INF631 — Data Analysis: Geometry and Topology in Arbitrary Dimensions

Delaunay-Based Reconstruction

Steve Oudot
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Reconstruction Paradigm
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Reconstruction Paradigm

Input: point cloud P C R? finite

Prior: points of P are sampled along some unknown shape M (manifold,
compact set etc.), according to some unknown measure .

Goal: (support estimation) build an approximation (implicit, PL, sim-
plicial, etc.) that is structurally faithful (homotopic, homeomorphic,
isotopic, etc.) and close (in Hausdorff distance, in ¢?-distance, etc.)

to M.
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Various forms of inference

clustering

topological inference



Various forms of inference

clustering

topological inference

reconstruction




3D scans
Sources

LASER

stereo vision

mechanical sensor

Applications

Reverse engineering

Prototyping

Quality control

Cultural heritage

(raw data with 2 billion polygons, sampling with a preci-
sion of 0.25 mm)



Where do the data come from?

Medical Imaging

Sources
MRI scan

echograph

App|ications Intraoral 3d scanner

Diagnostic

Endoscopy simulation

Chirurgical intervention planning



Where do the data come from?

Geography, Geology

o ——— -

Sources X/ oS

satellite/aerial images

ground probing

seismograph

Applications

Maps making / Terrain modeling

Prospection (tunnels, oil)



Where do the data come from?

Higher-Dimensions
Sources

Data bases

Simulations
conformation space of cyclo-octane

Applications 5 |
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Topological Criteria

P 6

"hese three surfaces are homeomorphic (they all have genus 1)

"here exists a continuous bijection between surfaces, whose inverse
is also continuous (formal definition given on the board)

isotopic surfaces (unknotted torus) knotted torus

® & ©6

There exists a family of homeomorphisms
which continuously transform the surfaces




Geometric Criteria

Hausdorff distance (order 0):

du(P, M) =inf{e | P° O M and M*® DO P}

Normals (order 1):

Curvature (order 2):
M= (p)

1 M~+(q)




Geometric simplicial complexes

vertex set: V = {vo, (O ,vn_l} C R¢

k-simplex: 0 = CH{v;,,vi,, - ,0;, }

o
inclusion property (T face of o): invalid simplicial complex

ceKand V(1) C V(o) —=T1€ K

Intersection property:

o1,02 € K and 01 Nog # () —
o1 Nos € K and is a face of both

VA A

O-simplex 1-simplex 2-simplex 3-simplex

valid simplicial complex



Reconstruction using Delaunay



What Delaunay has to do with reconstruction
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What Delaunay has to do with reconstruction

— faithful approximation of the curve appears as a subcomplex of the Delaunay

— should hold whenever the point cloud is sufficiently densely sampled

Q What is this good subcomplex? Can it be defined in some canonical way?



Restricted Delaunay triangulation



Restricted Delaunay triangulation

Def: DM(P) := {oc € D(P) | c* N M # 0}

|
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Restricted Delaunay triangulation

Def: DM (P) := {0 € D(P) | 0* N M # 0}

|




Sampling Condition

Def: P is an e-sample of M if Vo € M, min{||x —p|| | p € P} <e.

5



Regularity Condition

Medial axis: T'y; = cl{z € R? | NN (z)] > 2}
Local feature size: Vo € RY, Ifs(z) = min{||lz — m|| | m € T/}

Reach: o), = min{lfs(z) |z € M}

M / OM

OM



Regularity Condition

Medial axis: T'y; = cl{z € R? | NN (z)] > 2}
Local feature size: Vo € RY, Ifs(z) = min{||lz — m|| | m € T/}

Reach: o), = min{lfs(z) |z € M}
T — 23 sin %

oM = +00 oM =T om =0
(convex) C1:1 but not C?) (C! but not C'1+1)



Regularity Condition

— Fundamental properties: (see [Federer 1958])

Tangent Ball Lemma: Vx € M, Ve € M+ (z), ||z — c|| < Ifs(z) =
B¢, |lx —cl) N M = 0.




Regularity Condition

— Fundamental properties: (see [Federer 1958])

Tangent Ball Lemma: Vx € M, Ve € M+ (z), ||z — c|| < Ifs(z) =
B¢, |lx —cl) N M = 0.

/Topological Ball Lemma:

N If M is a k-manifold, then VB(c, ) s.t.
‘ B(c,r)NI'py =0, B(e,r)NM is either
empty or homeomorphic to the ball B~.

......




