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q

NNP (q)

d(q, P )

pre-processing input: P

query input: q

goal: find p ∈ NNP (q)

d(q, p) = minp′∈P d(q, p′)
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q

NNP (q)

d(q, P )

(1 + ε)d(q, P )

NNP (q, ε)

pre-processing input: P

query input: q

, ε

ε-Nearest-Neighbor problem

goal: find p ∈ NNP (q, ε)

d(q, p) ≤ (1 + ε) minp′∈P d(q, p′)
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Variants:

• k-nearest neighbors: find the k points closest to q in P

• r-nearest neighbor: find a point p ∈ P such that d(q, p) ≤ r

• metrics:

I `2, `p, `∞

I strings: Hamming distance

I images: optimal transport distances

I point clouds: (Gromov-)Hausdorff distances

I proteins: RMSD distances

I · · ·
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Applications

• clustering, e.g. k-means, mean-shift

• information retrieval in databases

• information theory, e.g. vector quantization

• supervised learning, e.g. NN-classifiers

• · · ·



Detail concentration of distances in high dimensions [Demartinez’94]
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Strategy and Challenges

Strategy:

I preprocess the n point of P in Rd into some data structure DS
for fast nearest-neighbor queries answers

Ideal wish list:

I DS should have linear size in n and polynomial size in d

I a query should take sublinear time in n and polynomial time in d

e.g. binary search trees in d = 1: linear size, O(logn) time

Core difficulties:

I Curse of dimensionality: hard to outperform linear scan in high d

I Interpretation: meaningfulness of distances in high d (concentration)



this is the baseline
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Approaches

• Voronoi diagrams

• Tree-like data structures

I kd-trees (split at median, cycle around coordinates)

I tries / dyadic trees (split at mean, cycle around coordinates)

I quadtrees (split at midpoint in all coordinates)

I Random Projection trees (split at median along random coordinates)

I PCA trees (split at median along 1st eigenvector of covariance matrix)

• Linear scan

I · · ·

• Locality Sensitive Hashing

(dyadic tree) (k-dtree) (RP-tree)O
(d
n
)
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Partitions



Voronoi diagrams
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Definition

V (p) := {q ∈ Rd | p ∈ NNP (q)}

affine diagram
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Definition

V (p) := {q ∈ Rd | p ∈ NNP (q)}

computed/stored via dual

(Delaunay triangulation)

affine diagram

size:

- worst case: Θ
(
ndd/2e

)
Upper Bound Thm [McMullen’70]

- average case (unif. distrib.):

2O(d log d)n



p

q

NN(q)
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Usage for NN-search

Localizing by walk:

start from p ∈ P random

while ∃ p′ neighb. of p in Del.

s.t. d(q, p′) < d(q, p):

update p := p′



i.e. only the global minimum of the distance to q among the points of P has no neighbor closer to q
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Usage for NN-search

Localizing by walk:

start from p ∈ P random

while ∃ p′ neighb. of p in Del.

s.t. d(q, p′) < d(q, p):

update p := p′

Prop: Del. neighborhood is complete

q

p

p′

(empty ball)



i.e. only the global minimum of the distance to q among the points of P has no neighbor closer to q
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Usage for NN-search

Localizing by walk:

start from p ∈ P random

while ∃ p′ neighb. of p in Del.

s.t. d(q, p′) < d(q, p):

update p := p′

Prop: Del. neighborhood is complete

walk time:

worst case: O(|Del(P )|)

avg. case (2d): O(
√
n)



p

q

NN(q)
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Usage for NN-search

Localizing by hierarchy:

Voronoi subdivision [Kirk.’83, Meiser’93]:

O(n) space, O(logn) time

Delaunay tree + walk [Devillers’02]:

O(n logn) space, O(logn) time

Delaunay tree [Mulmuley’91]:

O(n logn) space, O(logn) time

O(nd
d
2
e) space, O(nd

d−2
2
e) time

(2D)

(2D)

(2D)

(dD)

Θ(nd) space, O(d5 logn) time(dD)



Notes: - in Meiser’s algorithm, n is the number of hyperplanes, which is at worst quadratic for a Voronoi diagram, so the logn term still holds up to a constant factor. - we can augment the Voronoi diagram to include the full hyperplanes, not just their restrictions to the Voronoi faces. This gives a refined partition of space, in which each cell can be tagged with the label of the corresponding Voronoi site.
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Usage for NN-search

Localizing by hierarchy:

Voronoi subdivision [Kirk.’83, Meiser’93]:

O(n) space, O(logn) time

Delaunay tree + walk [Devillers’02]:

O(n logn) space, O(logn) time

Delaunay tree [Mulmuley’91]:

O(n logn) space, O(logn) time

O(nd
d
2
e) space, O(nd

d−2
2
e) time

(2D)

(2D)

(2D)

(dD)
For small dimensions (2 or 3) only!

