$ connects consecutive points of P along M, and vice-versa

Approximation via Restricted Delaunay

Proof for curves:

show that every edge of $\mathcal{D}^M(P)$ connects consecutive points of P along M, and vice-versa

Approximation via Restricted Delaunay

Proof for curves:

show that every edge of $\mathcal{D}^M(P)$ connects consecutive points of P along M, and vice-versa

 $\Rightarrow \mathcal{D}^M(P)$ is homeomorphic to M between each pair of consecutive points of P

Computing the Restricted Delaunay

Q How to compute $\mathcal{D}^M(P)$ when M is unknown?

 \rightarrow a whole family of algorithms use various Delaunay extraction criteria:

Crust Algorithm

Crust algorithm

[Amenta et al. 1997-98]

1. Compute Delaunay triangulation of PCrust algorithm [Amenta et al. 1997-98]

Crust algorithm ^{3.} Add poles to the set of vertices [Amenta et al. 1997-98]

Crust algorithm

in 2-d, crust =
$$\mathcal{D}^M(P) \approx M$$

[Amenta et al. 1997-98]

Crust algorithm

in 2-d, crust
$$= \mathcal{D}^M(P) pprox M$$

[Amenta et al. 1997-98]

Crust algorithm [Amenta et al. 1997-98]

in 2-d, crust $= \mathcal{D}^M(P) \approx M$ in 3-d, crust $\supseteq \mathcal{D}^M(P) \approx M$

Crust algorithm [Amenta et al. 1997-98]

in 2-d, crust $= \mathcal{D}^M(P) \approx M$ in 3-d, crust $\supseteq \mathcal{D}^M(P) \approx M$

 \rightarrow manifold extraction step in post-processing

Witness Complex

Motivation: effect of scale / dimensionality

What is the reconstruction?

Multi-scale reconstruction

 \rightarrow the witness complex enables the use of the Delaunay paradigm

[Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^n$

 \rightarrow resample W iteratively, and maintain a simplicial complex:

[Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^n$

 \rightarrow resample W iteratively, and maintain a simplicial complex:

Let $L := \{p\}$, for some $p \in W$;

[Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^n$

 \rightarrow resample W iteratively, and maintain a simplicial complex:

Let $L := \{p\}$, for some $p \in W$;

WHILE $L \subsetneq W$

Let $q := \operatorname{argmax}_{w \in W} \mathsf{d}(w, L)$;

[Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^n$

 \rightarrow resample W iteratively, and maintain a simplicial complex:

Let $L := \{p\}$, for some $p \in W$;

WHILE $L \subsetneq W$ Let $q := \operatorname{argmax}_{w \in W} \mathsf{d}(w, L);$ $L := L \cup \{q\};$ update simplicial complex;

END_WHILE

[Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^n$

 \rightarrow resample W iteratively, and maintain a simplicial complex:

Let $L := \{p\}$, for some $p \in W$;

WHILE $L \subsetneq W$ Let $q := \operatorname{argmax}_{w \in W} \mathsf{d}(w, L);$ $L := L \cup \{q\};$ update simplicial complex;

END_WHILE

[Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^n$

 \rightarrow resample W iteratively, and maintain a simplicial complex:

Let $L := \{p\}$, for some $p \in W$;

WHILE $L \subsetneq W$ Let $q := \operatorname{argmax}_{w \in W} \mathsf{d}(w, L);$ $L := L \cup \{q\};$ update simplicial complex;

END_WHILE

Output: the sequence of simplicial complexes

Let $L \subseteq \mathbb{R}^d$ (landmarks) s.t. $|L| < +\infty$ and $W \subseteq \mathbb{R}^d$ (witnesses)

Let $L \subseteq \mathbb{R}^d$ (landmarks) s.t. $|L| < +\infty$ and $W \subseteq \mathbb{R}^d$ (witnesses)

Def. $w \in W$ strongly witnesses $[v_0, \dots, v_k]$ if $||w - v_i|| = ||w - v_j|| \le ||w - u||$ for all $i, j = 0, \dots, k$ and all $u \in L \setminus \{v_0, \dots, v_k\}$.

Let $L \subseteq \mathbb{R}^d$ (landmarks) s.t. $|L| < +\infty$ and $W \subseteq \mathbb{R}^d$ (witnesses)

Def. $w \in W$ strongly witnesses $[v_0, \dots, v_k]$ if $||w - v_i|| = ||w - v_j|| \le ||w - u||$ for all $i, j = 0, \dots, k$ and all $u \in L \setminus \{v_0, \dots, v_k\}$.

Def. $w \in W$ weakly witnesses $[v_0, \dots, v_k]$ if $||w - v_i|| \le ||w - u||$ for all $i = 0, \dots, k$ and all $u \in L \setminus \{v_0, \dots, v_k\}$.

