
Exposition and Interpretation of the Topology of
Neural Networks

Rickard Brüel Gabrielsson
Department of Computer Science

Stanford University
Stanford, USA

rbg@cs.stanford.edu

Gunnar Carlsson
Department of Mathematics

Stanford University
Stanford, USA

carlsson@stanford.edu

Abstract—Convolutional neural networks (CNN’s) are power-
ful and widely used tools. However, their interpretability is far
from ideal. One such shortcoming is the difficulty of deducing a
network’s ability to generalize to unseen data. We use topological
data analysis to show that the information encoded in the weights
of a CNN can be organized in terms of a topological data model
and demonstrate how such information can be interpreted and
utilized. We show that the weights of convolutional layers at
depths from 1 through 13 learn simple global structures. We
also demonstrate the change of the simple structures over the
course of training. In particular, we define and analyze the
spaces of spatial filters of convolutional layers and show the
recurrence, among all networks, depths, and during training,
of a simple circle consisting of rotating edges, as well as a less
recurring unanticipated complex circle that combines lines, edges,
and non-linear patterns. We also demonstrate that topological
structure correlates with a network’s ability to generalize to
unseen data and that topological information can be used to
improve a network’s performance. We train over a thousand
CNN’s on MNIST, CIFAR-10, SVHN, and ImageNet.

Index Terms—deep learning, interpretability, topological data
analysis

I. INTRODUCTION

Fig. 1: Primary and Secondary Circles.

The problem of understanding how convolutional neural
nets (CNN’s) work and learn is one of the fundamental
problems in machine learning. A related problem is CNN’s
tendency to overfit and be vulnerable to the so-called adver-
sarial behavior, where by making tiny imperceptible changes
to the input networks can be made to fail. In the context of
neural networks, it is important to study both the weights and
the activations, as these roughly constitute the ”coefficients”

and the outputs in the computational model. To date, work
in this area [1, 17, 18, 19, 20] has involved direct human
inspection of features constructed in the network and has
produced very interesting qualitative results. The first goal of
the present paper is to demonstrate that data sets constructed
out of the weights are organized in simple topological models,
which are strongly reminiscent of the results obtained in the
topological analysis of data sets of local patches in natural
images [2]. Such topological models yield insight by effec-
tively summarizing the global structure of the spaces of weight
configurations, and permit the exploration of density in the
data set. The key point here is that the study of the function
of neural nets is a problem in data analysis, since the density
of particular features is clearly relevant, and since we clearly
find the presence of anomalous and spurious elements. It is
important to model the most frequently occurring motifs in a
simple and understandable way.

The topological models we work with are part of topological
data analysis (TDA) [3, 9, 15, 16], which in addition to the
construction of the models provide invariants of the shape of
the data set (persistent homology), that confirm that the shape
of the data is as expressed in the model. We apply methods
of TDA to data sets of spatial filters of the convolutional
layers. In the i-th convolutional layer, an activation map is
constructed by sliding a filter (a set of weights) along the
spatial dimensions of all activation maps in the (i−1)-th layer.
A filter thus has dimensions w × h × c, where w and h are
the width and height of the spatial receptive field of the filter
while c is the number of activation maps in the (i−1)-th layer.
We define a spatial filter as one set of w × h weights with a
fixed c-dimension. One single filter give c spatial filters and
a convolutional layer with d number of activation maps give
d× c spacial filters of dimension w × h.

We perform analyses of CNN’s trained on the MNIST
[5], CIFAR-10 [6] SVHN [22], and ImageNet [7] data sets.
We find that in some cases, the models recapitulate the
topological structures that occurred in [2], namely the pri-
mary and secondary circles (see Figure 1), but that in other
situations different phenomena occur. The first part of this
paper constitutes an exploratory analysis of the spatial filters
described above.

The second goal of this paper is to investigate the findings

ar
X

iv
:1

81
0.