Θ(nd) space, O(d5 logn) time(dD)



k-d trees
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Definition

• a binary tree

• each internal node implements a spatial partition induced by a
hyperplane H, splitting the point cloud into two equal subsets

I right subtree: all points lying on one side of H

I left subtree: remaining points

• subdivision stops whenever fewer than n0 remain

(n0 = 1)

 size: O(dn)
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Definition

• a binary tree

• each internal node implements a spatial partition induced by a
hyperplane H, splitting the point cloud into two equal subsets

I right subtree: all points lying on one side of H

I left subtree: remaining points

• subdivision stops whenever fewer than n0 remain

kd-tree specifics:

H orthogonal to coordinate axis (cycle through coordinates)

H goes through the median in the considered coordinate
(n0 = 1)

 size: O(dn)
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Example

li: data at internal node

pi: data at leaf node

(note: left-right labels are arbitrary)



Important: show on the picture which cells of the subdivision are visited
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Usage for NN search

Strategy 1: defeatist search

q

if node = leaf :

dmin :=∞ (dist. to pts viewed so far)

dmin := min{dmin, d(q, node.point)}

if q on ”left” side of node.H

recurse on node.left

else (q on ”right” side of node.H)

recurse on node.right

dmin :=min{dmin, minp∈node.batch d(q, p)}

(n0 = 1)

search (node): (node = root initially)

else:



Important: show on the picture which cells of the subdivision are visited

roughly n/n0 leaves, so height≈ log n
n0

(complete binary tree) to this one must add the exploration of the leaf visited  n0
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Usage for NN search

Strategy 1: defeatist search

q

if node = leaf :

dmin :=∞ (dist. to pts viewed so far)

dmin := min{dmin, d(q, node.point)}

if q on ”left” side of node.H

recurse on node.left

else (q on ”right” side of node.H)

recurse on node.right

dmin :=min{dmin, minp∈node.batch d(q, p)}

Query time: O(d (n0 + log n
n0

))

(n0 = 1)

search (node): (node = root initially)

else:
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Usage for NN search

Strategy 1: defeatist search

q

if node = leaf :

dmin :=∞ (dist. to pts viewed so far)

dmin := min{dmin, d(q, node.point)}

if q on ”left” side of node.H

recurse on node.left

else (q on ”right” side of node.H)

recurse on node.right

dmin :=min{dmin, minp∈node.batch d(q, p)}

Query time: O(d (n0 + log n
n0

))

May fail!

q′

(n0 = 1)

search (node): (node = root initially)

else:
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Example

li: data at internal node

pi: data at leaf node

(note: left-right labels are arbitrary)
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Example

li: data at internal node

pi: data at leaf node

(note: left-right labels are arbitrary)
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Example

li: data at internal node

pi: data at leaf node

(note: left-right labels are arbitrary)
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Usage for NN search

Strategy 2: backtracking search

q′

(n0 = 1)

if node = leaf :

dmin :=∞ (dist. to pts viewed so far)

dmin := min{dmin, d(q, node.point)}

if B(q,dmin) intersects ”left” side of node.H

recurse on node.left

if B(q,dmin) intersects ”right” side of node.H

recurse on node.right

dmin :=min{dmin, minp∈node.batch d(q, p)}

search (node): (node = root initially)

else:
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Usage for NN search

Strategy 2: backtracking search

q′

(n0 = 1)

if node = leaf :

dmin :=∞ (dist. to pts viewed so far)

dmin := min{dmin, d(q, node.point)}

if B(q,dmin) intersects ”left” side of node.H

recurse on node.left

if B(q,dmin) intersects ”right” side of node.H

recurse on node.right

dmin :=min{dmin, minp∈node.batch d(q, p)}

search (node): (node = root initially)

else:

Always succeeds

dmin ≥ d(q,NN(q)) ⇒ B(q,dmin)
intersects all cells containing NN(q)
in subdivision throughout search



Detail bad case: query point at the center, all data points about at the same distance (cf concentration of measure / distances ⇒ bad in high dimensions)

11

Usage for NN search

Strategy 2: backtracking search

q′

(n0 = 1)

if node = leaf :

dmin :=∞ (dist. to pts viewed so far)

dmin := min{dmin, d(q, node.point)}

if B(q,dmin) intersects ”left” side of node.H

recurse on node.left

if B(q,dmin) intersects ”right” side of node.H

recurse on node.right

dmin :=min{dmin, minp∈node.batch d(q, p)}

search (node): (node = root initially)

else:

Always succeeds

Query time may be up to linear

(all cells visited)
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li: data at internal node

pi: data at leaf node

(note: left-right labels are arbitrary)



l1

l2 l3

l4 l5 l6 l7

l8 l9 l10

p1 p2

p3

p4 p5

p6

p7 p8

p9 p10 p11

l1

l2

l3

l4

l5

l7

l6

l8

l9

l10

p1

p2
p3

p4

p5

p6

p7

p8

p9

p10

p11

q

12

Example

li: data at internal node

pi: data at leaf node

(note: left-right labels are arbitrary)



l1

l2 l3

l4 l5 l6 l7

l8 l9 l10

p1 p2

p3

p4 p5

p6

p7 p8

p9 p10 p11

l1

l2

l3

l4

l5

l7

l6

l8

l9

l10

p1

p2
p3

p4

p5

p6

p7

p8

p9

p10

p11

q

12

Example

li: data at internal node

pi: data at leaf node

(note: left-right labels are arbitrary)



l1

l2 l3

l4 l5 l6 l7

l8 l9 l10

p1 p2

p3

p4 p5

p6

p7 p8

p9 p10 p11

l1

l2

l3

l4

l5

l7

l6

l8

l9

l10

p1

p2
p3

p4

p5

p6

p7

p8

p9

p10

p11

q

12

Example

li: data at internal node

pi: data at leaf node

(note: left-right labels are arbitrary)



