INF631 — Data Analysis: Geometry and Topology in Arbitrary Dimensions

Nearest Neighbor Search

Steve Oudot

POLYTECHNIQUE

Nearest-Neighbor problem

pre-processing input: P

Nearest-Neighbor problem

pre-processing input: P
o query Iinput: ¢

goal: find p € NNp(q)

d(Q7p) — minp’EP d(Qap/)

e-Nearest-Neighbor problem

pre-processing input: P, ¢
o query Iinput: ¢

goal: find p € NNp(q,¢)

d(Qap) < (1 T E) minp’EP d(va,)

NNp(q,€)

Nearest-Neighbor problem

Variants:
e k-nearest neighbors: find the k£ points closest to ¢ in P

e r-nearest neighbor: find a point p € P such that d(q,p) <r

® metrics:
» lo, {p, Lo
» strings: Hamming distance
» images: optimal transport distances
» point clouds: (Gromov-)Hausdorff distances
» proteins: RMSD distances

Applications

e clustering, e.g. k-means, mean-shift

e information retrieval in databases

e information theory, e.g. vector quantization

e supervised learning, e.g. NN-classifiers

Strategy and Challenges

Strategy:

» preprocess the n point of P in R? into some data structure DS
for fast nearest-neighbor queries answers

Ideal wish list:
» DS should have linear size in n and polynomial size in d

» a query should take sublinear time in n and polynomial time in d

e.g. binary search trees in d = 1: linear size, O(logn) time

Core difficulties:
» Curse of dimensionality: hard to outperform linear scan in high d

» Interpretation: meaningfulness of distances in high d (concentration)

&
b&
,b(\
<~ Approaches
12
@’@
O (dyadic tree) (k-dtree) (RP-tree)
e Linear scan . : N
e Voronoi diagrams : . N
-] 'II H‘“ -
- ™ / - H\x&,\x
o [ree-like data structures . ' [.
» quadtrees (split at midpoint in all coordinates)

» tries / dyadic trees (split at mean, cycle around coordinates)

Binar
srace | B kd-trees (split at median, cycle around coordinates)

Partitions

» Random Projection trees (split at median along random coordinates)

» PCA trees (split at median along 1st eigenvector of covariance matrix)

e Locality Sensitive Hashing

Voronoi diagrams

Definition

- V(p) :={q€R?|peNNp(q)}

7

affine diagram

Definition

.\ V(p) = {q € R | p € NNp(q)}
\ - "‘ affine diagram
T
' Q) . computed/stored via dual
J (Delaunay triangulation)

Definition

V(p) :={q€R?|peNNp(q)}

affine diagram

computed/stored via dual

(Delaunay triangulation)

size:
- worst case: © (n(d/ﬁ)
Upper Bound Thm [McMullen’70]

- average case (unif. distrib.):

9O(dlogd)

Usage for NN-search

Localizing by walk:
start from p € P random

while 3 p’ neighb. of p in Del.

s.t. d(q,p") <d(q,p):

update p :=p’

Usage for NN-search

Localizing by walk:
start from p € P random

while 3 p’ neighb. of p in Del.

s.t. d(q,p") <d(q,p):

update p :=p’

Prop: Del. neighborhood is complete

Usage for NN-search

Localizing by walk:
start from p € P random

while 3 p’ neighb. of p in Del.

s.t. d(q,p") <d(q,p):

update p :=p’

Prop: Del. neighborhood is complete

walk time:

worst case: O(|Del(P)|)

avg. case (2d): O(4/n)

Usage for NN-search

Localizing by hierarchy:

Voronoi subdivision [Kirk."83, Meiser'93]:
2D) O(n) space, O(logn) time

(dD) ©(n?) space, O(d° logn) time

Delaunay tree [Mulmuley'91]:
(2D) O(nlogn) space, O(logn) time

Delaunay tree + walk [Devillers'02]:
(2D) O(nlogn) space, O(logn) time
(dD) O(n'21) space, O(n[“Z" 1) time

6

Usage for NN-search

Localizing by hierarchy:

Voronoi subdivision [Kirk."83, Meiser'93]:
2D) O(n) space, O(logn) time

(dD) ©(n?) space, O(d° logn) time

Delaunay tree [Mulmuley'91]:
(2D) O(nlogn) space, O(logn) time

Delaunay tree + walk [Devillers'02]:

(2D) O(nlogn) space, O(logn) time

E2 2527 &
For small dimensions (2 or 3) only! (dD) O(n'z27) space, O(n' = 1) time

6

k-d trees

Definition

® a binary tree

e cach internal node implements a spatial partition induced by a
hyperplane H, splitting the point cloud into two equal subsets

» right subtree: all points lying on one side of H

» left subtree: remaining points

e subdivision stops whenever fewer than ng remain

~ size: O(dn)

(no

1)

Definition

® a binary tree

e cach internal node implements a spatial partition induced by a
hyperplane H, splitting the point cloud into two equal subsets

» right subtree: all points lying on one side of H

» left subtree: remaining points

e subdivision stops whenever fewer than ng remain

~ size: O(dn)

kd-tree specifics:

H orthogonal to coordinate axis (cycle through coordinates)

