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Reconstruction Paradigm

Q What do you see?

Why?



Reconstruction Paradigm

Goal: (support estimation) build an approximation (implicit, PL, sim-
plicial, etc.) that is structurally faithful (homotopic, homeomorphic,
isotopic, etc.) and close (in Hausdorff distance, in `2-distance, etc.)
to M .

Input: point cloud P ⊂ Rd finite

Prior: points of P are sampled along some unknown shape M (manifold,
compact set etc.), according to some unknown measure µ.
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Various forms of inference

clustering

topological inference

reconstruction



Reverse engineering

LASER

Sources

stereo vision

mechanical sensor

Applications

3D scans

Prototyping

Quality control

Stanford Michelangelo Project

Where do the data come from?

(raw data with 2 billion polygons, sampling with a preci-
sion of 0.25 mm)

Cultural heritage



Where do the data come from?

Diagnostic

MRI scan

Sources

echograph

. . .

Applications

Medical Imaging

Endoscopy simulation

Chirurgical intervention planning

Intraoral 3d scanner



Where do the data come from?

Maps making / Terrain modeling

satellite/aerial images

Sources

ground probing

seismograph

Applications

Geography, Geology

Prospection (tunnels, oil)



Where do the data come from?

Data bases

Sources

Simulations

Applications

Higher-Dimensions

Robotics

Image processing

Machine Learning

Biocomputing

conformation space of cyclo-octane
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Topological Criteria

These three surfaces are homeomorphic (they all have genus 1)

isotopic surfaces (unknotted torus) knotted torus

There exists a continuous bijection between surfaces, whose inverse
is also continuous (formal definition given on the board)

There exists a family of homeomorphisms
which continuously transform the surfaces



Geometric Criteria

Hausdorff distance (order 0):

Normals (order 1):

Curvature (order 2):

dH(P,M) = inf{ε | P ε ⊇M and Mε ⊇ P}
M

P

Mε

σ⊥

M

σ
p

q

M⊥(p)
M⊥(q)

M



Geometric simplicial complexes

vertex set: V = {v0, v1, . . . , vn−1} ⊂ Rd

k-simplex: σ = CH{vi0 , vi1 , · · · , vik}

inclusion property (τ face of σ):

σ ∈ K and V (τ) ⊆ V (σ) =⇒ τ ∈ K

intersection property:

σ1, σ2 ∈ K and σ1 ∩ σ2 6= ∅ =⇒
σ1 ∩ σ2 ∈ K and is a face of both

invalid simplicial complex

valid simplicial complex
0-simplex 1-simplex 3-simplex2-simplex



Reconstruction using Delaunay
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→ faithful approximation of the curve appears as a subcomplex of the Delaunay
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What Delaunay has to do with reconstruction

→ faithful approximation of the curve appears as a subcomplex of the Delaunay

→ should hold whenever the point cloud is sufficiently densely sampled

Q What is this good subcomplex? Can it be defined in some canonical way?



Restricted Delaunay triangulation



Restricted Delaunay triangulation

Def: DM (P ) := {σ ∈ D(P ) | σ∗ ∩M 6= ∅}



Restricted Delaunay triangulation

Def: DM (P ) := {σ ∈ D(P ) | σ∗ ∩M 6= ∅}

σ∗

σ



τ ∗

Restricted Delaunay triangulation

Def: DM (P ) := {σ ∈ D(P ) | σ∗ ∩M 6= ∅}

τ



Sampling Condition

ε

Def: P is an ε-sample of M if ∀x ∈M , min{‖x− p‖ | p ∈ P} ≤ ε.