l1

l2 l3

l4 l5 l6 l7

l8 l9 l10

p1 p2

p3

p4 p5

p6

p7 p8

p9 p10 p11

l1

l2

l3

l4

l5

l7

l6

l8

l9

l10

p1

p2
p3

p4

p5

p6

p7

p8

p9

p10

p11

q

12

Example

li: data at internal node

pi: data at leaf node

(note: left-right labels are arbitrary)



l1

l2 l3

l4 l5 l6 l7

l8 l9 l10

p1 p2

p3

p4 p5

p6

p7 p8

p9 p10 p11

l1

l2

l3

l4

l5

l7

l6

l8

l9

l10

p1

p2
p3

p4

p5

p6

p7

p8

p9

p10

p11

q

12

Example

li: data at internal node

pi: data at leaf node

(note: left-right labels are arbitrary)



l1

l2 l3

l4 l5 l6 l7

l8 l9 l10

p1 p2

p3

p4 p5

p6

p7 p8

p9 p10 p11

l1

l2

l3

l4

l5

l7

l6

l8

l9

l10

p1

p2
p3

p4

p5

p6

p7

p8

p9

p10

p11

q

12

Example

li: data at internal node

pi: data at leaf node

(note: left-right labels are arbitrary)



l1

l2 l3

l4 l5 l6 l7

l8 l9 l10

p1 p2

p3

p4 p5

p6

p7 p8

p9 p10 p11

l1

l2

l3

l4

l5

l7

l6

l8

l9

l10

p1

p2
p3

p4

p5

p6

p7

p8

p9

p10

p11

q

12

Example

li: data at internal node

pi: data at leaf node

(note: left-right labels are arbitrary)



l1

l2 l3

l4 l5 l6 l7

l8 l9 l10

p1 p2

p3

p4 p5

p6

p7 p8

p9 p10 p11

l1

l2

l3

l4

l5

l7

l6

l8

l9

l10

p1

p2
p3

p4

p5

p6

p7

p8

p9

p10

p11

q

12

Example

li: data at internal node

pi: data at leaf node

(note: left-right labels are arbitrary)



l1

l2 l3

l4 l5 l6 l7

l8 l9 l10

p1 p2

p3

p4 p5

p6

p7 p8

p9 p10 p11

l1

l2

l3

l4

l5

l7

l6

l8

l9

l10

p1

p2
p3

p4

p5

p6

p7

p8

p9

p10

p11

q

12

Example

li: data at internal node

pi: data at leaf node

(note: left-right labels are arbitrary)



l1

l2 l3

l4 l5 l6 l7

l8 l9 l10

p1 p2

p3

p4 p5

p6

p7 p8

p9 p10 p11

l1

l2

l3

l4

l5

l7

l6

l8

l9

l10

p1

p2
p3

p4

p5

p6

p7

p8

p9

p10

p11

q

12

Example

li: data at internal node

pi: data at leaf node

(note: left-right labels are arbitrary)



l1

l2 l3

l4 l5 l6 l7

l8 l9 l10

p1 p2

p3

p4 p5

p6

p7 p8

p9 p10 p11

l1

l2

l3

l4

l5

l7

l6

l8

l9

l10

p1

p2
p3

p4

p5

p6

p7

p8

p9

p10

p11

q

12

Example

li: data at internal node

pi: data at leaf node

(note: left-right labels are arbitrary)



l1

l2 l3

l4 l5 l6 l7

l8 l9 l10

p1 p2

p3

p4 p5

p6

p7 p8

p9 p10 p11

l1

l2

l3

l4

l5

l7

l6

l8

l9

l10

p1

p2
p3

p4

p5

p6

p7

p8

p9

p10

p11

q

12

Example

li: data at internal node

pi: data at leaf node

(note: left-right labels are arbitrary)



l1

l2 l3

l4 l5 l6 l7

l8 l9 l10

p1 p2

p3

p4 p5

p6

p7 p8

p9 p10 p11

l1

l2

l3

l4

l5

l7

l6

l8

l9

l10

p1

p2
p3

p4

p5

p6

p7

p8

p9

p10

p11

q

12

Example

li: data at internal node

pi: data at leaf node

(note: left-right labels are arbitrary)



l1

l2 l3

l4 l5 l6 l7

l8 l9 l10

p1 p2

p3

p4 p5

p6

p7 p8

p9 p10 p11

l1

l2

l3

l4

l5

l7

l6

l8

l9

l10

p1

p2
p3

p4

p5

p6

p7

p8

p9

p10

p11

q

12

Example

li: data at internal node

pi: data at leaf node

(note: left-right labels are arbitrary)



l1

l2 l3

l4 l5 l6 l7

l8 l9 l10

p1 p2

p3

p4 p5

p6

p7 p8

p9 p10 p11

l1

l2

l3

l4

l5

l7

l6

l8

l9

l10

p1

p2
p3

p4

p5

p6

p7

p8

p9

p10

p11

q

12

Example

li: data at internal node

pi: data at leaf node

(note: left-right labels are arbitrary)



l1

l2 l3

l4 l5 l6 l7

l8 l9 l10

p1 p2

p3

p4 p5

p6

p7 p8

p9 p10 p11

l1

l2

l3

l4

l5

l7

l6

l8

l9

l10

p1

p2
p3

p4

p5

p6

p7

p8

p9

p10

p11

q

12

Example

li: data at internal node

pi: data at leaf node

(note: left-right labels are arbitrary)