03
23

4v
3 

 [
cs

.C
V

] 
 1

8 
O

ct
 2

01
9



TABLE I: M(X, Y, Z) CNN-architecture

Conv Layer 1 Conv Layer 2 FC layer Readout

3×3×X filters 3×3×Y filters Z nodes 10 nodes
ReLU ReLU ReLU Softmax, Cross Entropy
2×2 max-pooling 2×2 max-pooling Dropout 0.5, ADAM

TABLE II: C(X, Y, Z) CNN-architecture

Conv Layer 1 Conv Layer 2 FC layer Readout

3×3×X filters 3×3×Y filters Z nodes 10 nodes
ReLU ReLU ReLU Softmax
3×3 max-pooling, stride: 2 2×2 max-pooling, stride: 1 Cross Entropy
Local response normalization1 Local response normalization1 L2 loss, SGD

from the first part and provide an interpretation. Noticing
that deeper networks with better generalizing abilities learn
stronger topological structures, we estimate that topological
structure is indicative of a network’s ability to generalize to
unseen data. If the topological structure learned by a network
is a signature of its hypothesis about its task, then, in the spirit
of Occam’s razor, it is unlikely that a network learns a simple
and strong topological structure that would only apply to its
specific dataset at hand and not generalize to related data.

Indeed, we demonstrate that topological structure is indica-
tive of a network’s ability to generalize between the MNIST
and SVHN datasets. Both datasets consists of images, MNIST
consists of handwritten digits while SVHN is a more diverse
dataset consisting of images of numbers for the addresses of
houses. We show how one can improve the performance of
a network trained on MNIST and evaluated on SVHN. We
confirm that a network trained on SVHN generalizes better
when evaluated on MNIST than vice versa, and show how
the topological structure of a network trained on SVHN is
’simpler’ than one trained on MNIST as predicted by our
hypothesis. We also show how this measure of topological
simplicity correlates with a networks performance on a held-
out test set, for both MNIST and SVHN. Lastly, we show
how extending a network with information obtained from our
topological study may increase a networks performance on
held out test data and speed up the learning process.

II. PERSISTENT HOMOLOGY

Within the domain of topology, homology refers to a collec-
tion of signatures that perform a sophisticated counting task
for features, such as connected components, loops, spheres,
etc. to obtain invariants of topological spaces. Its extension
to point clouds is called persistent homology, which has been
undergoing rapid development over the last 15 years. For each
dimension k, the output of persistent homology is a barcode,
i.e. an unordered collection of intervals on the real line, where
a long bar indicates the presence of a feature that lives over
a large range of values and is hence regarded as real, and
short bars are often attributed to noise. The barcode is a
multiscale summary analogous to the dendrograms that arise

1With depth radius of 4

in hierarchical clustering. For example, a long bar in the 1-
dimensional bar code reflects the presence of a loop in the data.
These invariants have been used in many different situations.
One such is the analysis of local image patches performed
in [2], which was motivated by the idea of understanding
the tuning of neurons in the primary visual cortex. One of
the outcomes of that paper is illustrated above (Figure 1),
where we see that the data (suitably thresholded by density) is
organized around three circles, which overlap to a degree, and
which reflect the tuning of neurons to edge and line detectors.
The idea of this paper is to perform this same analysis in the
context of neural nets rather than the visual pathway.

III. MAPPER

The topological modeling method (”Mapper”, see [10] for
details) we use starts with one, two, or three real valued
functions on the data, which we refer to as lenses, as well
as with a metric on the data set. By choosing overlapping
coverings of the real line by intervals of the same length and
overlap, we obtain coverings of R, R2, or R3, which allow
us to group the data into bins, one for each set in the cover.
We then perform a clustering step (single linkage clustering
with a fixed heuristic for the choice of threshold, specified in
[12]) based on the metric to generate a set of clusters. Because
the intervals overlap, it is possible for clusters attached to one
bin to overlap with clusters attached to another bin, and we
define a graph whose node set is the collection of clusters
we have defined, and where there is an edge connecting a
pair of clusters if the two clusters share at least one data
point. The topological version of this construction is well
known, and comes with guarantees concerning the degree to
which the construction approximates the original space. Such
guarantees are not yet available for Mapper, although work in
this direction is being done [11].