M

P



Regularity Condition

Reach: %M = min{lfs(x) | x ∈M}

Local feature size: ∀x ∈ Rd, lfs(x) = min{‖x−m‖ | m ∈ ΓM}

Medial axis: ΓM = cl{x ∈ Rd | |NNM (x)| ≥ 2}

M

ΓM

%M

%M

ΓM

M



Regularity Condition

Reach: %M = min{lfs(x) | x ∈M}

Local feature size: ∀x ∈ Rd, lfs(x) = min{‖x−m‖ | m ∈ ΓM}

Medial axis: ΓM = cl{x ∈ Rd | |NNM (x)| ≥ 2}

O

r

%M = +∞ %M = r %M = 0

x 7→ x3 sin 1
x

(convex) C1,1 but not C2) (C1 but not C1,1)



Regularity Condition

→ Fundamental properties: (see [Federer 1958])

Tangent Ball Lemma: ∀x ∈M , ∀c ∈M⊥(x), ‖x− c‖ < lfs(x) ⇒
Bo(c, ‖x− c‖) ∩M = ∅.

M

ΓM

xlfs(x)



Regularity Condition

→ Fundamental properties: (see [Federer 1958])

Tangent Ball Lemma: ∀x ∈M , ∀c ∈M⊥(x), ‖x− c‖ < lfs(x) ⇒
Bo(c, ‖x− c‖) ∩M = ∅.

M

ΓM

Topological Ball Lemma:
If M is a k-manifold, then ∀B(c, r) s.t.
B(c, r)∩ΓM = ∅, B(c, r)∩M is either
empty or homeomorphic to the ball Bk.c



Approximation via Restricted Delaunay

Theorem: [Amenta et al. 1998-99]

If M is a closed curve or surface with positive reach %M , and if P is an
ε-sample of M with ε < %M (curve) or ε < 0.1 %M (surface), then:

• DM (P ) is homeomorphic to M (denoted DM (P ) 'M),

• dH(DM (P ),M) ∈ O(ε2),

• ∀σ ∈ DM (P ), ∀p ∈ V (σ), ∠σ⊥M⊥(p) ∈ O(ε),

• · · · (similar areas, curvature estimation, etc.)



Approximation via Restricted Delaunay

Theorem: [Amenta et al. 1998-99]

If M is a closed curve or surface with positive reach %M , and if P is an
ε-sample of M with ε < %M (curve) or ε < 0.1 %M (surface), then:

• DM (P ) is homeomorphic to M (denoted DM (P ) 'M),

• dH(DM (P ),M) ∈ O(ε2),

• ∀σ ∈ DM (P ), ∀p ∈ V (σ), ∠σ⊥M⊥(p) ∈ O(ε),

• · · · (similar areas, curvature estimation, etc.)

Reconstruction is uncertain if ε is not
small enough compared to %M
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c

M

p
q

Let c ∈ pq∗ ∩M . r = ‖c− p‖ = ‖c− q‖ = d(c, P ) ≤ ε < %M ≤ lfs(c)

⇒ B(c, r) ∩M is a topological arc



Approximation via Restricted Delaunay

Proof for curves:

show that every edge of DM (P ) connects consecutive points of P along M , and vice-versa

c

M

p
q

Let c ∈ pq∗ ∩M . r = ‖c− p‖ = ‖c− q‖ = d(c, P ) ≤ ε < %M ≤ lfs(c)

⇒ B(c, r) ∩M is a topological arc

s if s ∈ P \ {p, q} belongs to this arc, then the arc is

tangent to ∂B(c, r) in p, q or s (say s)

⇒ d(c, P ) = r = ‖c− s‖ ≥ lfs(s) > ε.

(contradiction with the hypothesis of the theorem)



Approximation via Restricted Delaunay

Proof for curves:

show that every edge of DM (P ) connects consecutive points of P along M , and vice-versa

Let c ∈ arcM (pq) ∩ ∂p∗. c ∈ ps∗ for some s ∈ P \ {p}

M

p
q

s
c

M

⇒ s = q

⇒ p, s consecutive along M , with c ∈ arcM (ps)

⇒ ps ∈ DM (P )

(by previous part of the proof)



Approximation via Restricted Delaunay

Proof for curves:

show that every edge of DM (P ) connects consecutive points of P along M , and vice-versa

⇒ DM (P ) is homeomorphic to M between each pair of consecutive points of P

Since DM (P ) is embedded in D(P ), it does
not self-intersect ⇒ global homeomorphism



Computing the Restricted Delaunay

Q How to compute DM (P ) when M is unknown?