l1

l2 l3

l4 l5 l6 l7

l8 l9 l10

p1 p2

p3

p4 p5

p6

p7 p8

p9 p10 p11

l1

l2

l3

l4

l5

l7

l6

l8

l9

l10

p1

p2
p3

p4

p5

p6

p7

p8

p9

p10

p11

q

12

Example
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Example

q

query time = Ω(dn)

worst-case input (non-unif. distrib.):

long skinny cells

⇒



The constant cd is exponential in d. Indeed, when q sits near a vertex of the decomposition, its NN-ball intersects the 2d neighboring cells, which thus have to be inspected. This is fine for the complexity, as point cloud density means basically n >> 2d, so the factor cd is reasonable in this case.
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Example

q

query time = O(cd logn)

best-case input (unif. distrib.):

small fat cells

⇒



The constant cd is exponential in d. Indeed, when q sits near a vertex of the decomposition, its NN-ball intersects the 2d neighboring cells, which thus have to be inspected. This is fine for the complexity, as point cloud density means basically n >> 2d, so the factor cd is reasonable in this case.
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Example

q

query time = O(cd logn)

best-case input (unif. distrib.):

small fat cells

⇒

Randomness should help!

(many variants: priority search, early backtracking, random cutting hyperplanes, etc.)



Random Projection/Partition Trees



Notes: - this is a variant of the RPT-Max in the original (STOC’08) paper, with the same behavior. - another variant of is the RPT-Mean, which splits according to the deviation of the points w.r.t. the mean, with a similar (yet slightly different) behavior.
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Exploiting randomness: RP-trees

Random Projection/Partition tree:

at each node (corresponding to some cell C):

- choose v ∼ unif(Sd−1) and β ∼ unif([ 1
4
, 3

4
])

- let H = v⊥ + medianβ{(P ∩ C) · v}v

v

- partition P ∩ C by H (as in kd-tree)

H

kd-tree RP-tree
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Exploiting randomness: RP-trees

Prop: [Dasgupta, Freund’08]

There is a constant c > 0 such that, for any cell C
in a RP-tree built on P ∈ Rd, with probability at
least 1/2 (over the choice of v, β) all the cells lying
at least c k log k levels below C in the tree have at
most half the radius of C, where k = dim2(P∩C).

doubling dimension of S ⊆ Rd: smallest k ∈ N such that, for every Eu-
clidean ball B, B ∩ S can be covered by 2k Euclidean balls of half radius.

radius of S ⊆ Rd: smallest r > 0 such that ∃x ∈ C with B(x, r) ⊇ S.
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Exploiting randomness: RP-trees

Thm: [Dasgupta, Sinha’13]

Let ` = log(n/n0) and β̄ = 3
4

.

Pv,β [defeatist search does not return NNP (q)] ≤
∑̀
i=0

Φβ̄in log
2e

Φβ̄in

Φm :=
1

m

m∑
i=2

‖q − p1‖
‖q − pi‖

, where the pi are ordered by increasing distance to q

q q

p1

p1

Extreme cases:

Φ ≈ 0: p1 isolated, easy to find

Φ ≈ 1: p1 equidistant, hard to find
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Exploiting randomness: RP-trees

Thm: [Dasgupta, Sinha’13]

Suppose p1, · · · , pn
iid∼ µ continuous probability measure in Rd with doubling

dimension k ≥ 2. Then ∃c0 > 0 s.t. for any q ∈ Rd and δ < 1/e, with proba.
≥ 1− 3δ over the choice of the pi’s:

Pv,β [defeatist search does not return NNP (q)] ≤ c0(k+lnn0)

(
8 ln 1/δ

n0

)1/k

doubling dimension of µ: smallest k ∈ N such that, for every x ∈ Rd and
every r > 0: µ(B(x, 2r)) ≤ 2k µ(B(x, r)).



note: this is not the case for vanilla kd-trees , cf. bad
example in 2D with the data points along a circle.
→ generalization: take the union of unit intervals
along the coordinate axes:

S =

d⋃
i=1

[0, 1]vi

Then, the doubling dimension of S is log d while any
kd-tree needs to have depth at least d to split points
sampled from S.

13

Exploiting randomness: RP-trees

Thm: [Dasgupta, Sinha’13]

Suppose p1, · · · , pn
iid∼ µ continuous probability measure in Rd with doubling

dimension k ≥ 2. Then ∃c0 > 0 s.t. for any q ∈ Rd and δ < 1/e, with proba.
≥ 1− 3δ over the choice of the pi’s:

Pv,β [defeatist search does not return NNP (q)] ≤ c0(k+lnn0)

(
8 ln 1/δ

n0

)1/k

doubling dimension of µ: smallest k ∈ N such that, for every x ∈ Rd and
every r > 0: µ(B(x, 2r)) ≤ 2k µ(B(x, r)).