Approximation via Restricted Delaunay

Theorem: [Amenta et al. 1998-99]
If M is a closed curve or surface with positive reach pps, and if P is an
e-sample of M with £ < op; (curve) or € < 0.1 ops (surface), then:

e DM (P) is homeomorphic to M (denoted DM (P) ~ M),
o du(DM(P), M) € O(e?),
o Vo c DM(P), Vp cV(o), Lo+ M~+(p) € O(e),

e --- (similar areas, curvature estimation, etc.)




Approximation via Restricted Delaunay

Theorem: [Amenta et al. 1998-99]
If M is a closed curve or surface with positive reach pps, and if P is an
e-sample of M with £ < op; (curve) or € < 0.1 ops (surface), then:

e DM (P) is homeomorphic to M (denoted DM (P) ~ M),
o dy(DM(P), M) € O(e?),

o Vo c DM(P), Vp cV(o), Lo+ M~+(p) € O(e),

e --- (similar areas, curvature estimation, etc.)

AN /

Reconstruction is uncertain if € is not
) i ‘—< >—' small enough compared to oum

v N



Approximation via Restricted Delaunay

Proof for curves:

show that every edge of D™ (P) connects consecutive points of P along M, and vice-versa
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= B(c,r) N M is a topological arc




Approximation via Restricted Delaunay

Proof for curves:

show that every edge of D™ (P) connects consecutive points of P along M, and vice-versa

Let c € pg* N M. r=|lc—p| =|lc—q| =d(c, P) < e < on < lfs(c)

= B(c,r) N M is a topological arc

if s € P\ {p, q} belongs to this arc, then the arc is

tangent to 0B(c,r) in p, q or s (say s)

9 =d(c,P)=7r=|c—s| >Ifs(s) > e.
(contradiction with the hypothesis of the theorem)



Approximation via Restricted Delaunay

Proof for curves:

show that every edge of D™ (P) connects consecutive points of P along M, and vice-versa

Let ¢ € arcys(pq) N Op™. c € ps* for some s € P\ {p}

= ps € DM (P)

= p, s consecutive along M, with ¢ € arcp; (ps)

(by previous part of the proof)

— S =q



Approximation via Restricted Delaunay

Proof for curves:

show that every edge of D™ (P) connects consecutive points of P along M, and vice-versa

— DM (P) is homeomorphic to M between each pair of consecutive points of P

|

Since DM (P) is embedded in D(P), it does
not self-intersect = global homeomorphism




Computing the Restricted Delaunay

Q How to compute DM (P) when M is unknown?

— a whole family of algorithms use various Delaunay extraction criteria:

|

- Ccrust
- power crust
- cocone

- tight cocone



Crust Algorithm



Crust algorithm

[Amenta et al. 1997-98]






of P

1. Compute Delaunay triangulation

!

Cryst algorithm

[Amen\a et

al. 1997-98]




Cryst algorithm, :

[AmenXa et al. 1997-98]

ave

2. Compute poles (furthest Voronoi vertices)




Crust algorithm

[Amenta et al. 1997-98]
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. . _ MY A,
Crust algorithm ~ in2d. crust=DH(P) ~ M

[Amenta et al. 1997-98]
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Crust algorithm

[Amenta et al. 1997-98]




Crust algorithm i 2d crust = D¥(P) ~ M
[Amenta et al. 1997-98] In 3-d, crust O DM(P) ~ M

— manifold extraction step in post-processing




Witness Complex
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-scale reconstruction

Mult

[Guibas, O. 07]
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Multi-scale reconstruction algorithm
[Guibas, O. 07

Input: a finite point set W C R"

— resample W iteratively, and maintain a simplicial complex:
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Multi-scale reconstruction algorithm
[Guibas, O. 07

Input: a finite point set W C R"

— resample W iteratively, and maintain a simplicial complex:

Let L := {p}, for some p € W;

WHILE L C W
Let ¢ := argmax,, cyd(w, L);
L :=LU{q};
update simplicial complex;

END_WHILE

Output: the sequence of simplicial complexes



Witness complex
(definition)

Let L C R? (landmarks) s.t. |L| < +oo and W C R? (witnesses)




Witness complex
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Let L C R? (landmarks) s.t. |L| < +oo and W C R? (witnesses)

Def. w € W strongly witnesses |vg, - - - , U]

if [w— vl = |lw—ov|| < [Jw— ul| for all . o

i,7 =0,---,kand all wu € L\ {vo, -+ ,vr}. \
/
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Witness complex
(definition)

Let L C R? (landmarks) s.t. |L| < +oo and W C R? (witnesses)

Def. w € W strongly witnesses |vg, - - - , U]
if [w— vl = |lw—ov|| < [Jw— ul| for all
i,7 =0,---,kand all wu € L\ {vo, -+ ,vr}.