Let $L \subseteq \mathbb{R}^d$ (landmarks) s.t. $|L| < +\infty$ and $W \subseteq \mathbb{R}^d$ (witnesses)

Def. $w \in W$ strongly witnesses $[v_0, \dots, v_k]$ if $||w - v_i|| = ||w - v_j|| \le ||w - u||$ for all $i, j = 0, \dots, k$ and all $u \in L \setminus \{v_0, \dots, v_k\}$.

Def. $w \in W$ weakly witnesses $[v_0, \dots, v_k]$ if $||w - v_i|| \le ||w - u||$ for all $i = 0, \dots, k$ and all $u \in L \setminus \{v_0, \dots, v_k\}$.

Def. $C^W(L)$ is the largest abstract simplicial complex built over L, whose faces are weakly witnessed by points of W.

Witness complex (properties)

Thm. 1 [de Silva 2003] $\forall W, L, \forall \sigma \in C^W(L)$, $\exists c \in \mathbb{R}^d$ that strongly witnesses σ .

 $\begin{aligned} \Rightarrow \mathcal{C}^W(L) \text{ is a subcomplex of } \mathcal{D}(L) \\ \Rightarrow \mathcal{C}^W(L) \text{ is embedded in } \mathbb{R}^d \\ \text{ (if } L \text{ lies in general position)} \end{aligned}$

Thm. 1 $\forall W \subseteq \mathbb{R}^d, \forall L \subset \mathbb{R}^d \text{ s.t. } |L| < \infty, \forall \sigma \in \mathcal{C}^W(L), \exists c \in \mathbb{R}^d$ that *strongly* witnesses σ .

 $\sigma \in \mathcal{C}^W(L) \text{ iff } \forall \tau \subseteq \sigma,$ τ weakly witnessed

Thm. 1 $\forall W \subseteq \mathbb{R}^d, \forall L \subset \mathbb{R}^d \text{ s.t. } |L| < \infty, \forall \sigma \in \mathcal{C}^W(L), \exists c \in \mathbb{R}^d$ that *strongly* witnesses σ .

 $\sigma \in \mathcal{C}^W(L) \text{ iff } \forall \tau \subseteq \sigma,$ τ weakly witnessed

Thm. 1 $\forall W \subseteq \mathbb{R}^d$, $\forall L \subset \mathbb{R}^d$ s.t. $|L| < \infty$, $\forall \sigma \in \mathcal{C}^W(L)$, $\exists c \in \mathbb{R}^d$ that *strongly* witnesses σ .

Proof. [Attali, Edelsbrunner, Mileyko 2007]

 \rightarrow induction on the dimension of $\sigma:$

• Case $\sigma = [v_0]$: trivial (all witnesses of v_0 are strong)

$$\label{eq:star} \begin{split} &\sigma \in \mathcal{C}^W(L) \text{ iff } \forall \tau \subseteq \sigma \text{,} \\ &\tau \text{ weakly witnessed} \end{split}$$

Thm. 1 $\forall W \subseteq \mathbb{R}^d$, $\forall L \subset \mathbb{R}^d$ s.t. $|L| < \infty$, $\forall \sigma \in \mathcal{C}^W(L)$, $\exists c \in \mathbb{R}^d$ that *strongly* witnesses σ .

Proof. [Attali, Edelsbrunner, Mileyko 2007]

Thm. 1 $\forall W \subseteq \mathbb{R}^d$, $\forall L \subset \mathbb{R}^d$ s.t. $|L| < \infty$, $\forall \sigma \in \mathcal{C}^W(L)$, $\exists c \in \mathbb{R}^d$ that *strongly* witnesses σ .

Proof. [Attali, Edelsbrunner, Mileyko 2007]

Thm. 1 $\forall W \subseteq \mathbb{R}^d$, $\forall L \subset \mathbb{R}^d$ s.t. $|L| < \infty$, $\forall \sigma \in \mathcal{C}^W(L)$, $\exists c \in \mathbb{R}^d$ that *strongly* witnesses σ .

Proof. [Attali, Edelsbrunner, Mileyko 2007]

 \rightarrow induction on the dimension of $\sigma:$

• Case
$$\sigma = [v_0, \cdots, v_k]$$
 $(k > 0)$:

assume that $||w - v_0|| = \cdots = ||w - v_{l-1}|| / \\ \ge ||w - v_i|| \ \forall i \ge l$

let w_l be a strong witness of $[v_0, \cdots, v_{l-1}]$

 $\rightarrow \forall w' \in [w, w_l], \ B_{w'} \subseteq B_w \cup B_{w_l}$

Thm. 1 $\forall W \subseteq \mathbb{R}^d$, $\forall L \subset \mathbb{R}^d$ s.t. $|L| < \infty$, $\forall \sigma \in \mathcal{C}^W(L)$, $\exists c \in \mathbb{R}^d$ that *strongly* witnesses σ .