→ take n0 ∝ (k ln k)k ln 1/δ to make Pv,β [· · · ] an arbitrarily small constant

→ query time: O(d((k ln k)k + log n))
sensitive to intrinsic dim.

requires to know k
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Exploiting randomness: RP-trees

Thm: [Dasgupta, Sinha’13]

Suppose p1, · · · , pn
iid∼ µ continuous probability measure in Rd with doubling

dimension k ≥ 2. Then ∃c0 > 0 s.t. for any q ∈ Rd and δ < 1/e, with proba.
≥ 1− 3δ over the choice of the pi’s:

Pv,β [defeatist search does not return NNP (q)] ≤ c0(k+lnn0)

(
8 ln 1/δ

n0

)1/k

Variant: spill-trees (overlapping splits)

β 1− β 1/2 + α
1/2 + α

(RP-tree) (spill-tree)
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Exploiting randomness: RP-trees

Thm: [Dasgupta, Sinha’13]

Suppose p1, · · · , pn
iid∼ µ continuous probability measure in Rd with doubling

dimension k ≥ 2. Then ∃c0 > 0 s.t. for any q ∈ Rd and δ < 1/e, with proba.
≥ 1− 3δ over the choice of the pi’s:

Pv,β [defeatist search does not return NNP (q)] ≤ c0(k+lnn0)

(
8 ln 1/δ

n0

)1/k

Variant: spill-trees (overlapping splits)

β 1− β 1/2 + α
1/2 + α

(RP-tree) (spill-tree)

similar behavior



recall that RP-trees only have a certain probability of success (Monte-Carlo) → Las Vegas version: build and search multiple trees in parallel, keeping the best result (compare distances to query point) (note: number of trees depends on target precision)
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Benchmarking

contenders effect of size on winners

RP-trees vs. other methods on data sets of 100k, 1M and 31M features
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Benchmarking

contenders effect of size on winners

Random kd-trees (RP-trees, spill-trees) are fast, scalable and reliable
on data with (low-dimensional) intrinsic structure



Locality-Sensitive Hashing



Back to the NN problem

15

q

NNP (q)

d(q, P ) Curse of Dimensionality: every DS

for NN-search has either exponential

size or exponential query time (in d)

in the worst case.

pre-processing input: P

query input: q

goal: find p ∈NNP (q)

→ holds in theory and in practice for exact NN queries [Weber et al. ’98]



cet article propose egalement une methode optimale pour resoudre le probleme approchecet article propose egalement une methode optimale pour resoudre le probleme approche
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q

NNP (q)

d(q, P )

(1 + ε)d(q, P ) NNP (q, ε)

Curse of Dimensionality: every DS

for NN-search has either exponential

size or exponential query time (in d)

in the worst case.

pre-processing input: P

query input: q

, ε

Back to the ε-NN problem

goal: find p ∈NNP (q, ε)

→ holds in theory and in practice for exact NN queries [Weber et al. ’98]

→ still holds for approximate queries in decision tree model [Arya et al. ’98]



cet article propose egalement une methode optimale pour resoudre le probleme approchecet article propose egalement une methode optimale pour resoudre le probleme approche
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q

NNP (q)

d(q, P )

(1 + ε)d(q, P ) NNP (q, ε)

Curse of Dimensionality: every DS

for NN-search has either exponential

size or exponential query time (in d)

in the worst case.

pre-processing input: P

query input: q

, ε

Back to the ε-NN problem

goal: find p ∈NNP (q, ε)

→ holds in theory and in practice for exact NN queries [Weber et al. ’98]

→ still holds for approximate queries in decision tree model [Arya et al. ’98]

→ no longer true in Real-RAM model thanks to LSH [Indyk, Motwani ’98]



Locality-Sensitive Hashing

16

Comparing elements via hashing:

Z

X

int hashCode()

hashCode : X → Z

x = y ⇒ hashCode(x)=hashCode(y)

(no collisions hypothesis)

x 6= y ⇒ hashCode(x)6=hashCode(y)
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Comparing elements via hashing:

Z

X

int hashCode()

hashCode : X → Z

x = y ⇒ hashCode(x)=hashCode(y)

(no collisions hypothesis)

x 6= y ⇒ hashCode(x)6=hashCode(y)

Metric case (X,d): given r > 0,

d(x, y) ≤ r ⇒ hashCode(x)=hashCode(y)

d(x, y) > r ⇒ hashCode(x)6=hashCode(y)



Locality-Sensitive Hashing

16

Comparing elements via hashing:

Z

X

int hashCode()

hashCode : X → Z

x = y ⇒ hashCode(x)=hashCode(y)

(no collisions hypothesis)

x 6= y ⇒ hashCode(x)6=hashCode(y)

Metric case (X,d): given r > 0,

d(x, y) ≤ r ⇒ hashCode(x)=hashCode(y)

d(x, y) > r ⇒ hashCode(x)6=hashCode(y)

too good to be true → allow for some slack



Locality-Sensitive Hashing
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Def: Given r1 < r2, p1 > p2 and U ⊂ N, a family F of hash functions
f : (X,d)→ U is (r1, r2, p1, p2)-sensitive if ∀x, y ∈ X,

• d(x, y) ≤ r1 ⇒ P[f(x) = f(y)] ≥ p1
• d(x, y) ≥ r2 ⇒ P[f(x) = f(y)] ≤ p2

(probability is over a random choice of function
according to a given probability distribution over F)



Locality-Sensitive Hashing

16

Def: Given r1 < r2, p1 > p2 and U ⊂ N, a family F of hash functions
f : (X,d)→ U is (r1, r2, p1, p2)-sensitive if ∀x, y ∈ X,

• d(x, y) ≤ r1 ⇒ P[f(x) = f(y)] ≥ p1
• d(x, y) ≥ r2 ⇒ P[f(x) = f(y)] ≤ p2

Example 1: (X, d) = ({0, 1}d, dH)
(0,0,0) (1,0,0)

(0,1,1) (1,1,1)

(1,1,0)

(0,0,1)

→ take F = {fi}di=1 where fi(b1 · · · bd) = bi | unif. proba. on F

→ F is (r, r(1 + ε), 1− r
d
, 1− r(1+ε)

d
)-sensitive for all r ≥ 1 and ε ≥ 0.