Def. w € W weakly witnesses |vg, -+ ,vg] if
|w—v;]| < ||lw—wul| foralli=0,---,k and all
ue L\ {vo, - ,vk}.

Def. C" (L) is the largest abstract simplicial
complex built over L, whose faces are weakly
witnessed by points of W.




Witness complex
(properties)

Thm. 1 [de Silva 2003] VW, L, Vo € CV (L),
Je € R? that strongly witnesses o

= CW (L) is a subcomplex of D(L)

= CW (L) is embedded in R
(if L lies in general position)




Weak witness theorem

Thm. 1 VW CRY VL Cc R?s.t. |L| < oo, Vo € CW (L), Jc € R?
that strongly witnesses o.

o € C" (L) iff V1 C o,
7 weakly witnessed
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Weak witness theorem

Thm. 1 VW CRY VL Cc R?s.t. |L| < oo, Vo € CW (L), Jc € R?
that strongly witnesses o.

Proof. [Attali, Edelsbrunner, Mileyko 2007]

— Induction on the dimension of o

e Case o = |vo]: trivial (all witnesses of vy are strong)

o € C" (L) iff V1 C o,
7 weakly witnessed



Weak witness theorem

Thm. 1 VW CRY VL Cc R?s.t. |L| < oo, Vo € CW (L), Jc € R?
that strongly witnesses o.

Proof. [Attali, Edelsbrunner, Mileyko 2007]

— Induction on the dimension of o

e Case 0 = |vo, -+ ,vk] (k> 0):

=l — v
|lw —v;|| Vi > 1

assume that |[w — vo||

Vo



Weak witness theorem

Thm. 1 VW CRY VL Cc R?s.t. |L| < oo, Vo € CW (L), Jc € R?
that strongly witnesses o.

Proof. [Attali, Edelsbrunner, Mileyko 2007]

— Induction on the dimension of o

e Case 0 = |vo, -+ ,vk] (k> 0):
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> ||lw — vi|| Vi >

let w; be a strong witness of |[vg, -+, v;—1]



Weak witness theorem

Thm. 1 VW CRY VL Cc R?s.t. |L| < oo, Vo € CW (L), Jc € R?
that strongly witnesses o.

Proof. [Attali, Edelsbrunner, Mileyko 2007]

— Induction on the dimension of o

e Case 0 = |vo, -+ ,vk] (k> 0):

assume that ||w — w|| = = [|lw — v—1]|
> ||lw — vi|| Vi >

let w; be a strong witness of |[vg, -+, v;—1]

— Yw' € [w,w;], By C By U By,




Weak witness theorem

Thm. 1 VW CRY VL Cc R?s.t. |L| < oo, Vo € CW (L), Jc € R?
that strongly witnesses o.

Proof. [Attali, Edelsbrunner, Mileyko 2007]

— Induction on the dimension of o

e Case 0 = |vo, -+ ,vg| (k> 0):

assume that ||w — w|| = = [|lw — v—1]|
> ||lw — vi|| Vi >

let w; be a strong witness of |[vg, -+, v;—1]
— Yw' € [w,w;], By C By U By,

move w to w’ as shown opposite

— B N L =Avo, - ,vx}
— ’an/ ﬂL\Zl—l—l




Witness complex
(properties)

Thm. 1 [de Silva 2003] VW, L, Vo € CV (L),
Je € R? that strongly witnesses o

= CW (L) is a subcomplex of D(L)

= CW (L) is embedded in R
(if L lies in general position)
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= CW (L) is a subcomplex of D(L)

= CW (L) is embedded in R
(if L lies in general position)

Thm. 2 [de Silva, Carlsson 2004]
- The size of C"V (L) is O(d|W|)
- The time to compute is Poly(d, |W|, |L|)




Witness complex
(properties)

Thm. 1 [de Silva 2003] VW, L, Vo € CV (L),
Je € R? that strongly witnesses o

= CW (L) is a subcomplex of D(L)

= CW (L) is embedded in R °
(if L lies in general position)

Thm. 2 [de Silva, Carlsson 2004] °

- The size of CW(L) is O(d|W|) °

- The time to compute is Poly(d, |W|, |L|) °
— What if W, L lie on or near a submanifold M7

Thm. 3 [Guibas, Oudot 2007]
[Attali, Edelsbrunner, Mileyko 2007]
Under some conditions, C" (L) = D™ (L) ~ M




Witness complex
(connection to reconstruction)

o W C R? is given as input

e [, C W Is generated

e underlying manifold M unknown
e only distance comparisons

= algorithm Is applicable
In any metric space

e In R4 CW(L) can be maintained by
updating, for each witness w, the list of

d + 1 nearest landmarks of w.