H goes through the median in the considered coordinate

(no

1)

p3

P1

P2

[;: data at internal node

p;: data at leaf node

(note: left-right labels are arbitrary)

P4

Pe6

P5

P

P9

/\

Pg

P10 P11

Usage for NN search

Strategy 1: defeatist search
dmin := o0 (dist. to pts viewed so far)

search (node): (node = root initially)

if node = leaf:

dmin ::min{dminy miannode.batch d(q,p)}

else: L
dmin := min{dmin, d(q, node.point)} l <9
if g on "left” side of node. H o | o ¢

recurse on node.left

else (g on "right” side of node.H)

recurse on node.right

(ng =

Usage for NN search

Strategy 1: defeatist search
dmin := 00 (dist. to pts viewed so far) Query time: O(d (no + log ;+))
search (node): (node = root initially)

if node = leaf:

dmin ::min{dminy miannode.batch d(q,p)}

else: L
dmin := min{dmin, d(q, node.point)} l <9
if g on "left” side of node. H o | o ¢ .

recurse on node.left

else (g on "right” side of node.H)

recurse on node.right

(ng = 1)

Usage for NN search

Strategy 1: defeatist search
dmin := 00 (dist. to pts viewed so far) Query time: O(d (no + log ;+))
search (node): (node = root initially) May fail!

if node = leaf:

dmin :=min{dmin, Minycnode.batcr d(q, p)} /\

else: "™ L
dmin := min{dmin, d(q, node.point)} \{

if g on "left” side of node. H o

recurse on node.left

else (g on "right” side of node.H)

recurse on node.right

(ng = 1)

p3

P1

P2

[;: data at internal node

p;: data at leaf node

(note: left-right labels are arbitrary)

P4

Pe6

P5

P

P9

/\

Pg

P10 P11

10

P9

/\

[;: data at internal node

(note: left-right labels are arbitrary)

p;: data at leaf node

P10

P11

10

P9

/\

[;: data at internal node

(note: left-right labels are arbitrary)

p;: data at leaf node

P10

P11

10

[;: data at internal node

p;: data at leaf node

P9

(note: left-right labels are arbitrary)

P10

P11

10

D l
Lol Jlo
_‘
l8 p3 o
p
p20 ° llO p7.)
° o
l2 ® P
.l5 . l.
q 3
P4q
o
p1
lg o P6 9
P11
p.5 l ®
11 7

P1

P2

[;: data at internal node

p;: data at leaf node

p3

(note: left-right labels are arbitrary)

P4

Pe6

P5

P

P9

Pg

P11

10

Usage for NN search

Strategy 2: backtracking search
dmin := o0 (dist. to pts viewed so far)

search (node): (node = root initially)

if node = leaf:

dmin ::min{dmiru miannode.batch d(q,p)} /\

else: "™ L
dmin := min{dmin, d(q, node.point)} N

if B(q,dmin) intersects "left” side of node.H :

recurse on node.left

if B(q,dmin) intersects "right” side of node.H I

recurse on node.right

(ng =

Usage for NN search

Strategy 2: backtracking search

dmin := oo (dist. to pts viewed so far) Always succeeds
search (node): (node = root initially) intersects all cells containing NN(q)
if node = leaf: in subdivision throughout search

dmin ::min{dmiru miannode.batch d(q,p)} /\
else: "™ L
dmin := min{dmin, d(q, node.point)} N

if B(q,dmin) intersects "left” side of node. H . . o)
recurse on node.left T

if B(q,dmin) intersects "right” side of node. H |1
recurse on node.right (ng = 1)

11

Usage for NN search

Strategy 2: backtracking search

dmin := 0o (dist. to pts viewed so far) Always succeeds
search (node): (node = root initially) Query time may be up to linear
if node = lea f: (all cells visited)

dmin ::min{dmiru miannode.batch d(q,p)} /—\

else: "™ L
dmin := min{dmin, d(q, node.point)} N

if B(q,dmin) intersects "left” side of node. H o

recurse on node.left

if B(q,dmin) intersects "right” side of node. H ?

recurse on node.right

(ng = 1)

p3

P1

P2

[;: data at internal node

p;: data at leaf node

(note: left-right labels are arbitrary)

P4

Pe6

P5

P

P9

/\

Pg

P10 P11

12

P9

/\

[;: data at internal node

(note: left-right labels are arbitrary)

p;: data at leaf node

P10

P11

12

P9

/\

[;: data at internal node

(note: left-right labels are arbitrary)

p;: data at leaf node

P10

P11

12

[;: data at internal node

p;: data at leaf node

P9

(note: left-right labels are arbitrary)

P10

P11

12

D l
Lol Jlo
_‘
l8 p3 o
p
p20 ° llO p7.)
° o
l2 ® P
.l5 . l.
q 3
P4q
o
p1
lg o P6 9
P11
p.5 l ®
11 7

P1

P2

[;: data at internal node

p;: data at leaf node

p3

(note: left-right labels are arbitrary)

P4

Pe6

P5

P

P9

Pg

P11

12

[;: data at internal node

p;: data at leaf node

P9

(note: left-right labels are arbitrary)