Proof. [Attali, Edelsbrunner, Mileyko 2007]

 \rightarrow induction on the dimension of $\sigma:$

• Case
$$\sigma = [v_0, \cdots, v_k]$$
 $(k > 0)$:

assume that $||w - v_0|| = \cdots = ||w - v_{l-1}||$ > $||w - v_i|| \forall i > l$

let w_l be a strong witness of $[v_0, \cdots, v_{l-1}]$

$$\rightarrow \forall w' \in [w, w_l], \ B_{w'} \subseteq B_w \cup B_{w_l}$$

move w to w^\prime as shown opposite

Witness complex (properties)

Thm. 1 [de Silva 2003] $\forall W, L, \forall \sigma \in C^W(L)$, $\exists c \in \mathbb{R}^d$ that strongly witnesses σ .

 $\begin{aligned} \Rightarrow \mathcal{C}^W(L) \text{ is a subcomplex of } \mathcal{D}(L) \\ \Rightarrow \mathcal{C}^W(L) \text{ is embedded in } \mathbb{R}^d \\ \text{ (if } L \text{ lies in general position)} \end{aligned}$

Witness complex (properties)

Thm. 1 [de Silva 2003] $\forall W, L, \forall \sigma \in C^W(L)$, $\exists c \in \mathbb{R}^d$ that strongly witnesses σ .

 $\Rightarrow \mathcal{C}^{W}(L) \text{ is a subcomplex of } \mathcal{D}(L)$ $\Rightarrow \mathcal{C}^{W}(L) \text{ is embedded in } \mathbb{R}^{d}$ (if L lies in general position)

Thm. 2 [de Silva, Carlsson 2004] - The size of $C^W(L)$ is O(d|W|)

- The time to compute is Poly(d, |W|, |L|)

Witness complex (properties)

- **Thm. 1** [de Silva 2003] $\forall W, L, \forall \sigma \in C^W(L)$, $\exists c \in \mathbb{R}^d$ that strongly witnesses σ .
 - $\Rightarrow \mathcal{C}^{W}(L) \text{ is a subcomplex of } \mathcal{D}(L)$ $\Rightarrow \mathcal{C}^{W}(L) \text{ is embedded in } \mathbb{R}^{d}$ (if L lies in general position)
- Thm. 2 [de Silva, Carlsson 2004]
- The size of $\mathcal{C}^W(L)$ is O(d|W|)
- The time to compute is Poly(d, |W|, |L|)

 \rightarrow What if $W\!,L$ lie on or near a submanifold M?

Thm. 3 [Guibas, Oudot 2007] [Attali, Edelsbrunner, Mileyko 2007] Under some conditions, $C^W(L) = D^M(L) \simeq M$

Witness complex

(connection to reconstruction)

- $\bullet \ W \subset \mathbb{R}^d$ is given as input
- $L \subseteq W$ is generated
- \bullet underlying manifold M unknown
- only distance comparisons
- \Rightarrow algorithm is applicable in any metric space

 $\Rightarrow \begin{array}{ll} \mathsf{space} & \leq & O\left(d|W|\right) \\ \mathsf{time} & \leq & O\left(d|W|^2\right) \end{array}$

Input: a finite point set $W \subset \mathbb{R}^d$.

Input: a finite point set $W \subset \mathbb{R}^d$.

Init: $L := \{p\}$; construct lists of nearest landmarks; $C^W(L) = \{[p]\}$; Invariant: $\forall w \in W$, the list of d+1 nearest landmarks of w is maintained throughout the process.

Input: a finite point set $W \subset \mathbb{R}^d$.

Init: $L := \{p\}$; construct lists of nearest landmarks; $C^W(L) = \{[p]\}$; Invariant: $\forall w \in W$, the list of d+1 nearest landmarks of w is maintained throughout the process.

WHILE $L \subsetneq W$

Input: a finite point set $W \subset \mathbb{R}^d$.

Init: $L := \{p\}$; construct lists of nearest landmarks; $C^W(L) = \{[p]\}$; Invariant: $\forall w \in W$, the list of d+1 nearest landmarks of w is maintained

throughout the process.

WHILE $L \subsetneq W$

insert $\operatorname{argmax}_{w \in W} \mathsf{d}(w, L)$ in *L*; update the lists of nearest neighbors;

Input: a finite point set $W \subset \mathbb{R}^d$.

Init: $L := \{p\}$; construct lists of nearest landmarks; $C^W(L) = \{[p]\}$; Invariant: $\forall w \in W$, the list of d+1 nearest landmarks of w is maintained

throughout the process.

WHILE $L \subsetneq W$ insert $\operatorname{argmax}_{w \in W} \mathsf{d}(w, L)$ in L; update the lists of nearest neighbors; update $\mathcal{C}^W(L)$; END_WHILE

Input: a finite point set $W \subset \mathbb{R}^d$.