O (d|W))
O (d|W?)

Space
—
time

VARVA



The full algorithm

Input: a finite point set W C R¢.
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Init: L := {p}; construct lists of nearest landmarks; C" (L) = {[p|};

Invariant: YVw € W, the list of d+ 1 nearest landmarks of w i1s maintained
throughout the process.
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The full algorithm
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Init: L := {p}; construct lists of nearest landmarks; C" (L) = {[p|};

Invariant: YVw € W, the list of d+ 1 nearest landmarks of w i1s maintained
throughout the process.

WHILE L C W

insert argmax,, cyyd(w, L) in L;
update the lists of nearest neighbors;
update C" (L);

END_WHILE




The full algorithm

Input: a finite point set W C R¢.

Init: L := {p}; construct lists of nearest landmarks; C" (L) = {[p|};

Invariant: YVw € W, the list of d+ 1 nearest landmarks of w i1s maintained
throughout the process.

WHILE L C W

insert argmax,, cyyd(w, L) in L;
update the lists of nearest neighbors;
update C" (L);

END_WHILE




The full algorithm

Input: a finite point set W C R¢.

Init: L := {p}; construct lists of nearest landmarks; C" (L) = {[p|};

Invariant: YVw € W, the list of d+ 1 nearest landmarks of w i1s maintained
throughout the process.

WHILE L C W

insert argmax,, cyyd(w, L) in L;
update the lists of nearest neighbors;

update cW (L) ; ‘0

END_WHILE

Output: the sequence of complexes C" (L)



Relation with the restricted Delaunay

If M is a closed k-manifold smoothly embedded in R¢, then,
under sufficient sampling conditions, CV (L) = DM(L) ~ M




Relation with the restricted Delaunay

If M is a closed k-manifold smoothly embedded in R¢, then,
under sufficient sampling conditions, CV (L) = DM(L) ~ M

|

o Case k = 1:
-CYW(L)=DM(L)~ M

[Guibas, O. 07]
[Attali, Edelsbrunner, Mileyko 07]




Relation with the restricted Delaunay
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Relation with the restricted Delaunay

If M is a closed k-manifold smoothly embedded in R¢, then,
under sufficient sampling conditions, CV (L) = DM(L) ~ M

|

o Case k = 1:
-CYW(L)=DM(L)~ M

e Case k = 2:
-CW(LycDM(L)~ M
-c" (L) 2 DY(L)

e Case k£ > 3:
-CV (L) £ DY(L)
- DM(L) £ M }

[Cheng, Dey, Ramos 05]
[O. 07]



Relation with the restricted Delaunay

(case of curves)

Conjecture [Carlsson, de Silva 2004]
C" (L) coincides with D™ (L)...
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(case of curves)

Conjecture [Carlsson, de Silva 2004]
C" (L) coincides with D™ (L)...

.. under some conditions on W and L .J ./0’. .’.’\. %
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Relation with the restricted Delaunay

(case of curves)

Thm: If M is a closed curve with positive reach, W C R* s.t. dg(W, M) < §,
L C W e-sparse e-sample of W with § << ¢ << opr, then C" (L) = DY (L) ~ M.




Relation with the restricted Delaunay

(case of curves)

L C W e-sparse e-sample of W with|o

<L e K

OM ,

Thm: If M is a closed curve with positive reach, W C R* s.t. dg(W, M) < §,

then C (L) = D (L) ~ M.

Go A
B
2_
1_
’ 1/&;M 1/% 1/;’% 1/5 >1/5

— There is a plateau in the diagram of Betti numbers of CV (L).
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Relation with the restricted Delaunay

(case of surfaces)

D Camera (Euclidean view) =8 X

DMLy g CcW(L)if W C M

Solution relax witness test.

= C) (L) = DM (L)+ slivers
= C, (L) £ D(L)
= C.Y (L) not embedded.