P10

P11

12

D l
Lol Jlo
_.
l8 p3 o
p
p20 ° llO p7.)
° o
l2 ® P
oly . l
q 3
P4q
—
p1
lg o P6 9
P11
p.5 L7 ®
oll

[;: data at internal node

p;: data at leaf node

P1

P2

p3

(note: left-right labels are arbitrary)

P4

Pe6

P5

P

P9

Pg

P10

12

[;: data at internal node

p;: data at leaf node

P9

(note: left-right labels are arbitrary)

P10

P11

12

P9

/\

[;: data at internal node

(note: left-right labels are arbitrary)

p;: data at leaf node

P10

P11

12

P9

/\

[;: data at internal node

(note: left-right labels are arbitrary)

p;: data at leaf node

P10

P11

12

p3

D l
1. 4. l6
_‘
l8 p3 o
p p9
p20 ° llO 70
o
l2 ® P
.l5 . l.
q 3
PAq
—
p1
l9 o P6 9
P11
p.5 .l7 ®
oll
p1i

P2

[;: data at internal node

p;: data at leaf node

(note: left-right labels are arbitrary)

P4

Pe6

P5

@.

P

P9

/\

Pg

P10

P11

12

p3

D l
1. 4. l6
_‘
l8 p3 o
p p9
p20 ° ll 70
o
l2 ® P
.l5 . l.
q 3
PAq
—
p1
lg o P6 9
P11
p.5 T~ ®
oll
p1i

P2

[;: data at internal node

p;: data at leaf node

(note: left-right labels are arbitrary)

P4

Pe6

P5

@.

P9

/\

Pg

P10

P11

12

p3

D l
1. 4. l6
_‘
l8 p3 o
p p9
p20 ° llO 70
o
l2 ® P
.l5 . l.
q 3
PAq
—
p1
l9 o P6 9
P11
p.5 .l7 ®
oll
p1i

P2

[;: data at internal node

p;: data at leaf node

(note: left-right labels are arbitrary)

P4

Pe6

P5

@.

P

P9

/\

Pg

P10

P11

12

L10

b7

p3

P1

P2

[;: data at internal node

p;: data at leaf node

(note: left-right labels are arbitrary)

P4

Pe6

P5

@.

P

P9

/\

P10 P11

12

p3

D l
1. 4. l6
_‘
l8 p3 o
p p9
p20 ° llO 70
o
l2 o P8
.l5 . l.
q 3
PAq
—
p1
l9 o P6 9
P11
p.5 .l7 ®
oll
p1i

P2

[;: data at internal node

p;: data at leaf node

(note: left-right labels are arbitrary)

P4

Pe6

P5

@.

P

P9

/\

Pg

P10

P11

12

P9

/\

[;: data at internal node

(note: left-right labels are arbitrary)

p;: data at leaf node

P10

P11

12

P9

/\

[;: data at internal node

(note: left-right labels are arbitrary)

p;: data at leaf node

P10

P11

12

P9

/\

[;: data at internal node

(note: left-right labels are arbitrary)

p;: data at leaf node

P10

P11

12

@)

8
"q

O

—O—

o &
O
O
Qo_(

7°¢

worst-case input (non-unif. distrib.):

long skinny cells

!

query time = Q(dn)

12

! O|o O o
o) Q - —0—
olo | of
0, é) ~
—O-
e —O =0
o 9 4)
P ONNe)
‘3()_\1_0
(@) o J) 0O
| A @) o - q o
(O .O_Q_—()—
O ~)
L o | ——O0—1o
o) O é>_o 0
O
\ & O——C
(
o >—P
(@)
(@)

best-case input (unif. distrib.):

small fat cells

!

query time = O(cqlogn)

! O (O O -
8
ao | of
® Q
ét S
| L b best-case input (unif. distrib.):
© e 5 O
o) O 4)
. S o ¢ . small fat cells
O

O
(:LO fi O—QO \U
—O— Y

ﬁ 0570 5 i query time = O(cqlogn)

Ty

Randomness should help!

(many variants: priority search, early backtracking, random cutting hyperplanes, etc.) 12

Random Projection /Partition Trees

Exploiting randomness: RP-trees

Random Projection/Partition tree:

at each node (corresponding to some cell C):

- choose v ~ unif(S*™ 1) and 8 ~ unif(]

Y

[

- let H = v+ 4+ mediang{(PNC)-v}v

- partition PN C by H (as in kd-tree)

kd-tree RP-tree

13

Exploiting randomness: RP-trees

Prop: [Dasgupta, Freund'08]

There is a constant ¢ > 0 such that, for any cell C
in a RP-tree built on P € R%, with probability at
least 1/2 (over the choice of v,) all the cells lying
at least ck log k levels below C'in the tree have at
most half the radius of C', where kK = dima(PNC').

doubling dimension of S C R%: smallest k& € N such that, for every Eu-
clidean ball B, B NS can be covered by 2% Euclidean balls of half radius.

radius of S C R%: smallest r > 0 such that 3x € C with B(z,7) D S.