(probability is over a random choice of function
according to a given probability distribution over F)

(1,0,1)

(0,1,0)



probability is over the choice of f ∈ F

Locality-Sensitive Hashing

16

Def: Given r1 < r2, p1 > p2 and U ⊂ N, a family F of hash functions
f : (X,d)→ U is (r1, r2, p1, p2)-sensitive if ∀x, y ∈ X,

• d(x, y) ≤ r1 ⇒ P[f(x) = f(y)] ≥ p1
• d(x, y) ≥ r2 ⇒ P[f(x) = f(y)] ≤ p2

Example 1: (X, d) = ({0, 1}d, dH)
(0,0,0) (1,0,0)

(0,1,1) (1,1,1)

(1,1,0)

(0,0,1)

→ take F = {fi}di=1 where fi(b1 · · · bd) = bi | unif. proba. on F

→ F is (r, r(1 + ε), 1− r
d
, 1− r(1+ε)

d
)-sensitive for all r ≥ 1 and ε ≥ 0.

proof: ∀x, y, Pf [f(x) = f(y)] = d−dH(x,y)
d

= 1− dH(x,y)
d

x

y

dH(x, y) bits differ ⇒ d − dH(x, y) functions
make x and y collide

(probability is over a random choice of function
according to a given probability distribution over F)

(1,0,1)

(0,1,0)



Locality-Sensitive Hashing

16

Def: Given r1 < r2, p1 > p2 and U ⊂ N, a family F of hash functions
f : (X,d)→ U is (r1, r2, p1, p2)-sensitive if ∀x, y ∈ X,

• d(x, y) ≤ r1 ⇒ P[f(x) = f(y)] ≥ p1
• d(x, y) ≥ r2 ⇒ P[f(x) = f(y)] ≤ p2

Example 2: (X, d) = (Rd, ‖ · ‖2)

→ take F = {fv,b}b∈[0,r]

v∈Rd where fv,b(x) = bx·v+b
r
c

→ choose v = (v1, · · · , vd) with vi ∼ N (0, 1), and b uniformly in [0, r]

→ F is (r, r(1 + ε), p1, p2) sensitive for p1 = g(1) and p2 = g(1 + ε),

where g(κ) = 1− 2cdf(−r/κ)− 2√
2πr/κ

(1− e−r
2/2κ2

)

(probability is over a random choice of function
according to a given probability distribution over F)

cumulative density func. of normal distrib.



Locality-Sensitive Hashing

16

Def: Given r1 < r2, p1 > p2 and U ⊂ N, a family F of hash functions
f : (X,d)→ U is (r1, r2, p1, p2)-sensitive if ∀x, y ∈ X,

• d(x, y) ≤ r1 ⇒ P[f(x) = f(y)] ≥ p1
• d(x, y) ≥ r2 ⇒ P[f(x) = f(y)] ≤ p2

(probability is over a random choice of function
according to a given probability distribution over F)

Lemma [Johnson, Lindenstrauss 84]:

For any dimensions 0 < k < d there is a probability distribution µ over
the projections Rd → Rk such that, given any set P of n points in Rd and
any ε ∈ (0, 1) with k > 10 lnn/ε2, a projection π : Rd → Rk sampled at
random from µ satisfies w.h.p.

∀p, q ∈ P, (1− ε)‖p− q‖ ≤ ‖π(p)− π(q)‖ ≤ (1 + ε)‖p− q‖



Locality-Sensitive Hashing

16

Def: Given r1 < r2, p1 > p2 and U ⊂ N, a family F of hash functions
f : (X,d)→ U is (r1, r2, p1, p2)-sensitive if ∀x, y ∈ X,

• d(x, y) ≤ r1 ⇒ P[f(x) = f(y)] ≥ p1
• d(x, y) ≥ r2 ⇒ P[f(x) = f(y)] ≤ p2

(probability is over a random choice of function
according to a given probability distribution over F)

Lemma [Johnson, Lindenstrauss 84]:

For any dimensions 0 < k < d there is a probability distribution µ over
the projections Rd → Rk such that, given any set P of n points in Rd and
any ε ∈ (0, 1) with k > 10 lnn/ε2, a projection π : Rd → Rk sampled at
random from µ satisfies w.h.p.