Post-process extract manifold M
from C;Y (L) N D(L)
[Amenta, Choi, Dey, Leekha]
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Some results
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Relation with the restricted Delaunay
(intrinsic dim. > 3) [O. 2007]
O[—A, Al* Cc R?

)<< 1A \/ W

u(1,0,0,A)
v(1,1,0,A)
" w(0,1,0,A)
A ?/Z p(0,0,0, A + )
- U
[p, u, v, w|" is horizontal [CDRO5]




Relation with the restricted Delaunay

) ) (intrinsic dim. > 3) [O. 2007]
—A,Al* CR
0 <1< A \/ D= E U
t=A+9/2

[p, u, v, w|" is horizontal [CDRO5]

p,u,v]* N M = {c}
p,v,w* N M = {c}




Relation with the restricted Delaunay
(intrinsic dim. > 3) [O. 2007]
O[—A, Al* Cc R?

)<< 1A V z§#5¢ZM

) v(1,1,0, A)
t w(O, 1,0,A)
A v p(0,0,0,A +4)
- (3,550 +3)
[p, u, v, w|" is horizontal [CDRO5]

p,u,v]* N M = {c} \= DM (L) is no longer a closed hyper-
[pa v, w]* NM = {C}

surface if ¢ is moved downwards slightly
| Y



Relation with the restricted Delaunay

(arbitrary dimensions)

If M is a closed k-manifold smoothly embedded in R¢, then,
under reasonable sampling conditions, C" (L) = D™ (L) ~

=

e Case k = 1:
-CW(L)=DM(L)~ M

e Case k = 2:
-CW(L)CcDM(L)~ M

-CW(L) 2 DM (L
(L) 2 (L) \ assign weights to the landmarks

e Case k > 3: to remove all slivers from the
i} CW(L) Z DM (L) / vicinity of DM (L) [Cheng et al. 00]
-DM(L) £ M

— Source of problems: slivers
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Weighted Voronoi / Delaunay

Input: point cloud P, weight function w: P — R>g

Metric: d(z, (p,w(p)))® = ||z — p||* — w(p)?

Induced diagram: V(p) = {x € R? | d(z, (p,w(p)) < d(z, (¢,w(q)) Vq € P}

Prop: x € V(p) <= z center of sphere orthogonal to B(p,w(p))
and obtuse to B(q,w(q)) for all ¢ € P\ {p}
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Sliver Removal COEFTO0]

e Each landmark u € L is assigned a weight 0 < w(u) < 2 d(u, L\ {u}).

e The Voronoi diagram of L is replaced by its weighted version, V,,(L):
p € cell(u) iff Vo € L, d(p,u)? — w(u)? < d(p,v)?* — w(v)?

e V,(L) is an affine diagram, its dual complex D, (L) is a triangulation.

x=-1.47368421052632 y=-0.516129032258065 x=1.46153846153846  y=-0.681818181818182
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Sliver Removal COEFTO0]

e Each landmark u € L is assigned a weight 0 < w(u) < % d(u, L\ {u}).

e The Voronoi diagram of L is replaced by its weighted version, V,,(L):
p € cell(u) iff Vo € L, d(p,u)? — w(u)? < d(p,v)?* — w(v)?

e V(L) is an affine diagram, its dual complex D,,(L) is a triangulation.

Thm [Cheng, Dey, Ramos 05] |f L is an e-sparse e-sample of M, with
e << rch(M), then Jwy that removes slivers from the vicinity of D2 (L).

M (T ~
= D, (L) ~ M

Thm [Boissonnat, Guibas, O. 07]
[Boissonnat, Dyer, Ghosh, O. 17]

- wo removes slivers, thereby
improving the normals - Under the same conditions on L, one

has CV(L) C DM (L) for all W C M.
- Closed Ball Property 0 0

- If W is a 0-sample of M, with 0 << ¢,
then C)Y (L) = D2 (L).




Application to reconstruction in arbitrary dimensions
[Guibas, O. 07] [Boissonnat, Guibas, O. 07]

Input: a finite point set W C R%.

— greedy: furthest-point resampling of L

maintain CV (L) for some carefully-chosen weight function w.

- o« — I " ¢ o

Init: L := {p}, for some arbitrary p € W; ol e® oo, ,

o °
.o ¢ °®
. . :o
o °
.° o
e, o0
® e o «® o ®
0o0e® o ®° 2 0o



Application to reconstruction in arbitrary dimensions
[Guibas, O. 07] [Boissonnat, Guibas, O. 07]

Input: a finite point set W C R%.