13

Exploiting randomness: RP-trees

Thm: [Dasgupta, Sinha'13]
Let £ = log(n/np) and 8 = =

2€
D zi,,

0
Py 5 [defeatist search does not return NNp(q)] < Z Pz, log
=0

b, = — Z |‘]’q b1 H where the p; are ordered by increasing distance to q
m q — Pi

"""""
° o
...................... .
[- -~ o [- .~ .
..... .
AR
.
.
NN
- .
.
.
. .
. @
. .
. . .
. . Y
1 | ' k |
. III v 8
"""" S . X re e Cases- . .
.* ~ [y 1 . L}
.o AN . . ' PREEEY
* - .]] 'R
* . L} ' 1) '
. L] L] . .
:
.
: 9p1 ® q

«q | ® ~ 0: p; isolated, easy to find H

:: “‘ “‘ "' ":

~ 1- i hard find
.. ® ~ 1: p1 equidistant, hard to fin e
0' * ~~§~ ""‘0"

S

-

-~ -
-~ -

-
......
..........

13

Exploiting randomness: RP-trees

Thm: [Dasgupta, Sinha'13]
Suppose pi,- -, Pn e 1 continuous probability measure in R% with doubling

dimension k > 2. Then dcg > 0 s.t. for any q € R% and § < 1/e, with proba.
> 1 — 30 over the choice of the p;’s:

8 1n1/5>1/k

Py s [defeatist search does not return NNp(q)] < co(k+Inno) (
1o

doubling dimension of u: smallest k& € N such that, for every z € R% and
every r > 0: p(B(z,2r)) < 2% u(B(z,7)).

13

Exploiting randomness: RP-trees

Thm: [Dasgupta, Sinha'13]
Suppose p1,- -, Pn e 1 continuous probability measure in R% with doubling
dimension k > 2. Then dcg > 0 s.t. for any q € R% and § < 1/e, with proba.

> 1 — 30 over the choice of the p;’s:

8 1n1/5>1/k

Py s [defeatist search does not return NNp(q)] < co(k+Inno) (
1o

doubling dimension of u: smallest k& € N such that, for every z € R% and
every r > 0: p(B(z,2r)) < 2% u(B(z,7)).

— take no o (kInk)*In1/6 to make Py 5 [---] an arbitrarily small constant

sensitive to intrinsic dim.

— query time: O(d((kInk)* +1logn)) -
requires to know k

13

Exploiting randomness: RP-trees

Thm: [Dasgupta, Sinha'13]
Suppose pi,- -, Pn e 1 continuous probability measure in R% with doubling

dimension k > 2. Then dcg > 0 s.t. for any q € R% and § < 1/e, with proba.
> 1 — 30 over the choice of the p;’s:

8 1n1/5>1/k

Py s [defeatist search does not return NNp(q)] < co(k+Inno) (
1o

Variant: spill-trees (overlapping splits)

< > > - >
_ 1/24+a == >
b 1-5 / 1/2+ «

(RP-tree) (spill-tree)

13

Exploiting randomness: RP-trees

Thm: [Dasgupta, Sinha'13]
Suppose pi,- -, Pn e 1 continuous probability measure in R% with doubling

dimension k > 2. Then dcg > 0 s.t. for any q € R% and § < 1/e, with proba.
> 1 — 30 over the choice of the p;’s:

8 1n1/5>1/k

Py s [defeatist search does not return NNp(q)] < co(k+Inno) (
1o

Variant: spill-trees (overlapping splits) similar behavior

< > > - >
_ 1/24+a == >
b 1-5 / 1/2+ «

(RP-tree) (spill-tree)

13

Benchmarking

Speedup over linear search

contenders effect of size on winners
g
10" . . 10 ' ' ' '
ot —g— k-means tree - sift 100K
co | ——rand. kd-trees - sift 100K
| —B— ANN = sift 100K -
.. | —&— LSH - sift 100K & 4
, . a 10 _
af =
o
=
B .
5 10° .
= : ;
-g —%— k-means tree - sift 31M
@ —— rand. kd-trees - sift 31M
ol —¢— k—means tree - sift 1M
1|j':' || —&—rand. kd-trees - sift 1M | =
—&— k-means tree - sift 100K | :
1I‘_‘|ﬂ | | —z—rand. kd-trees - sift 100K :
50 60 70 _ 80 a0 100 50 &0 70 a0 an 100
Correct neighbors (%%) Correct neighbors (%)
(a) (b)

RP-trees vs. other methods on data sets of 100k, 1M and 31M features

Speedup over linear search

Benchmarking

contenders effect of size on winners
g
10’ . . 10 ! ' ' '
ot —g— k-means tree - sift 100K
| —s—rand. kd-trees - sift 100K
con | —B— ANN = sift 100K .
.. | —=&— LSH = sift 100K =
. . g 10 -
it
&
=
(0]
' & 10° .
: o : ;
G © —+— k-means tree - sift 31M
= @ —=—rand. kd-trees - sift 31M
o W —&— k-means tree - sift 1M
x 19° || —E—rand. kd-trees - sift 1M 2]
—&— k-means tree - sift 100K | :
o | | | | ——rand. kd-trees - sift 100K :
50 60 70 &0 a0 100 &0 &0 70 a0 an 100
Correct neighbors (%%) Correct neighbors (%)
(a) (b)

Random kd-trees (RP-trees, spill-trees) are fast, scalable and reliable
on data with (low-dimensional) intrinsic structure

Locality-Sensitive Hashing

Back to the NN problem

o ° pre-processing input: P
° query input: g
NNp(g) . |
goal: find p eNNp(q)
¢ °
d(q, P Curse of Dimensionality: every DS
| ° for NN-search has either exponential
o

size or exponential query time (in d)
In the worst case.