→ a whole family of algorithms use various Delaunay extraction criteria:

- crust

- cocone

- tight cocone

- · · ·

- power crust



Crust Algorithm



Crust algorithm
[Amenta et al. 1997-98]



Crust algorithm 1. Compute Delaunay triangulation of P

[Amenta et al. 1997-98]



Crust algorithm 1. Compute Delaunay triangulation of P

[Amenta et al. 1997-98]



Crust algorithm 2. Compute poles (furthest Voronoi vertices)

[Amenta et al. 1997-98]



Crust algorithm 3. Add poles to the set of vertices

[Amenta et al. 1997-98]



Crust algorithm 3. Add poles to the set of vertices

[Amenta et al. 1997-98]



Crust algorithm 4. Keep Delaunay simplices whose vertices are in P

[Amenta et al. 1997-98]



Crust algorithm in 2-d, crust = DM (P ) ≈M

[Amenta et al. 1997-98]
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Crust algorithm in 2-d, crust = DM (P ) ≈M
in 3-d, crust ⊇ DM (P ) ≈M[Amenta et al. 1997-98]



Crust algorithm in 2-d, crust = DM (P ) ≈M
in 3-d, crust ⊇ DM (P ) ≈M
→ manifold extraction step in post-processing

[Amenta et al. 1997-98]



Witness Complex



any classical reconstruction algorithm chooses one topological type, which here implies giving up part of the information

Motivation: effect of scale / dimensionality

What is the reconstruction?



Multi-scale reconstruction

• build a sequence of
complexes approximating
the input at various scales

• long stable sub-
sequences correspond to
plausible reconstructions

[Guibas, O. 07]

→ the witness complex enables the use of the Delaunay paradigm
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Input: a finite point set W ⊂ Rn
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the simplicial complex serves as an approximation

Input: a finite point set W ⊂ Rn

→ resample W iteratively, and maintain a simplicial complex:

Let L := {p}, for some p ∈W ;

while L (W

L := L ∪ {q};

end while

Let q := argmaxw∈W d(w,L);

update simplicial complex;

Output: the sequence of simplicial complexes

Multi-scale reconstruction algorithm
[Guibas, O. 07]



Witness complex

Let L ⊆ Rd (landmarks) s.t. |L| < +∞ and W ⊆ Rd (witnesses)

(definition)



Witness complex

Let L ⊆ Rd (landmarks) s.t. |L| < +∞ and W ⊆ Rd (witnesses)

Def. w ∈ W strongly witnesses [v0, · · · , vk]
if ‖w − vi‖ = ‖w − vj‖ ≤ ‖w − u‖ for all
i, j = 0, · · · , k and all u ∈ L \ {v0, · · · , vk}.

(definition)



Witness complex

Let L ⊆ Rd (landmarks) s.t. |L| < +∞

Def. w ∈ W weakly witnesses [v0, · · · , vk] if
‖w− vi‖ ≤ ‖w− u‖ for all i = 0, · · · , k and all
u ∈ L \ {v0, · · · , vk}.

and W ⊆ Rd (witnesses)

Def. w ∈ W strongly witnesses [v0, · · · , vk]
if ‖w − vi‖ = ‖w − vj‖ ≤ ‖w − u‖ for all
i, j = 0, · · · , k and all u ∈ L \ {v0, · · · , vk}.

(definition)



Witness complex

Let L ⊆ Rd (landmarks) s.t. |L| < +∞

Def. w ∈ W weakly witnesses [v0, · · · , vk] if
‖w− vi‖ ≤ ‖w− u‖ for all i = 0, · · · , k and all
u ∈ L \ {v0, · · · , vk}.

and W ⊆ Rd (witnesses)

Def. CW (L) is the largest abstract simplicial
complex built over L, whose faces are weakly
witnessed by points of W .