Init: $L := \{p\}$; construct lists of nearest landmarks; $C^W(L) = \{[p]\}$; Invariant: $\forall w \in W$, the list of d+1 nearest landmarks of w is maintained

throughout the process.

WHILE $L \subsetneq W$ insert $\operatorname{argmax}_{w \in W} \mathsf{d}(w, L)$ in L; update the lists of nearest neighbors; update $\mathcal{C}^W(L)$; END_WHILE

Input: a finite point set $W \subset \mathbb{R}^d$.

Init: $L := \{p\}$; construct lists of nearest landmarks; $C^W(L) = \{[p]\}$;

Invariant: $\forall w \in W$, the list of d+1 nearest landmarks of w is maintained throughout the process.

If M is a closed k-manifold smoothly embedded in \mathbb{R}^d , then, under sufficient sampling conditions, $\mathcal{C}^W(L) = \mathcal{D}^M(L) \simeq M$

If M is a closed k-manifold smoothly embedded in \mathbb{R}^d , then, under sufficient sampling conditions, $\mathcal{C}^W(L) = \mathcal{D}^M(L) \simeq M$

• Case k = 1: - $\mathcal{C}^W(L) = \mathcal{D}^M(L) \simeq M$

[Guibas, O. 07] [Attali, Edelsbrunner, Mileyko 07]

If M is a closed k-manifold smoothly embedded in \mathbb{R}^d , then, under sufficient sampling conditions, $\mathcal{C}^W(L) = \mathcal{D}^M(L) \simeq M$

- Case k = 1: - $\mathcal{C}^W(L) = \mathcal{D}^M(L) \simeq M$
- Case k = 2: - $\mathcal{C}^W(L) \subseteq \mathcal{D}^M(L) \simeq M$ - $\mathcal{C}^W(L) \not\supseteq \mathcal{D}^M(L)$

[Amenta, Bern 98]
[Attali, Edelsbrunner, Mileyko 07]
[de Silva, Carlsson 04]
[Guibas, O. 07]

If M is a closed k-manifold smoothly embedded in \mathbb{R}^d , then, under sufficient sampling conditions, $\mathcal{C}^W(L) = \mathcal{D}^M(L) \simeq M$

• Case k = 1: - $\mathcal{C}^W(L) = \mathcal{D}^M(L) \simeq M$

Conjecture [Carlsson, de Silva 2004] $C^W(L)$ coincides with $\mathcal{D}^M(L)$...

Conjecture [Carlsson, de Silva 2004] $C^W(L)$ coincides with $\mathcal{D}^M(L)$...

 \ldots under some conditions on W and L

Thm: If M is a closed curve with positive reach, $W \subset \mathbb{R}^d$ s.t. $d_H(W, M) \leq \delta$, $L \subseteq W \varepsilon$ -sparse ε -sample of W with $\delta \ll \varepsilon \ll \varrho_M$, then $\mathcal{C}^W(L) = \mathcal{D}^M(L) \simeq M$.

 \rightarrow There is a plateau in the diagram of Betti numbers of $\mathcal{C}^W(L)$.

Thm: If M is a closed curve with positive reach, $W \subset \mathbb{R}^d$ s.t. $d_H(W, M) \leq \delta$, $L \subseteq W \varepsilon$ -sparse ε -sample of W with $\delta \ll \varepsilon \ll \varrho_M$, then $\mathcal{C}^W(L) = \mathcal{D}^M(L) \simeq M$.

• $\mathcal{D}^M(L) \subseteq \mathcal{C}^W(L)$

Thm: If M is a closed curve with positive reach, $W \subset \mathbb{R}^d$ s.t. $d_H(W, M) \leq \delta$, $L \subseteq W \varepsilon$ -sparse ε -sample of W with $\delta \ll \varepsilon \ll \varrho_M$, then $\mathcal{C}^W(L) = \mathcal{D}^M(L) \simeq M$.

• $\mathcal{D}^M(L) \subseteq \mathcal{C}^W(L)$

Thm: If M is a closed curve with positive reach, $W \subset \mathbb{R}^d$ s.t. $d_H(W, M) \leq \delta$, $L \subseteq W \varepsilon$ -sparse ε -sample of W with $\delta \ll \varepsilon \ll \varrho_M$, then $\mathcal{C}^W(L) = \mathcal{D}^M(L) \simeq M$.

• $\mathcal{D}^M(L) \subseteq \mathcal{C}^W(L)$

Thm: If M is a closed curve with positive reach, $W \subset \mathbb{R}^d$ s.t. $d_H(W, M) \leq \delta$, $L \subseteq W \varepsilon$ -sparse ε -sample of W with $\delta \ll \varepsilon \ll \varrho_M$, then $\mathcal{C}^W(L) = \mathcal{D}^M(L) \simeq M$.