— greedy: furthest-point resampling of L

maintain CV (L) for some carefully-chosen weight function w.

o - _ o o
Init: L := {p}, for some arbitrary p € W; e e ee% .,
°, °,
WHILE L C W . °®
. %
insert p = argmax,, cyyd(w, L) in L; o ® e
" ¢
[
: o o0
° o «® o ®
0o0e® o ®° 2 0o



Application to reconstruction in arbitrary dimensions
[Guibas, O. 07] [Boissonnat, Guibas, O. 07]

Input: a finite point set W C R%.

— greedy: furthest-point resampling of L
maintain CV (L) for some carefully-chosen weight function w.
Init: L := {p}, for some arbitrary p € W,

WHILE L C W

insert p = argmax,,cyyd(w, L) in L;
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[Guibas, O. 07] [Boissonnat, Guibas, O. 07]

Input: a finite point set W C R%.
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Init: L := {p}, for some arbitrary p € W;
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Application to reconstruction in arbitrary dimensions
[Guibas, O. 07] [Boissonnat, Guibas, O. 07]

Input: a finite point set W C R%.

— greedy: furthest-point resampling of L

maintain CV (L) for some carefully-chosen weight function w.

Init: L := {p}, for some arbitrary p € W;

WHILE L C W
insert p = argmax,,cyyd(w, L) in L;
assign weight to p;
update CV (L);

END_WHILE

Output: sequence of simplicial complexes CV (L) built throughodt.
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Candidate simplices: (requires to know the intrinsic dimension m)
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Weight Assignment

[Boissonnat, Dyer, Ghosh, O. 17]

Candidate simplices: (requires to know the intrinsic dimension m)
N(p) = {k-NN of p in L}, where k = 66™

o € 2V s a candidate simplex if it is a sliver (flat + small radius)

every candidate simplex o has a forbidden interval I, of weights for p

take w(p) € [0,&]\U_.._ ... I, (those for which ¢ € D, (P))

Claims:

[07 CI)] \ Ua:candidate IU # @

for every o, I, depends only on weights of L and on radius & flatness of o

(no need to maintain D(L))



Application to reconstruction in arbitrary dimensions
[Guibas, O. 07] [Boissonnat, Guibas, O. 07] [Boissonnat, Dyer, Ghosh, O. 17]

Input: a finite point set W C R%.

Thm If W is a d-sample of M, with § << rch(M), then, at some stage
of the process, the weight assignment removes all slivers from the vicinity of

DM (L), therefore C)V (L) = DM (L) ~ M.

Init: L := {p}, for some arbitrary p € W;

WHILE L C W gj‘ -
Insert p = argmaxwewd(w, L) in L; o /_\
assign weight to p; - / \
wpste L) ) 15/D 1/e 1/; 1;5 >1/s

END_WHILE

Output: sequence of simplicial complexes C'V (L) built throughout.



Application to reconstruction in arbitrary dimensions
[Guibas, O. 07] [Boissonnat, Guibas, O. 07] [Boissonnat, Dyer, Ghosh, O. 17]

Input: a finite point set W C R%.

Running time:  dn(2°™n + 20) o O(mn)) + O(m?n)

Space usage. n(d —+ 20(m2)) -+ O(mn2) (n = |W |, m =intrinsic dim.)

Init: L := {p}, for some arbitrary p € W;

WHILE L C W gj‘ -
Insert p = argmaxwewd(w, L) in L; o /_\
assign weight to p; - / \
wpste L) ) 15/D 1/e 1/; 1;5 >1/s

END_WHILE

Output: sequence of simplicial complexes C'V (L) built throughout.
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Example of application: Sensor Networks

[Gao, Guibas, O., Wang '07]

Input: a set of nodes W sampling
some unknown planar domain M.

— each node has:

- no location capabilities,

- limited computation power,
- limited memory,

- limited battery power,

- communication radius .

Q What is the topology of X7

How many nodes are needed
to recover it?

b
[Ghrist, Muhammad, IPSN 05]




Example of application: Sensor Networks

[Gao, Guibas, O., Wang '07]

Input: a set of nodes W sampling
some unknown planar domain M.

— the witness complex disregards the embedding
(only approximate geodesic distances are used)

B e R e s R . S 1 T 9 < e g B - G <

o

1T 111213 14 15 16 1.7 18 18 2

01 1112 13 14 15 16 1.7 18 19 2