— holds in theory and in practice for exact NN queries [Weber et al. "98]

15

Back to the e-NN problem

pre-processing input: P, ¢

query Iinput: ¢

goal: find p eNNp(q,e)

Curse of Dimensionality: every DS
for NN-search has either exponential
size or exponential query time (in d)
In the worst case.

— holds in theory and in practice for exact NN queries [Weber et al. "98]

— still holds for approximate queries in decision tree model [Arya et al. '98]

15

Back to the e-NN problem

pre-processing input: P, ¢

query Iinput: ¢

goal: find p eNNp(q,e)

Curse of Dimensionality: every DS
for NN-search has either exponential
size or exponential query time (in d)
In the worst case.

— holds in theory and in practice for exact NN queries [Weber et al. "98]
— still holds for approximate queries in decision tree model [Arya et al. '98]

%Eé — no longer true in Real-RAM model thanks to LSH [Indyk, Motwani "98]

15

Locality-Sensitive Hashing

Comparing elements via hashing:
hashCode : X — Z
x = 1y = hashCode (x)=hashCode (y)

xr # y = hashCode (x)#hashCode (y)

(no collisions hypothesis)

int hashCode()

vy

16

Locality-Sensitive Hashing

Comparing elements via hashing:
hashCode : X — Z
x = 1y = hashCode (x)=hashCode (y)

xr # y = hashCode (x)#hashCode (y)

(no collisions hypothesis)

int hashCode()

vy

Metric case (X,d): given r > 0,

d(x,y) < r = hashCode (x) =hashCode ()

d(x,y) > r = hashCode (x) #hashCode (y)

16

Locality-Sensitive Hashing

Comparing elements via hashing:
hashCode : X — Z
x = 1y = hashCode (x)=hashCode (y)

r # y = hashCode (x)#hashCode (y)

(no collisions hypothesis)

int hashCode()

vy

Metric case (X,d): given r > 0, >
- Z,
d(x,y) < r = hashCode (x)=hashCode (y)

d(x,y) > r = hashCode (x) #hashCode (y)

too good to be true — allow for some slack
16

Locality-Sensitive Hashing

Def: Given r; < ry, p1 > p2 and U C N, a family F of hash functions
f: (X, d) — U Is (rl,rg,pl,pg)-sensitive if Ve, y € X,

o d(z,y) <r1 = P[f(z) = f(y)] = p1
o d(z,y) > 12 = P[f(z) = f(y)] < pa

(probability is over a random choice of function
according to a given probability distribution over F)

Locality-Sensitive Hashing

Def: Given r; < ry, p1 > p2 and U C N, a family F of hash functions
f: (X, d) — U Is (rl,rg,pl,pg)-sensitive if Ve, y € X,

o d(z,y) <11 = P[f(z) = f(y)] > pr o1y aa
(0,0,1)

o d(z,y) > 12 = Plf(z) = f(y)] < po (1.0

(probability is over a random choice of function
according to a given probability distribution over F)

Example 1: (X,d) = ({0,1}%,dy)

N

(0,1,0)

N
A

(1,1,0)

(0,0,0) (1,0,0)

— take F = {f:}}_; where fi(by---bg) = b; | unif. proba. on F

— Fis(r,r(1+¢),1—-%,1— T(ljs))—sensitive forall r > 1 and € > 0.

16

Locality-Sensitive Hashing

Def: Given r; < ry, p1 > p2 and U C N, a family F of hash functions
f: (X, d) — U Is (rl,rg,pl,pg)-sensitive if Ve, y € X,

ed(z,y) <ri =P
e d(z,y) >ro =P

()
()

(probability is over a random choice of function
according to a given probability distribution over F)

Example 1: (X,d) = ({0,1}%,dy)

f(y) > D1 (0,1,1) (1,1,1)

(0,0,1)

f(y) S P2 (1,0,1)

N

(0,1,0)

(1,1,0)

]
A

(0,0,0) (1,0,0)

— take F = {f:}}_; where fi(by---bg) = b; | unif. proba. on F

— Fis (r,r(l4+¢),1 - %,1—

proof: Vz,y, Ps[f(x)

T(ljs))—sensitive forallr>1and e > 0.
d—dy (=, dy¢ (2,
= fly)] = == =1 - Sy

iS8 8

&

dy (x,y) bits differ = d — dy(x,y) functions
make x and y collide

16

Locality-Sensitive Hashing

Def: Given r; < ry, p1 > p2 and U C N, a family F of hash functions
f: (X, d) — U Is (rl,rg,pl,pg)-sensitive if Ve, y € X,

o d(z,y) <r1 = P[f(z) = f(y)] = p1
o d(z,y) > 12 = P[f(z) = f(y)] < pa

(probability is over a random choice of function
according to a given probability distribution over F)

Example 2: (X,d) = (R%, || - ||2)

— take F = {fv,b}ffe[lg;f] where fy ,(x) = Lx";erJ

— choose v = (v1,- -+ ,vq) with v; ~ N (0,1), and b uniformly in [0, 7]
— Fis (r,r(1 + ¢€), p1,p2) sensitive for p1 = g(1) and p2 = g(1 +¢),

where g(k) =1 — 2cdf(—r/k) — 1 — €_T2/2’{2)

= (
V271r /K
cumulative density func. of normal distrib.