∀p, q ∈ P, (1− ε)‖p− q‖ ≤ ‖π(p)− π(q)‖ ≤ (1 + ε)‖p− q‖

Proof idea: take π(x) =
∑k
i=1(x·vi)vi, where the vi are random vectors in Rd whose

coordinates are chosen i.i.d. according to N (0, 1). Then exploit the concentration of
measure on the sphere to show that π induces a low distortion.



here and in what follows, take k of the order of logn, as per the JL lemma

Locality-Sensitive Hashing
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Def: Given r1 < r2, p1 > p2 and U ⊂ N, a family F of hash functions
f : (X,d)→ U is (r1, r2, p1, p2)-sensitive if ∀x, y ∈ X,

• d(x, y) ≤ r1 ⇒ P[f(x) = f(y)] ≥ p1
• d(x, y) ≥ r2 ⇒ P[f(x) = f(y)] ≤ p2

→ General idea:

- choose k-dimensional vector of random functions (f1, · · · , fk) ∈ Fk

- pre-process P by hashing its points into the corresponding hash table

- given q ∈ X, hash q and choose collision with smallest distance

(probability is over a random choice of function
according to a given probability distribution over F)



here and in what follows, take k of the order of logn, as per the JL lemma

Locality-Sensitive Hashing

16

Def: Given r1 < r2, p1 > p2 and U ⊂ N, a family F of hash functions
f : (X,d)→ U is (r1, r2, p1, p2)-sensitive if ∀x, y ∈ X,

• d(x, y) ≤ r1 ⇒ P[f(x) = f(y)] ≥ p1
• d(x, y) ≥ r2 ⇒ P[f(x) = f(y)] ≤ p2

Technical detail: family works only for fixed r1, r2

→ General idea:

- choose k-dimensional vector of random functions (f1, · · · , fk) ∈ Fk

- pre-process P by hashing its points into the corresponding hash table

- given q ∈ X, hash q and choose collision with smallest distance

→ fix r1 = r and r2 = r(1 + ε), and solve (r, ε)-NN query

(probability is over a random choice of function
according to a given probability distribution over F)



The (r, ε)-NN problem (pleb)

17

Goal: pre-process P such that, for any query point q,
• if d(q, P ) ≤ r then answer YES and return some p ∈NNP (q, r, ε),
• if d(q, P ) > r(1 + ε) then answer NO,
• else (r < d(q, P ) ≤ r(1 + ε)) give any of the above answers.

q
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Step 1: boost the sensitivity of the hash family

G = {g = (f1, · · · , fk) ∈ Fk | f1, · · · , fk chosen randomly in F}



The (r, ε)-NN problem (pleb)

17

Goal: pre-process P such that, for any query point q,
• if d(q, P ) ≤ r then answer YES and return some p ∈NNP (q, r, ε),
• if d(q, P ) > r(1 + ε) then answer NO,
• else (r < d(q, P ) ≤ r(1 + ε)) give any of the above answers.

Step 1: boost the sensitivity of the hash family

G = {g = (f1, · · · , fk) ∈ Fk | f1, · · · , fk chosen randomly in F}

→ ∀x, y, d(x, y) ≤ r ⇒ P[g(x) = g(y)] ≥ pk1 (coords. are independent)

d(x, y) > r(1 + ε) ⇒ P[g(x) = g(y)] ≤ pk2



here, τ is the number of times the experiment is repeated in order to achieve a constant proba. of success (basically, τ ≈ n%)

The (r, ε)-NN problem (pleb)

17

Goal: pre-process P such that, for any query point q,
• if d(q, P ) ≤ r then answer YES and return some p ∈NNP (q, r, ε),
• if d(q, P ) > r(1 + ε) then answer NO,
• else (r < d(q, P ) ≤ r(1 + ε)) give any of the above answers.

Step 2: pre-process the data points

- choose τ random functions g1, · · · , gτ from boosted hash family G,

- ∀i = 1, · · · , τ , hash every point p ∈ P into Hi using gi(p) as the key

- initialise τ hash tables H1, · · · , Hτ

- keep only one arbitrary point per non-empty entry



The (r, ε)-NN problem (pleb)

17

Goal: pre-process P such that, for any query point q,
• if d(q, P ) ≤ r then answer YES and return some p ∈NNP (q, r, ε),
• if d(q, P ) > r(1 + ε) then answer NO,
• else (r < d(q, P ) ≤ r(1 + ε)) give any of the above answers.

Step 2: pre-process the data points

H1 H2 Hτ· · ·

p

g1 g2

gτ

P



The (r, ε)-NN problem (pleb)

17

Goal: pre-process P such that, for any query point q,
• if d(q, P ) ≤ r then answer YES and return some p ∈NNP (q, r, ε),
• if d(q, P ) > r(1 + ε) then answer NO,
• else (r < d(q, P ) ≤ r(1 + ε)) give any of the above answers.

Step 2: pre-process the data points

H1 H2 Hτ· · ·

P

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)



The (r, ε)-NN problem (pleb)

17

Goal: pre-process P such that, for any query point q,
• if d(q, P ) ≤ r then answer YES and return some p ∈NNP (q, r, ε),
• if d(q, P ) > r(1 + ε) then answer NO,
• else (r < d(q, P ) ≤ r(1 + ε)) give any of the above answers.

H1 H2 Hτ· · ·

PStep 3: hash the query point using the gi

q

g1
g2

gτ



The (r, ε)-NN problem (pleb)

17

Goal: pre-process P such that, for any query point q,
• if d(q, P ) ≤ r then answer YES and return some p ∈NNP (q, r, ε),
• if d(q, P ) > r(1 + ε) then answer NO,
• else (r < d(q, P ) ≤ r(1 + ε)) give any of the above answers.

Step 3: hash the query point using the gi

- let p1, · · · , pl be the collisions (l ≤ τ)

- if some pj is such that d(pj , q) ≤ r(1 + ε) then return YES and pj

- else return NO
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• else (r < d(q, P ) ≤ r(1 + ε)) give any of the above answers.