For the clustering step in the Mapper method we use
the Variance Normalized Euclidean (VNE) metric. The VNE
metric is a variant of standard Euclidean distance that first
normalizes each column of the data set by dividing by its
variance. For lenses we use PCA 1 and 2, which means that
the point cloud is projected onto its two principal components
before choosing overlapping coverings. Our results generalize
to other lenses such as Ayasdi’s Neighborhood Lens 1 and 2



[14] which capture more non-linear features of the data. How-
ever, since PCA lenses often gave the best-looking graphs and
for sake of consistency and simplicity we only present results
acquired by use of the PCA lenses. We use the implementation
of Mapper found in the Ayasdi software [12]. In Ayasdi,
resolution specifies the number of bins and gain determines
the overlap as follows: percent overlap = 1 − (1/gain). We
specify Mapper by notation Mapper(resolution, gain). In
addition, the color of the nodes is determined by the number of
points that the corresponding cluster contains, with red being
the largest and blue the lowest. This number is a rough proxy
for density.

IV. DENSITY FILTRATION

To determine the core subset of a point cloud X we perform
a density filtration of the points based on a nearest neighbor
estimate of the local density. For each x ∈ X and k > 0 we
calculate its distance to its k-th nearest neighbor, this distance
being inversely correlated to the density at x. Then we take the
top p, 0 < p ≤ 1, fraction of the densest points. We can thus
denote a density filtration with parameters k and p applied to
X by ρ(k, p,X).

Dimension 0

0 0.2 0.4 0.6

Dimension 1

0 0.2 0.4 0.6

Fig. 2: Mapper(30, 3) and barcodes of ρ(200, 0.3, 100×
M1

40K(64, 32, 64))

V. TOPOLOGICAL ANALYSIS OF WEIGHT SPACES

Our first experiments were conducted on networks trained
on the MNIST [5], CIFAR-10 [6], and ImageNet [7] datasets.
MNIST consists of gray scale images of digits, CIFAR-
10 consists of natural color images of 10 classes including
airplanes, cats, dogs, and ships, and ImageNet consists of
natural color images of a wide variety of classes. CNN’s have
achieved high accuracy all these data sets, suggesting that
CNN’s are able to learn structures present among the images
in the data sets.

We specify the architecture of our CNN’s as in Table I
and II, where X, Y, Z corresponds to the depth of the first
convolutional layer, the depth of the second convolutional
layer, and the number of nodes in the fully connected layer
respectively. If any of X, Y, or Z is 0 it means that that
whole column or block is removed from the network. E.g.
M(64, 32, 64) is a network of type found in Table I with a

first-convolutional-layer-depth of 64, a second-convolutional-
layer-depth of 32, followed by a fully connected layer with
64 nodes. For notational efficiency we use superscripts to
specify the convolutional layer from which the spatial filters
were extracted and subscripts to specify the number of batch
iterations the network was trained on. Further, preceding
this notation by ’N×’ means that N trained networks were
used as the source of the spatial filters. Thus, with previ-
ously developed notation we can write Mapper(30, 3) of
ρ(200, 0.2, 100 ×M1

100K(64, 32, 64)) to denote Mapper with
resolution 30 and gain 3 applied to a point cloud generated
by a k-nearest-neighbor filtration with k = 200, p = 0.2 of
the mean-centered and normalized 1st convolutional layers’
spatial filters of 100 networks of type M(64, 32, 64) trained
for 100,000 batch iterations. Throughout this work we treat
each spatial filter of a convolutional layer as a point, i.e. each
point is (width×height)-dimensional. We always mean-center
and normalize each point, which is done before any density
filtration. In addition, the padding on the convolutional layers
preserves spacial dimensionality and a batch size of 124 was
used throughout the experiments.

A. MNIST

MNIST was divided into 60,000 training examples and
10,000 test examples. We train 100 CNN’s of type
M(64,32,64) (Table I) for 40,000 batch iterations with a batch
size of 128 to a test accuracy of about 99.0%. These 100
trained CNN’s give us 64× 100 = 6400 9-dimensional points
(first layer spatial filters) which we mean-center and normalize.
We then use k-nearest-neighbor density filtration with k = 200
and p = 0.3 to get 1920 points. To this point cloud (equivalent
to ρ(200, 0.3, 100 × M1

40K(64, 32, 64))) we apply Mapper
(resolution = 30, gain = 3) with Variance Normalized
Euclidean Norm and two PCA lenses. The resulting graph
can be seen in Figure 2. We also put, next to the graph, the
mean of adjacent points to represent the spatial filters at that
position in the graph. Recall that color codes for the size of
the collection represented by the nodes, increasing from blue
to red.