Def. w ∈ W strongly witnesses [v0, · · · , vk]
if ‖w − vi‖ = ‖w − vj‖ ≤ ‖w − u‖ for all
i, j = 0, · · · , k and all u ∈ L \ {v0, · · · , vk}.

(definition)



Witness complex
(properties)

⇒ CW (L) is a subcomplex of D(L)

⇒ CW (L) is embedded in Rd

Thm. 1 [de Silva 2003] ∀W,L, ∀σ ∈ CW (L),
∃c ∈ Rd that strongly witnesses σ.

(if L lies in general position)



Weak witness theorem

Thm. 1 ∀W ⊆ Rd, ∀L ⊂ Rd s.t. |L| < ∞, ∀σ ∈ CW (L), ∃c ∈ Rd
that strongly witnesses σ.

σ ∈ CW (L) iff ∀τ ⊆ σ,
τ weakly witnessed
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Weak witness theorem

Thm. 1 ∀W ⊆ Rd, ∀L ⊂ Rd s.t. |L| < ∞, ∀σ ∈ CW (L), ∃c ∈ Rd
that strongly witnesses σ.

Proof. [Attali, Edelsbrunner, Mileyko 2007]

• Case σ = [v0]: trivial (all witnesses of v0 are strong)

σ ∈ CW (L) iff ∀τ ⊆ σ,
τ weakly witnessed

→ induction on the dimension of σ:



Weak witness theorem

Thm. 1 ∀W ⊆ Rd, ∀L ⊂ Rd s.t. |L| < ∞, ∀σ ∈ CW (L), ∃c ∈ Rd
that strongly witnesses σ.

Proof. [Attali, Edelsbrunner, Mileyko 2007]
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vk
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w vl
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→ induction on the dimension of σ:

≥ ‖w − vi‖ ∀i ≥ l

vl−1

v0
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Weak witness theorem

Thm. 1 ∀W ⊆ Rd, ∀L ⊂ Rd s.t. |L| < ∞, ∀σ ∈ CW (L), ∃c ∈ Rd
that strongly witnesses σ.

Proof. [Attali, Edelsbrunner, Mileyko 2007]

• Case σ = [v0, · · · , vk] (k > 0):

vk
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Weak witness theorem

Thm. 1 ∀W ⊆ Rd, ∀L ⊂ Rd s.t. |L| < ∞, ∀σ ∈ CW (L), ∃c ∈ Rd
that strongly witnesses σ.

Proof. [Attali, Edelsbrunner, Mileyko 2007]

• Case σ = [v0, · · · , vk] (k > 0):

vk

assume that ‖w − v0‖ = · · · = ‖w − vl−1‖
w vl

vl+1

vk−1

→ induction on the dimension of σ:

≥ ‖w − vi‖ ∀i ≥ l

wl

let wl be a strong witness of [v0, · · · , vl−1]

vl−1

v0

w′

→ ∀w′ ∈ [w,wl], Bw′ ⊆ Bw ∪Bwl

move w to w′ as shown opposite

→ Bw′ ∩ L = {v0, · · · , vk}
→ |∂Bw′ ∩ L| ≥ l + 1



Witness complex
(properties)

⇒ CW (L) is a subcomplex of D(L)

⇒ CW (L) is embedded in Rd

Thm. 1 [de Silva 2003] ∀W,L, ∀σ ∈ CW (L),
∃c ∈ Rd that strongly witnesses σ.

(if L lies in general position)



to compute CW (L), (1.) iterate over witnesses and, for each witness w, sort d + 1 landmarks according to their distances to w -¿ O(|W |d log d|L|). Then, (2.) build complex iteratively, dimension per dimension, by relating each witnessed simplex to its facets (if they are witnessed) -¿ O(d3|W | log d|W |)

every point of W witnesses exactly one simplex of each dimension

Witness complex
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⇒ CW (L) is a subcomplex of D(L)

⇒ CW (L) is embedded in Rd

Thm. 1 [de Silva 2003] ∀W,L, ∀σ ∈ CW (L),
∃c ∈ Rd that strongly witnesses σ.