• $\mathcal{D}^M(L) \subseteq \mathcal{C}^W(L)$

• $\mathcal{C}^W(L) \subseteq \mathcal{D}^M(L)$

Thm: If M is a closed curve with positive reach, $W \subset \mathbb{R}^d$ s.t. $d_H(W, M) \leq \delta$, $L \subseteq W \varepsilon$ -sparse ε -sample of W with $\delta \ll \varepsilon \ll \varrho_M$, then $\mathcal{C}^W(L) = \mathcal{D}^M(L) \simeq M$.

• $\mathcal{D}^M(L) \subseteq \mathcal{C}^W(L)$

• $\mathcal{C}^W(L) \subseteq \mathcal{D}^M(L)$

•

Input:

Output:

 $\mathcal{D}^M(L) \nsubseteq \mathcal{C}^W(L) \text{ if } W \subsetneq M$

$\varepsilon = 0.2$, $\operatorname{rch}(M) \approx 0.25$

$\varepsilon = 0.2$, $\operatorname{rch}(M) \approx 0.25$

$\varepsilon = 0.2$, $\operatorname{rch}(M) \approx 0.25$

 $\mathcal{D}^M(L) \nsubseteq \mathcal{C}^W(L) \text{ if } W \subsetneq M$

Solution relax witness test.

 $\begin{array}{l} \Rightarrow \mathcal{C}^W_{\nu}(L) = \mathcal{D}^M(L) + \text{slivers} \\ \Rightarrow \mathcal{C}^W_{\nu}(L) \nsubseteq \mathcal{D}(L) \\ \Rightarrow \mathcal{C}^W_{\nu}(L) \text{ not embedded.} \end{array}$

Post-process extract manifold Mfrom $\mathcal{C}^W_{\nu}(L) \cap \mathcal{D}(L)$ [Amenta, Choi, Dey, Leekha]

Asklepios (diam.=120, lr1=4, genus=4, delta=1, noise=0, 48,888 witnesses)

input model provided courtesy of IMATI by the Aim@Shape repository

input model provided courtesy of IMATI by the Aim@Shape repository

input model provided courtesy of IMATI by the Aim@Shape repository

input model provided courtesy of IMATI by the Aim@Shape repository

input model provided courtesy of IMATI by the Aim@Shape repository

input model provided courtesy of IMATI by the Aim@Shape repository

input model provided courtesy of IMATI by the Aim@Shape repository

Asklepios (diam.=120, lr1=4, genus=4, delta=1, noise=0, 48,888 witnesses)

input model provided courtesy of IMATI by the Aim@Shape repository

input model provided courtesy of IMATI by the Aim@Shape repository

input model provided courtesy of IMATI by the Aim@Shape repository

Filgree (diam.=1.2, rch=?, genus=65, delta=0.001, noise=0, 514,300 witnesses)

Filgree (diam.=1.2, rch=?, genus=65, delta=0.001, noise=0, 514,300 witnesses)

input model provided courtesy of Sensable Technologies by the Aim@Shape repository

Filgree (diam.=1.2, rch=?, genus=65, delta=0.001, noise=0, 514,300 witnesses)

input model provided courtesy of Sensable Technologies by the Aim@Shape repository

Happy Buddha (diam.=0.1, rch=?, genus=104, delta=?, noise=?, 1,631,368 witnesses)

Happy Buddha (diam.=0.1, rch=?, genus=104, delta=?, noise=?, 1,631,368 witnesses)

input model courtesy of the Computer Graphics Laboratory at Stanford University

Relation with the restricted Delaunay

(arbitrary dimensions)

If M is a closed k-manifold smoothly embedded in \mathbb{R}^d , then, under reasonable sampling conditions, $\mathcal{C}^W(L) = \mathcal{D}^M(L) \simeq M$

- Case k = 1: - $\mathcal{C}^W(L) = \mathcal{D}^M(L) \simeq M$
- Case k = 2:
 - $\mathcal{C}^{W}(L) \subseteq \mathcal{D}^{M}(L) \simeq M$ $\mathcal{C}^{W}(L) \not\supseteq \mathcal{D}^{M}(L) \smile$
- Case $k \ge 3$: - $\mathcal{C}^W(L) \nsubseteq \mathcal{D}^M(L)$ - $\mathcal{D}^M(L) \nsucceq M$

assign weights to the landmarks to remove all slivers from the vicinity of $\mathcal{D}^M(L)$ [Cheng *et al.* 00]

 \rightarrow Source of problems: slivers

Weighted Voronoi / Delaunay

Input: point cloud P, weight function $\omega: P \to \mathbb{R}_{\geq 0}$

Metric: $d(x, (p, \omega(p)))^2 = ||x - p||^2 - \omega(p)^2$

Weighted Voronoi / Delaunay

Input: point cloud P, weight function $\omega: P \to \mathbb{R}_{\geq 0}$

Metric: $d(x, (p, \omega(p)))^2 = ||x - p||^2 - \omega(p)^2$

Induced diagram: $\mathcal{V}(p) = \{x \in \mathbb{R}^d \mid \mathsf{d}(x, (p, \omega(p)) \leq \mathsf{d}(x, (q, \omega(q)) \ \forall q \in P\})\}$