16

Locality-Sensitive Hashing

Def: Given r; < ry, p1 > p2 and U C N, a family F of hash functions
f: (X, d) — U Is (rl,rg,pl,pg)-sensitive if Ve, y € X,

o d(z,y) <r1 = P[f(z) = f(y)] = p1
o d(z,y) > 12 = P[f(z) = f(y)] < pa

(probability is over a random choice of function
according to a given probability distribution over F)

Lemma [Johnson, Lindenstrauss 84]:

For any dimensions 0 < k < d there is a probability distribution 1 over
the projections R — R” such that, given any set P of n points in R® and
any € € (0,1) with k > 10Inn/e?, a projection m : R* — R* sampled at
random from . satisfies w.h.p.

Vp,q€ P, (1 —¢)|lp—ql|l < |lw(p) —7(@)|| < (1 +¢)|lp—q]

16

Locality-Sensitive Hashing

Def: Given r; < ry, p1 > p2 and U C N, a family F of hash functions
f: (X, d) — U Is (rl,rg,pl,pg)-sensitive if Ve, y € X,

o d(z,y) <r1 = P[f(z) = f(y)] = p1
o d(z,y) > 12 = P[f(z) = f(y)] < pa

(probability is over a random choice of function
according to a given probability distribution over F)

Lemma [Johnson, Lindenstrauss 84]:

For any dimensions 0 < k < d there is a probability distribution 1 over
the projections R — R” such that, given any set P of n points in R® and
any € € (0,1) with k > 10Inn/e?, a projection m : R* — R* sampled at
random from . satisfies w.h.p.

Vp,q€ P, (1 —¢)|lp—ql|l < |lw(p) —7(@)|| < (1 +¢)|lp—q]

Proof idea: take w(x) = Zle(:r;-vi)vi, where the v; are random vectors in R¢ whose
coordinates are chosen i.i.d. according to N'(0,1). Then exploit the concentration of
measure on the sphere to show that 7 induces a low distortion.

16

Locality-Sensitive Hashing

Def: Given r; < ry, p1 > p2 and U C N, a family F of hash functions
f: (X, d) — U Is (rl,rg,pl,pg)-sensitive if Ve, y € X,

o d(z,y) <r1 = P[f(z) = f(y)] = p1
o d(z,y) > 12 = P[f(z) = f(y)] < pa

(probability is over a random choice of function
according to a given probability distribution over F)

— General idea:
- choose k-dimensional vector of random functions (fi,--- , fx) € F*
- pre-process P by hashing its points into the corresponding hash table

- given g € X, hash ¢ and choose collision with smallest distance

16

Locality-Sensitive Hashing

Def Given 1 < 19, p1 > po and U C N, a family F of hash functions
(X,d) = U is((r1,m2) p1, p2)-sensitive if Vz,y € X,

fd (z,9) <1 = Plf(2) = f(y)] > >

o d(z,y) > r2 = Pf(z) = f(y)] < po

(probability is over a random choice of function
according to a given probability distribution over F)

— General idea:
- choose k-dimensional vector of random functions (f1,- -, fx) € FF

- pre-process P by hashing its points into the corresponding hash table

- given g € X, hash ¢ and choose collision with smallest distance

k, Technical detail: tamily works only for fixed 71, r9
— fix 11 =r and ro = r(1 4 ¢), and solve (r,)-NN query
16

The (r,£)-NN problem (PLEB)

Goal: pre-process P such that, for any query point g,
e if d(q, P) < r then answer YES and return some p eENNp(q,r,),

e if d(q, P) > r(1 + ¢) then answer NO,
e clse (r < d(q,P) <r(l+¢)) give any of the above answers.

17

The (r,£)-NN problem (PLEB)

Goal: pre-process P such that, for any query point g,
e if d(q, P) < r then answer YES and return some p eENNp(q,r,),

e if d(q, P) > r(1 + ¢) then answer NO,
e clse (r < d(q,P) <r(l+¢)) give any of the above answers.

Step 1: boost the sensitivity of the hash family

G=1{g=(f1,--,f) €F*| f1, -+, frx chosen randomly in F}

17

The (r,£)-NN problem (PLEB)

Goal: pre-process P such that, for any query point g,
e if d(q, P) < r then answer YES and return some p eENNp(q,r,),

e if d(q, P) > r(1 + ¢) then answer NO,
e clse (r < d(q,P) <r(l+¢)) give any of the above answers.