Analysis in a nutshell:

- test ⇒ return NO whenever d(q, P ) > r(1 + ε)



The (r, ε)-NN problem (pleb)

17

Goal: pre-process P such that, for any query point q,
• if d(q, P ) ≤ r then answer YES and return some p ∈NNP (q, r, ε),
• if d(q, P ) > r(1 + ε) then answer NO,
• else (r < d(q, P ) ≤ r(1 + ε)) give any of the above answers.

Analysis in a nutshell:

- test ⇒ return NO whenever d(q, P ) > r(1 + ε)

- if ∃p ∈ P s.t. d(p, q) ≤ r, then

P[p collides with q in Hi] ≥ pk1
∀p′ ∈ P \B(q, r(1 + ε)), P[p′ collides with q in Hi | p collides with q in Hi]

=
P[p and p′ collide with q in Hi]

P[p collides with q in Hi]

≤ P[p′ collides with q in Hi]
P[p collides with q in Hi]

≤
(
p2
p1

)k

for a fixed i ∈ {1, · · · , τ},



Traduction de union bound: inegalite de Boole

The (r, ε)-NN problem (pleb)

17

Goal: pre-process P such that, for any query point q,
• if d(q, P ) ≤ r then answer YES and return some p ∈NNP (q, r, ε),
• if d(q, P ) > r(1 + ε) then answer NO,
• else (r < d(q, P ) ≤ r(1 + ε)) give any of the above answers.

Analysis in a nutshell:

- test ⇒ return NO whenever d(q, P ) > r(1 + ε)

- if ∃p ∈ P s.t. d(p, q) ≤ r, then for a fixed i ∈ {1, · · · , τ},

union bound ⇒ P[Hi succeeds] ≥ pk1
(

1− n
(
p2
p1

)k)
τ independent hash tables ⇒

P[some Hi succeeds] ≥ 1−
(

1− pk1
(

1− n
(
p2
p1

)))τ



Traduction de union bound: inegalite de Boole

noter que c = O(1) en pratique et que % est de l’ordre de 1
1+ε

The (r, ε)-NN problem (pleb)

17

Goal: pre-process P such that, for any query point q,
• if d(q, P ) ≤ r then answer YES and return some p ∈NNP (q, r, ε),
• if d(q, P ) > r(1 + ε) then answer NO,
• else (r < d(q, P ) ≤ r(1 + ε)) give any of the above answers.

Analysis in a nutshell:

- test ⇒ return NO whenever d(q, P ) > r(1 + ε)

- if ∃p ∈ P s.t. d(p, q) ≤ r, then for a fixed i ∈ {1, · · · , τ},

union bound ⇒ P[Hi succeeds] ≥ pk1
(

1− n
(
p2
p1

)k)
τ independent hash tables ⇒

P[some Hi succeeds] ≥ 1−
(

1− pk1
(

1− n
(
p2
p1

)))τ
Let k = c logn and τ = n% where % = ln p1

ln p2
∈ (0, 1).

⇒ query time = O(n% logn), Pr[success]≥ 1− 1/nc%



From (r, ε)-NN to ε-NN

18

• Special case: (X,d) = ({0, 1}d,dH)

Observation: inter-point distances lie within {0, 1, 2, · · · , d}



From (r, ε)-NN to ε-NN

18

• Special case: (X,d) = ({0, 1}d,dH)

Observation: inter-point distances lie within {0, 1, 2, · · · , d}

→ take geometric sequence r0 = 1, r1 = 1 + ε, · · · , rj = (1 + ε)j , · · ·

→ for j = 0 to dlog1+ε de = O( 1ε log d), solve (rj , rj+1)-NN query

→ return the output point of the (rjl , rjl+1)-NN query

→ let jl be the lowest j s.t. the answer to (rj , rj+1)-MM query is YES

→ if no YES answer, return output of case dH(q, P ) = 0

→ solve case dH(q, P ) = 0 independently (use lexicographical sorting)



From (r, ε)-NN to ε-NN

18

• Special case: (X,d) = ({0, 1}d,dH)

Observation: inter-point distances lie within {0, 1, 2, · · · , d}

→ query time = O( 1εn
% log n log d)

(becomes O(dn% logn) if arithmetic sequence is used)



the 1 + ε(2 + ε) = (1 + ε)2 → (1 + ε) for geometric sequence → (1 + ε) for ε-approximation at a given radius r
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• General case: use hierarchical clustering tree [Har-Peled’01]

- consider geometric sequences of scales as before

- cluster data points in order to bound the lengths of the sequences

blue red chartreuse4 darkorchid4

Assign Pv ⊆ P and [rv, Rv] to each node v

ε-NN query:

- traverse down the tree along one root-leaf path

- at each visited node v, perform

(rv, ε)-NN and (Rv, ε)-NN queries

→ decide if d(q, P ) ∈ [rv, Rv] or not

→ if so, locate d(q, P ) in [rv, Rv]

→ if not, recurse into one child only

O( 1
ε

log n
ε

) (r, ε)-NN queries per ε-NN query ⇒ O( 1
ε
n% log n

ε
) query time
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Take-Home Messages

• (Approximate) NN search requires an exponential amount of resources
(space/time) in the algebraic comparison tree model [Arya et al. 98].

• Using random hashing allows to beat the curse of dimensionality.

• The price to pay is that algorithms become almost linear
→ in practice, a trade-off must be found.

• The complexity of the exact NN search problem is not fully understood.

→ what about reverse NN search? [Cheong et al. 09], [Arthur, O. 10], ...