Weighted Voronoi / Delaunay

Input: point cloud P, weight function $\omega: P \to \mathbb{R}_{\geq 0}$

Metric: $d(x, (p, \omega(p)))^2 = ||x - p||^2 - \omega(p)^2$

x $\omega(p)$ p

Induced diagram: $\mathcal{V}(p) = \{x \in \mathbb{R}^d \mid \mathsf{d}(x, (p, \omega(p)) \leq \mathsf{d}(x, (q, \omega(q)) \; \forall q \in P\})\}$

Prop: $x \in \mathcal{V}(p) \iff x$ center of sphere orthogonal to $B(p, \omega(p))$

and obtuse to $B(q, \omega(q))$ for all $q \in P \setminus \{p\}$

- Each landmark $u \in L$ is assigned a weight $0 \le \omega(u) < \frac{1}{2} d(u, L \setminus \{u\})$.
- The Voronoi diagram of L is replaced by its weighted version, $\mathcal{V}_{\omega}(L)$: $p \in \operatorname{cell}(u)$ iff $\forall v \in L$, $d(p, u)^2 - \omega(u)^2 \leq d(p, v)^2 - \omega(v)^2$
- $\mathcal{V}_{\omega}(L)$ is an affine diagram, its dual complex $\mathcal{D}_{\omega}(L)$ is a triangulation.

- Each landmark $u \in L$ is assigned a weight $0 \le \omega(u) < \frac{1}{2} d(u, L \setminus \{u\})$.
- The Voronoi diagram of L is replaced by its weighted version, $\mathcal{V}_{\omega}(L)$: $p \in \operatorname{cell}(u)$ iff $\forall v \in L$, $d(p, u)^2 - \omega(u)^2 \leq d(p, v)^2 - \omega(v)^2$
- $\mathcal{V}_{\omega}(L)$ is an affine diagram, its dual complex $\mathcal{D}_{\omega}(L)$ is a triangulation.

Thm [Cheng, Dey, Ramos 05] If L is an ε -sparse ε -sample of M, with $\varepsilon \ll \operatorname{rch}(M)$, then $\exists \omega_0$ that removes slivers from the vicinity of $\mathcal{D}^M_{\omega_0}(L)$. $\Rightarrow \mathcal{D}^M_{\omega_0}(L) \simeq M$

- ω_0 removes slivers, thereby improving the normals

- Closed Ball Property

- Each landmark $u \in L$ is assigned a weight $0 \le \omega(u) < \frac{1}{2} d(u, L \setminus \{u\})$.
- The Voronoi diagram of L is replaced by its weighted version, $\mathcal{V}_{\omega}(L)$: $p \in \operatorname{cell}(u)$ iff $\forall v \in L$, $d(p, u)^2 - \omega(u)^2 \leq d(p, v)^2 - \omega(v)^2$
- $\mathcal{V}_{\omega}(L)$ is an affine diagram, its dual complex $\mathcal{D}_{\omega}(L)$ is a triangulation.

Thm [Cheng, Dey, Ramos 05] If L is an ε -sparse ε -sample of M, with $\varepsilon \ll \operatorname{rch}(M)$, then $\exists \omega_0$ that removes slivers from the vicinity of $\mathcal{D}^M_{\omega_0}(L)$. $\Rightarrow \mathcal{D}^M_{\omega_0}(L) \simeq M$ - ω_0 removes slivers, thereby improving the normals

- Closed Ball Property

- Each landmark $u \in L$ is assigned a weight $0 \le \omega(u) < \frac{1}{2} d(u, L \setminus \{u\})$.
- The Voronoi diagram of L is replaced by its weighted version, $\mathcal{V}_{\omega}(L)$: $p \in \operatorname{cell}(u)$ iff $\forall v \in L$, $d(p, u)^2 - \omega(u)^2 \leq d(p, v)^2 - \omega(v)^2$
- $\mathcal{V}_{\omega}(L)$ is an affine diagram, its dual complex $\mathcal{D}_{\omega}(L)$ is a triangulation.

Thm [Cheng, Dey, Ramos 05] If L is an ε -sparse ε -sample of M, with $\varepsilon \ll \operatorname{rch}(M)$, then $\exists \omega_0$ that removes slivers from the vicinity of $\mathcal{D}^M_{\omega_0}(L)$. $\Rightarrow \mathcal{D}^M_{\omega_0}(L) \simeq M$

- ω_0 removes slivers, thereby improving the normals

- Closed Ball Property

Thm [Boissonnat, Guibas, O. 07] [Boissonnat, Dyer, Ghosh, O. 17]

- Under the same conditions on L, one has $\mathcal{C}^W_{\omega_0}(L) \subseteq \mathcal{D}^M_{\omega_0}(L)$ for all $W \subseteq M$.