Step 1: boost the sensitivity of the hash family
G=1{g=(f1,--,f) €F*| f1, -+, frx chosen randomly in F}

— Va,y, d(z,y) < r = Plg(z) = g(y)] > p¥ (coords. are independent)

d(z,y) >r(1+¢e) = Plg(z) = g(y)] < p5

17

The (r,£)-NN problem (PLEB)

Goal: pre-process P such that, for any query point g,
e if d(q, P) < r then answer YES and return some p eENNp(q,r,),
e if d(q, P) > r(1 + ¢) then answer NO,
e clse (r < d(q,P) <r(l+¢)) give any of the above answers.

Step 2: pre-process the data points

- choose 7 random functions ¢4, --- , g, from boosted hash family G,
- Initialise 7 hash tables Hy,--- , H-
-Vi=1,---,7, hash every point p € P into H; using g;(p) as the key

- keep only one arbitrary point per non-empty entry

17

The (r,£)-NN problem (PLEB)

Goal: pre-process P such that, for any query point g,
e if d(q, P) < r then answer YES and return some p eENNp(q,r,),

e if d(q, P) > r(1 + ¢) then answer NO,
e clse (r < d(q,P) <r(l+¢)) give any of the above answers.

Step 2: pre-process the data points o P

p

&' -

The (r,£)-NN problem (PLEB)

Goal: pre-process P such that, for any query point g,
e if d(q, P) < r then answer YES and return some p eENNp(q,r,),

e if d(q, P) > r(1 + ¢) then answer NO,
e clse (r < d(q,P) <r(l+¢)) give any of the above answers.

Step 2: pre-process the data points o P

(1) (L] (1)
(1) (1) (1)

1
(1) (1)
(1) (1)

The (r,£)-NN problem (PLEB)

Goal: pre-process P such that, for any query point g,
e if d(q, P) < r then answer YES and return some p eENNp(q,r,),

e if d(q, P) > r(1 + ¢) then answer NO,
e clse (r < d(q,P) <r(l+¢)) give any of the above answers.

Step 3: hash the query point using the g; o P

gr g

g2

17

The (r,¢)-NN problem (PLEB)

Goal: pre-process P such that, for any query point g,
e if d(q, P) < r then answer YES and return some p eENNp(q,r,),
e if d(q, P) > r(1 + ¢) then answer NO,
e clse (r < d(q,P) <r(l+¢)) give any of the above answers.

Step 3: hash the query point using the g;
- let p1,--- ,p; be the collisions (I < 7)

- if some p; is such that d(p;,q) < r(1 + €) then return YES and p;

- else return NO

17

The (r,£)-NN problem (PLEB)

Goal: pre-process P such that, for any query point g,
e if d(q, P) < r then answer YES and return some p eENNp(q,r,),

e if d(q, P) > r(1 + ¢) then answer NO,
e clse (r < d(q,P) <r(l+¢)) give any of the above answers.

Analysis in a nutshell:

- test = return NO whenever d(q, P) > (1 + ¢)

17

The (r,£)-NN problem (PLEB)

Goal: pre-process P such that, for any query point g,
e if d(q, P) < r then answer YES and return some p eENNp(q,r,),
e if d(q, P) > r(1 + ¢) then answer NO,
e clse (r < d(q,P) <r(l+¢)) give any of the above answers.

Analysis in a nutshell:

- test = return NO whenever d(q, P) > (1 + ¢)

-if dp € P s.t. d(p,q) <, then for a fixed ¢ € {1,--- , 7},

P[p collides with ¢ in H;] > pf

Vp' € P\ B(q,7(1+¢)), P[p’ collides with ¢ in H; | p collides with ¢ in H;]

p[p and p’ collide with g in H;]
P[p collides with g in H;]

p[p’ collides with ¢ in H,] _ (p_z)’f

< Bp collides with ¢ in Hy] = (b

The (r,£)-NN problem (PLEB)

Goal: pre-process P such that, for any query point g,
e if d(q, P) < r then answer YES and return some p eENNp(q,r,),

e if d(q, P) > r(1 + ¢) then answer NO,
e clse (r < d(q,P) <r(l+¢)) give any of the above answers.

Analysis in a nutshell:
- test = return NO whenever d(q, P) > (1 + ¢)
-if dp € P s.t. d(p,q) <, then for a fixed ¢ € {1,--- , 7},

k
union bound = P[H; succeeds| > pf (1 —n (p—Q))

— p1
7 Independent hash tables =
P[some H; succeeds] > 1 — (1 — pY (1 —n (p—2>))T

— P1

17

The (r,£)-NN problem (PLEB)

Goal: pre-process P such that, for any query point g,
e if d(q, P) < r then answer YES and return some p eENNp(q,r,),

e if d(q, P) > r(1 + ¢) then answer NO,
e clse (r < d(q,P) <r(l+¢)) give any of the above answers.

Analysis in a nutshell:
- test = return NO whenever d(q, P) > (1 + ¢)
-if dp € P s.t. d(p,q) <7, then for a fixed ¢ € {1,--- , 7},

k
union bound = P[H; succeeds| > pf (1 —n (p—Q))

— p1
7 Independent hash tables =
P[some H; succeeds] > 1 — (1 — pY (1 —n (p—2>))T

— P1

Let kK = clogn and 7 = n® where o = % e (0,1).