Thm. 2 [de Silva, Carlsson 2004]
- The size of CW (L) is O(d|W |)
- The time to compute is Poly(d, |W |, |L|)

(if L lies in general position)



to compute CW (L), (1.) iterate over witnesses and, for each witness w, sort d + 1 landmarks according to their distances to w -¿ O(|W |d log d|L|). Then, (2.) build complex iteratively, dimension per dimension, by relating each witnessed simplex to its facets (if they are witnessed) -¿ O(d3|W | log d|W |)

every point of W witnesses exactly one simplex of each dimension

Witness complex
(properties)

⇒ CW (L) is a subcomplex of D(L)

⇒ CW (L) is embedded in Rd

Thm. 1 [de Silva 2003] ∀W,L, ∀σ ∈ CW (L),
∃c ∈ Rd that strongly witnesses σ.

Thm. 2 [de Silva, Carlsson 2004]
- The size of CW (L) is O(d|W |)
- The time to compute is Poly(d, |W |, |L|)

→ What if W,L lie on or near a submanifold M?

(if L lies in general position)

Thm. 3 [Guibas, Oudot 2007]
[Attali, Edelsbrunner, Mileyko 2007]

Under some conditions, CW (L) = DM (L) 'M



Argument:
CW (L) ⊆ D(L),
whose simplices
have dimension
at most n

• W ⊂ Rd is given as input
• L ⊆W is generated
• underlying manifold M unknown
• only distance comparisons

⇒ space ≤ O (d|W |)
time ≤ O

(
d|W |2

)

⇒ algorithm is applicable

• In Rd, CW (L) can be maintained by
updating, for each witness w, the list of
d+ 1 nearest landmarks of w.

in any metric space

Witness complex
(connection to reconstruction)



Input: a finite point set W ⊂ Rd.

The full algorithm
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Init: L := {p}; construct lists of nearest landmarks; CW (L) = {[p]};

Invariant: ∀w ∈W , the list of d+1 nearest landmarks of w is maintained
throughout the process.

The full algorithm
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Input: a finite point set W ⊂ Rd.

Init: L := {p}; construct lists of nearest landmarks; CW (L) = {[p]};

Invariant: ∀w ∈W , the list of d+1 nearest landmarks of w is maintained
throughout the process.

while L (W

insert argmaxw∈W d(w,L) in L;

update the lists of nearest neighbors;

update CW (L);

end while

Output: the sequence of complexes CW (L)

The full algorithm



If M is a closed k-manifold smoothly embedded in Rd, then,
under sufficient sampling conditions, CW (L) = DM(L) 'M

Relation with the restricted Delaunay



• Case k = 1:
- CW (L) = DM (L) 'M

[Guibas, O. 07]

[Attali, Edelsbrunner, Mileyko 07]

If M is a closed k-manifold smoothly embedded in Rd, then,
under sufficient sampling conditions, CW (L) = DM(L) 'M

Relation with the restricted Delaunay



So, when W = M , we have CW (L) = DM (L). However, when W (M , there are cases that fail.
Emphasize that it is the presence of slivers in the 3D triangulation that creates these problems

[de Silva, Carlsson 04]

• Case k = 1:
- CW (L) = DM (L) 'M

• Case k = 2:
- CW (L) ⊆ DM (L) 'M
- CW (L) + DM (L)

[Attali, Edelsbrunner, Mileyko 07]

[Guibas, O. 07]

[Amenta, Bern 98]

If M is a closed k-manifold smoothly embedded in Rd, then,
under sufficient sampling conditions, CW (L) = DM(L) 'M

Relation with the restricted Delaunay



This time, the slivers can be in the restricted Delaunay triangulation
• Case k ≥ 3:

- CW (L) * DM (L)
- DM (L) 6'M

[O. 07]

[Cheng, Dey, Ramos 05]

u

vw

p

• Case k = 1:
- CW (L) = DM (L) 'M

• Case k = 2:
- CW (L) ⊆ DM (L) 'M
- CW (L) + DM (L)

If M is a closed k-manifold smoothly embedded in Rd, then,
under sufficient sampling conditions, CW (L) = DM(L) 'M

Relation with the restricted Delaunay



Conjecture [Carlsson, de Silva 2004]
CW (L) coincides with DM (L)...