- If W is a δ -sample of M, with $\delta \ll \varepsilon$, then $\mathcal{C}^W_{\omega_0}(L) = \mathcal{D}^M_{\omega_0}(L)$.

[Guibas, O. 07] [Boissonnat, Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^d$.

 $\label{eq:greedy:furthest-point resampling of L maintain $\mathcal{C}^W_\omega(L)$ for some carefully-chosen weight function ω. }$

[Guibas, O. 07] [Boissonnat, Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^d$.

 \rightarrow greedy: furthest-point resampling of Lmaintain $\mathcal{C}^W_{\omega}(L)$ for some carefully-chosen weight function ω .

Init: $L := \{p\}$, for some arbitrary $p \in W$; WHILE $L \subsetneq W$ insert $p = \operatorname{argmax}_{w \in W} d(w, L)$ in L;

[Guibas, O. 07] [Boissonnat, Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^d$.

 \rightarrow greedy: furthest-point resampling of Lmaintain $\mathcal{C}^W_{\omega}(L)$ for some carefully-chosen weight function ω .

Init: $L := \{p\}$, for some arbitrary $p \in W$; WHILE $L \subsetneq W$

insert $p = \operatorname{argmax}_{w \in W} \mathsf{d}(w, L)$ in L;

[Guibas, O. 07] [Boissonnat, Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^d$.

 \rightarrow greedy: furthest-point resampling of Lmaintain $\mathcal{C}^W_{\omega}(L)$ for some carefully-chosen weight function ω .

Init: $L := \{p\}$, for some arbitrary $p \in W$; WHILE $L \subsetneq W$ insert $p = \operatorname{argmax}_{w \in W} d(w, L)$ in L;

assign weight to p;

[Guibas, O. 07] [Boissonnat, Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^d$.

 \rightarrow greedy: furthest-point resampling of Lmaintain $\mathcal{C}^W_{\omega}(L)$ for some carefully-chosen weight function ω .

Init: $L := \{p\}$, for some arbitrary $p \in W$; WHILE $L \subsetneq W$ insert $p = \operatorname{argmax}_{w \in W} d(w, L)$ in L; **assign weight** to p; update $\mathcal{C}^W_{\omega}(L)$;

[Guibas, O. 07] [Boissonnat, Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^d$.

 \rightarrow greedy: furthest-point resampling of Lmaintain $\mathcal{C}^W_{\omega}(L)$ for some carefully-chosen weight function ω .

Init: $L := \{p\}$, for some arbitrary $p \in W$; WHILE $L \subsetneq W$ insert $p = \operatorname{argmax}_{w \in W} d(w, L)$ in L; **assign weight** to p; update $\mathcal{C}^W_{\omega}(L)$;

[Guibas, O. 07] [Boissonnat, Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^d$.

 \rightarrow greedy: furthest-point resampling of Lmaintain $\mathcal{C}^W_{\omega}(L)$ for some carefully-chosen weight function ω .

Init: $L := \{p\}$, for some arbitrary $p \in W$; WHILE $L \subsetneq W$ insert $p = \operatorname{argmax}_{w \in W} d(w, L)$ in L; **assign weight** to p; update $\mathcal{C}^W_{\omega}(L)$;

[Guibas, O. 07] [Boissonnat, Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^d$.

 \rightarrow greedy: furthest-point resampling of Lmaintain $\mathcal{C}^W_{\omega}(L)$ for some carefully-chosen weight function ω .

Init: $L := \{p\}$, for some arbitrary $p \in W$; WHILE $L \subsetneq W$ insert $p = \operatorname{argmax}_{w \in W} d(w, L)$ in L; **assign weight** to p; update $\mathcal{C}^W_{\omega}(L)$;

[Guibas, O. 07] [Boissonnat, Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^d$.

 \rightarrow greedy: furthest-point resampling of L maintain $\mathcal{C}^W_\omega(L)$ for some carefully-chosen weight function ω .

Init: $L := \{p\}$, for some arbitrary $p \in W$; WHILE $L \subsetneq W$ insert $p = \operatorname{argmax}_{w \in W} d(w, L)$ in L; assign weight to p; update $\mathcal{C}^W_{\omega}(L)$;

END_WHILE

[Guibas, O. 07] [Boissonnat, Guibas, O. 07]

Input: a finite point set $W \subset \mathbb{R}^d$.

 \rightarrow greedy: furthest-point resampling of L maintain $\mathcal{C}^W_\omega(L)$ for some carefully-chosen weight function ω .