= |query time = O(n®logn), Pr[success|> 1 — 1/n"®

From (7, c)-NN to e-NN
e Special case: (X,d) = ({0,1}¢,dy)

Observation: inter-point distances lie within {0,1,2,--- ,d}

18

From (r,€)-NN to e-NN
e Special case: (X,d) = ({0,1}¢,dy)
Observation: inter-point distances lie within {0,1,2,--- ,d}
— solve case dy (g, P) = 0 independently (use lexicographical sorting)
— take geometric sequence ro =1, 11 =1+¢, -+, r; = (1+¢)!, -+
— for j =0 to [log,,.d] = O(2logd), solve (r;,7;11)-NN query
— let j; be the lowest j s.t. the answer to (r;,7;4+1)-MM query is YES

— return the output point of the (r;,,7;,+1)-NN query

— if no YES answer, return output of case d« (g, P) =0

18

From (7, c)-NN to e-NN
e Special case: (X,d) = ({0,1}¢,dy)

Observation: inter-point distances lie within {0,1,2,--- ,d}

— query time = O(%n‘g lognlogd)

(becomes O(dn?logn) if arithmetic sequence is used)

18

From (7, c)-NN to e-NN
e Special case: (X,d) = ({0,1}¢,dy)

Observation: inter-point distances lie within {0,1,2,--- ,d}

— query time = O(%n‘g lognlogd)

(becomes O(dn?logn) if arithmetic sequence is used)

Observation: deterministically, r;, > dy(q, P)/(1 +¢)

= output € NNp(q,e(2 + ¢)) iff LSH data structure works for j = j;

= P|success|] > 1 —1/n®®

18

From (7, c)-NN to e-NN

e General case: use hierarchical clustering tree [Har-Peled'01]
- consider geometric sequences of scales as before

- cluster data points in order to bound the lengths of the sequences

18

From (7, c)-NN to e-NN

e General case: use hierarchical clustering tree [Har-Peled'01]
- consider geometric sequences of scales as before

- cluster data points in order to bound the lengths of the sequences

18

From (7, c)-NN to e-NN

e General case: use hierarchical clustering tree [Har-Peled'01]
- consider geometric sequences of scales as before

- cluster data points in order to bound the lengths of the sequences

N

i

18

From (r,€)-NN to e-NN

e General case: use hierarchical clustering tree [Har-Peled'01]

- consider geometric sequences of scales as before

- cluster data points in order to bound the lengths of the sequences

Assign P, C P and [r,, R,] to each node v

LA
S A

18

From (r,€)-NN to e-NN

e General case: use hierarchical clustering tree [Har-Peled'01]
- consider geometric sequences of scales as before

- cluster data points in order to bound the lengths of the sequences

Assign P, C P and [r,, R,] to each node v

e-NN query:

/::./.. X "..." \.,/

18

From (r,€)-NN to e-NN

e General case: use hierarchical clustering tree [Har-Peled'01]
- consider geometric sequences of scales as before

- cluster data points in order to bound the lengths of the sequences

Assign P, C P and [r,, R,] to each node v

e-NN query:

/ .
o
[
- traverse down the tree along one root-leaf path / / \ \
- at each visited node v, perform 7 e e e ‘ee o
/ See eo ., g,° '/
(rv,€)-NN and (R,,e)-NN queries i P ?

— decide if d(q, P) € |ry, Ry] or not

18

From (r,€)-NN to e-NN

e General case: use hierarchical clustering tree [Har-Peled'01]
- consider geometric sequences of scales as before

- cluster data points in order to bound the lengths of the sequences

Assign P, C P and [r,, R,] to each node v

e-NN query:

/ .

o

[
- traverse down the tree along one root-leaf path / / \ \

- at each visited node v, perform 7 e e e ‘oo " e

/ L X oo, 8,° '/

(rv,€)-NN and (R,,e)-NN queries 2.0 ¢ ¢
— decide if d(q, P) € |ry, Ry] or not

— if so, locate d(q, P) in [ry, Ry] / :..‘& .\o’{. 8‘:“ ¢ ./

— if not, recurse into one child only

18

From (r,€)-NN to e-NN

e General case: use hierarchical clustering tree [Har-Peled'01]
- consider geometric sequences of scales as before

- cluster data points in order to bound the lengths of the sequences

Assign P, C P and [r,, R,] to each node v

e-NN query:

/ .

o

[
- traverse down the tree along one root-leaf path / / \ \

- at each visited node v, perform 7 e e e ‘oo " e

/ L X oo, 8,° '/

(rv,€)-NN and (R,,e)-NN queries 2.0 ¢ ¢
— decide if d(q, P) € |ry, Ry] or not

— if so, locate d(q, P) in [ry, Ry] / :..‘& .\o’{. 8‘:“ ¢ ./

— if not, recurse into one child only

O(21log) (r,€)-NN queries per e-NN query = O(<n¢log) query time
18

Take-Home Messages

e (Approximate) NN search requires an exponential amount of resources
(space/time) in the algebraic comparison tree model [Arya et al. 98].

e Using random hashing allows to beat the curse of dimensionality.

e [he price to pay Is that algorithms become almost linear
— in practice, a trade-off must be found.

e [he complexity of the exact NN search problem is not fully understood.

— what about reverse NN search? [Cheong et al. 09], [Arthur, O. 10], ...

19