Relation with the restricted Delaunay
(case of curves)



Conjecture [Carlsson, de Silva 2004]
CW (L) coincides with DM (L)...

... under some conditions on W and L

Relation with the restricted Delaunay
(case of curves)



Thm: If M is a closed curve with positive reach, W ⊂ Rd s.t. dH(W,M) ≤ δ,
L ⊆W ε-sparse ε-sample of W with δ << ε << %M , then CW (L) = DM (L) 'M .

> ε

Relation with the restricted Delaunay
(case of curves)



talk about stabilization of topological invariants, e.g. Betti numbers (number of CCs and holes here)

Thm: If M is a closed curve with positive reach, W ⊂ Rd s.t. dH(W,M) ≤ δ,
L ⊆W ε-sparse ε-sample of W with δ << ε << %M , then CW (L) = DM (L) 'M .

> ε

1/ε1/%M 1/δ1/εr 1/εl

εl

β1

β0

0

1

2

εr

→ There is a plateau in the diagram of Betti numbers of CW (L).

Relation with the restricted Delaunay
(case of curves)
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ε = 0.2, rch(M) ≈ 0.25

Solution relax witness test.

⇒ CWν (L) = DM (L)+ slivers
⇒ CWν (L) * D(L)
⇒ CWν (L) not embedded.

(case of surfaces)

DM (L) * CW (L) if W (M

Relation with the restricted Delaunay

Post-process extract manifold M
from CWν (L) ∩ D(L)
[Amenta, Choi, Dey, Leekha]
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t = ∆

∂[−∆,∆]4 ⊂ R4

x

y
z

t
p0(0, 0, δ,∆)

u(1, 0, 0,∆)

v(1, 1, 0,∆)

w(0, 1, 0,∆)

δ << 1 << ∆

p0

w

c0
u

v

c0( 1
2
, 1
2
, δ
2
,∆)

DM (L) 6'M

Relation with the restricted Delaunay
(intrinsic dim. ≥ 3) [O. 2007]
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t = ∆ + δ/2

∂[−∆,∆]4 ⊂ R4

x

y
z

t

u(1, 0, 0,∆)

v(1, 1, 0,∆)

w(0, 1, 0,∆)

δ << 1 << ∆

u

v

p(0, 0, 0,∆ + δ)

[p, u, v, w]∗ is horizontal [CDR05]

DM (L) 6'M

c0

Relation with the restricted Delaunay
(intrinsic dim. ≥ 3) [O. 2007]
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∂[−∆,∆]4 ⊂ R4

x

y
z

t

u(1, 0, 0,∆)

v(1, 1, 0,∆)

w(0, 1, 0,∆)

δ << 1 << ∆

c

u

v

p(0, 0, 0,∆ + δ)

c( 1
2
, 1
2
, δ
2
,∆ + δ

2
)

[p, u, v]∗ ∩M = {c}
[p, v, w]∗ ∩M = {c}

[p, u, v, w]∗ is horizontal [CDR05]

DM (L) 6'M

Relation with the restricted Delaunay
(intrinsic dim. ≥ 3) [O. 2007]
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t = ∆ + δ/2

∂[−∆,∆]4 ⊂ R4

x

y
z

t

u(1, 0, 0,∆)

v(1, 1, 0,∆)

w(0, 1, 0,∆)

δ << 1 << ∆

c

u

v

p(0, 0, 0,∆ + δ)

c( 1
2
, 1
2
, δ
2
,∆ + δ

2
)

[p, u, v]∗ ∩M = {c}
[p, v, w]∗ ∩M = {c}

[p, u, v, w]∗ is horizontal [CDR05]