Init: $L := \{p\}$, for some arbitrary $p \in W$; WHILE $L \subsetneq W$ insert $p = \operatorname{argmax}_{w \in W} d(w, L)$ in L; assign weight to p; update $\mathcal{C}^W_{\omega}(L)$;

END_WHILE

[Boissonnat, Dyer, Ghosh, O. 17]

Candidate simplices: (requires to know the intrinsic dimension m)

 $N(p) = \{k \text{-NN of } p \text{ in } L\}, \text{ where } k = 66^m$

 $\sigma \in 2^{N(p)}$ is a **candidate simplex** if it is a *sliver* (flat + small radius)

[Boissonnat, Dyer, Ghosh, O. 17]

Candidate simplices: (requires to know the intrinsic dimension m)

 $N(p) = \{k \text{-NN of } p \text{ in } L\}, \text{ where } k = 66^m$

 $\sigma \in 2^{N(p)}$ is a **candidate simplex** if it is a *sliver* (flat + small radius)

every candidate simplex σ has a **forbidden interval** I_{σ} of weights for p(those for which $\sigma \in \mathcal{D}_{\omega}(P)$)

[Boissonnat, Dyer, Ghosh, O. 17]

Candidate simplices: (requires to know the intrinsic dimension m)

 $N(p) = \{k \text{-NN of } p \text{ in } L\}, \text{ where } k = 66^m$

 $\sigma \in 2^{N(p)}$ is a candidate simplex if it is a *sliver* (flat + small radius) every candidate simplex σ has a forbidden interval I_{σ} of weights for ptake $\omega(p) \in [0, \bar{\omega}] \setminus \bigcup_{\sigma: \text{candidate}} I_{\sigma}$ (those for which $\sigma \in \mathcal{D}_{\omega}(P)$)

[Boissonnat, Dyer, Ghosh, O. 17]

Candidate simplices: (requires to know the intrinsic dimension m)

$$N(p) = \{k \text{-} NN \text{ of } p \text{ in } L\}, \text{ where } k = 66^m$$

 $\sigma \in 2^{N(p)}$ is a candidate simplex if it is a *sliver* (flat + small radius) every candidate simplex σ has a forbidden interval I_{σ} of weights for ptake $\omega(p) \in [0, \bar{\omega}] \setminus \bigcup_{\sigma: \text{candidate}} I_{\sigma}$ (those for which $\sigma \in \mathcal{D}_{\omega}(P)$)

Claims:

$$[0,\bar{\omega}] \setminus \bigcup_{\sigma:\text{candidate}} I_{\sigma} \neq \emptyset$$

for every σ , I_{σ} depends only on weights of L and on radius & flatness of σ (no need to maintain $\mathcal{D}(L)$)

[Guibas, O. 07] [Boissonnat, Guibas, O. 07] [Boissonnat, Dyer, Ghosh, O. 17]

Input: a finite point set $W \subset \mathbb{R}^d$.

Thm If W is a δ -sample of M, with $\delta \ll \operatorname{rch}(M)$, then, at some stage of the process, the weight assignment removes all slivers from the vicinity of $\mathcal{D}^M_{\omega}(L)$, therefore $\mathcal{C}^W_{\omega}(L) = \mathcal{D}^M_{\omega}(L) \simeq M$.

END_WHILE

Application to reconstruction in arbitrary dimensions [Guibas, O. 07] [Boissonnat, Guibas, O. 07] [Boissonnat, Dyer, Ghosh, O. 17]

Input: a finite point set $W \subset \mathbb{R}^d$.

Running time: $dn(2^{O(m)}n + 2^{O(m^2)} + O(mn)) + O(m^3n)$ **Space usage:** $n(d + 2^{O(m^2)}) + O(mn^2)$ (n = |W|, m = intrinsic dim.)

Init:
$$L := \{p\}$$
, for some arbitrary $p \in W$;
WHILE $L \subsetneq W$
insert $p = \operatorname{argmax}_{w \in W} \mathsf{d}(w, L)$ in L ;
assign weight to p ;
update $\mathcal{C}^W_{\omega}(L)$;
 \mathcal{C}^W_{ω

END_WHILE

Some results

Curve on Torus (diam.=10, rch=0.04:1, delta=0.01, noise=0, 50,000 witnesses)

Example of application: Sensor Networks

[Gao, Guibas, O., Wang '07]

Input: a set of nodes W sampling some unknown planar domain M.

 \rightarrow each node has:

- no location capabilities,
- limited computation power,
- limited memory,
- limited battery power,
- communication radius r.

Q What is the topology of X? How many nodes are needed to recover it?

[Ghrist, Muhammad, IPSN 05]

Example of application: Sensor Networks

[Gao, Guibas, O., Wang '07]

Input: a set of nodes W sampling some unknown planar domain M.

 \rightarrow the witness complex disregards the embedding (only approximate geodesic distances are used)