DM (L) 6'M

Relation with the restricted Delaunay
(intrinsic dim. ≥ 3) [O. 2007]

⇒ DM (L) is no longer a closed hyper-

surface if c is moved downwards slightly



→ Source of problems: slivers

• Case k ≥ 3:
- CW (L) * DM (L)
- DM (L) 6'M

• Case k = 1:
- CW (L) = DM (L) 'M

• Case k = 2:
- CW (L) ⊆ DM (L) 'M
- CW (L) + DM (L)

assign weights to the landmarks
to remove all slivers from the
vicinity of DM (L) [Cheng et al. 00]

If M is a closed k-manifold smoothly embedded in Rd, then,
under reasonable sampling conditions, CW (L) = DM(L) 'M

Relation with the restricted Delaunay
(arbitrary dimensions)



Weighted Voronoi / Delaunay

Input: point cloud P , weight function ω : P → R≥0

Metric: d(x, (p, ω(p)))2 = ‖x− p‖2 − ω(p)2
x

p

ω(p)
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Weighted Voronoi / Delaunay

Input: point cloud P , weight function ω : P → R≥0

Induced diagram: V(p) = {x ∈ Rd | d(x, (p, ω(p)) ≤ d(x, (q, ω(q)) ∀q ∈ P}

Metric: d(x, (p, ω(p)))2 = ‖x− p‖2 − ω(p)2
x

p

ω(p)

Prop: x ∈ V(p)⇐⇒ x center of sphere orthogonal to B(p, ω(p))

and obtuse to B(q, ω(q)) for all q ∈ P \ {p}

x
p

ω(p)
q

ω(q)



p? = (p1, · · · , pd, pd+1 =
∑d
i=1 p

2
i − ω(p)2)

Rd

p = (p1, · · · , pd)

Point / sphere lifting



Σx : y2 − 2x · y + x2 = r2

Σ∗x :
∑d
i=1(−xi)yi + yd+1 = r2 − x2

Rd

Point / sphere lifting

x



p? ∈ Σ∗x

Rd

Point / sphere lifting

x

Σ∗x

p

Σx ω(p)

(B(p, ω(p)) Σx



Rd

Point / sphere lifting

x

Σ∗x

Σx

p? below Σ∗x

p

ω(p)

(B(p, ω(p)) Σx



Rd

Point / sphere lifting

x

Σ∗x

Σx

p? above Σ∗x

p

ω(p)

(B(p, ω(p)) Σx



Rd

Lower CH

Delaunay

Point / sphere lifting

Weighted



file:///C:/Documents%20and%20Settings/oudot/Desktop/WitComp/Regular_triangulation_2.exe

Sliver Removal

• Each landmark u ∈ L is assigned a weight 0 ≤ ω(u) < 1
2 d(u, L\{u}).

• The Voronoi diagram of L is replaced by its weighted version, Vω(L):
p ∈ cell(u) iff ∀v ∈ L, d(p, u)2 − ω(u)2 ≤ d(p, v)2 − ω(v)2

• Vω(L) is an affine diagram, its dual complex Dω(L) is a triangulation.

[CDEFT’00]
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Sliver Removal

• Each landmark u ∈ L is assigned a weight 0 ≤ ω(u) < 1
2 d(u, L\{u}).

• The Voronoi diagram of L is replaced by its weighted version, Vω(L):
p ∈ cell(u) iff ∀v ∈ L, d(p, u)2 − ω(u)2 ≤ d(p, v)2 − ω(v)2

• Vω(L) is an affine diagram, its dual complex Dω(L) is a triangulation.

⇒ DMω0
(L) 'M

- Closed Ball Property

Thm

- Under the same conditions on L, one
has CWω0

(L) ⊆ DMω0
(L) for all W ⊆M .

- If W is a δ-sample of M , with δ << ε,
then CWω0

(L) = DMω0
(L).

Thm [Cheng, Dey, Ramos 05] If L is an ε-sparse ε-sample of M , with
ε << rch(M), then ∃ω0 that removes slivers from the vicinity of DMω0

(L).

[CDEFT’00]

- ω0 removes slivers, thereby
improving the normals

[Boissonnat, Guibas, O. 07]
[Boissonnat, Dyer, Ghosh, O. 17]
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new vertex is pumped

if possible, mention that this algorithm can be viewed as a dynamic version of the algorithm of [CDR’05]

Input: a finite point set W ⊂ Rd.

Init: L := {p}, for some arbitrary p ∈W ;

while L (W

insert p = argmaxw∈W d(w,L) in L;

end while

Application to reconstruction in arbitrary dimensions
[Guibas, O. 07] [Boissonnat, Guibas, O. 07]

update CWω (L);

→ greedy: furthest-point resampling of L

Output: sequence of simplicial complexes CWω (L) built throughout.

maintain CWω (L) for some carefully-chosen weight function ω.

assign weight to p;
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Weight Assignment
[Boissonnat, Dyer, Ghosh, O. 17]

Candidate simplices: (requires to know the intrinsic dimension m)

N(p) = {k-NN of p in L}, where k = 66m

σ ∈ 2N(p) is a candidate simplex if it is a sliver (flat + small radius)

every candidate simplex σ has a forbidden interval Iσ of weights for p

(those for which σ ∈ Dω(P ))take ω(p) ∈ [0, ω̄] \
⋃
σ:candidate Iσ

Claims:

[0, ω̄] \
⋃
σ:candidate Iσ 6= ∅

for every σ, Iσ depends only on weights of L and on radius & flatness of σ

(no need to maintain D(L))



Input: a finite point set W ⊂ Rd.

Init: L := {p}, for some arbitrary p ∈W ;

while L (W

insert p = argmaxw∈W d(w,L) in L;

assign weight to p;

end while
1/ε

1/D 1/δ1/εr 1/εl

βj
βi

0

1

2

Application to reconstruction in arbitrary dimensions

update CWω (L);

→ greedy: furthest-point resampling of L

Output: sequence of simplicial complexes CWω (L) built throughout.

Thm If W is a δ-sample of M , with δ << rch(M), then, at some stage
of the process, the weight assignment removes all slivers from the vicinity of
DMω (L), therefore CWω (L) = DMω (L) 'M .

[Guibas, O. 07] [Boissonnat, Guibas, O. 07] [Boissonnat, Dyer, Ghosh, O. 17]



a few words of history: in the first two references, the weight assignment uses the Delaunay triangulation⇒ complexity in 2O(d2)polylog(n)

Input: a finite point set W ⊂ Rd.

Init: L := {p}, for some arbitrary p ∈W ;

while L (W

insert p = argmaxw∈W d(w,L) in L;

assign weight to p;

end while
1/ε

1/D 1/δ1/εr 1/εl

βj
βi

0

1

2

Application to reconstruction in arbitrary dimensions

update CWω (L);

→ greedy: furthest-point resampling of L

Output: sequence of simplicial complexes CWω (L) built throughout.

Running time: dn(2O(m)n+ 2O(m2) +O(mn)) +O(m3n)

Space usage: n(d+ 2O(m2)) +O(mn2) (n = |W |, m =intrinsic dim.)

[Guibas, O. 07] [Boissonnat, Guibas, O. 07] [Boissonnat, Dyer, Ghosh, O. 17]



Some results



[Ghrist, Muhammad, IPSN 05]

Input: a set of nodes W sampling
some unknown planar domain M .

- no location capabilities,
- limited computation power,
- limited memory,
- limited battery power,
- communication radius r.

→ each node has:

How many nodes are needed
to recover it?

Q What is the topology of X?

Example of application: Sensor Networks

[Gao, Guibas, O., Wang ’07]



Input: a set of nodes W sampling
some unknown planar domain M .

Example of application: Sensor Networks

[Gao, Guibas, O., Wang ’07]

→ the witness complex disregards the embedding
(only approximate geodesic distances are used)