Fig. 3: Mapper(30, 3) of 48 × C1
70K(64, 0, 64), and

Mapper(30, 3) of ρ(200, 0.5, 100× C1
70K(64, 32, 64))

From this graph we see how the learned spatial filters
are well approximated by the primary circle (Figure 1). The
circle is further supported by the corresponding barcodes



Dimension 0

0 0.2 0.4 0.6 0.8 1.0

Dimension 1

0 0.06 0.12 0.18 0.24 0.30

Fig. 4: Mapper(30, 3) of ρ(75, 0.37, C2
60K(64, 32, 64)), and

barcodes of ρ(15, 0.1, 100× C2
50K(64, 32, 64))

(Figure 2), which show one persistent loop or circle and one
persistent connected component. We obtain almost identical
results as in Figure 2 with Mapper(30, 3) and barcodes of
ρ(200, 0.3, 100×M1

40K(64, 0, 64)), i.e. only having one con-
volutional layer. The results were also robust to other network
configurations; the primary circle was found in the first layer
spatial filters of trained networks of types M(64, 8, 512),
M(64, 16, 512), and M(256, 32, 512).

For the same networks of type M(64, 32, 64) used to
generate Figure 2 we also obtain 64 × 32 × 100 = 204800
9-dimensional second layer spatial filters. After strong density
filtration (p = 0.1, k = 10) we find a very weak primary
circle: significantly weaker than that found in the first layer.

B. CIFAR-10

CIFAR-10 was divided into 50,000 training examples and
10,000 test examples. The input was preprocessed by taking a
random 24×24 crop of the image, applying a random left-right
flip, mean-centering, and normalizing.

1) Grayscaled: The input was grayscaled using the weights
(0.2989, 0.5870, 0.1140) for red, green, and blue respectively.
We train 100 CNN’s of configuration C(64, 32, 64) for 70,000
batch iterations (test accuracy of about 77.0%) to obtain
6,400 first-layer spatial filters and 204,800 second-layer spatial
filters. The result of (p = 0.5, k = 200) density filtration
and Mapper on the first-layer spatial filters can be seen in
Figure 3. We also train 48 CNN’s of configuration C(64, 0, 64)
for 70,000 batch iterations (test accuracy of about 69.2%) to
obtain 3,072 first-layer spatial filters; the result of Mapper on
these first-layer filters can also be see in Figure 3. Notice that
that in both cases we find five cluster structures but that the
clusters differ between the two cases. In the latter we find
clusters around horizontal and vertical lines while this is not
the case in the former. In neither of the ’well-trained’ networks
were we able to find a significant primary circle.

In Figure 4 we show the barcodes of the 204,800 second-
layer spatial filters from the 100 CNN’s of configuration
C(64, 32, 64) trained for 50,000 batch iterations (test accuracy
of about 76.2%) and with density filtration p = 0.1, k = 15.
In the same Figure we also show Mapper applied to the 2,048
second-layer spatial filters of a single CNN of configuration
C(64, 32, 64) trained for 60,000 batch iterations (test accuracy

of about 77.1 %), and with density filtration p = 0.37, k = 75.
Note that even though we needed more networks to get the
clear barcodes in Figure 4 showing the circle, the Mapper
output in the same Figure demonstrates that the primary circle
(with some other weaker structures) appears in the training of
a single network.

Next we look at the spatial filters of the first and second con-
volutional layers of 100 CNN’s of configuration C(64, 32, 64)
at batch iterations 100 to 2000. In Figure 5 we see Mapper
applied to both these point clouds. The vertical axis specifies
the index of the convolutional layer (1st or 2nd) and the
horizontal axis specifies the number of batch iterations. For the
2nd layer spatial filters a density filtration of p = 0.5, k = 15
was applied, while no density filtration was applied to the
first layer. We find that in the first layer the primary circle
reveals itself at 400 batch iterations, breaks apart at 500 batch
iterations, and then starts to reappear in the second layer at
2000 batch iterations. Note that the four edges in the first layer
shown at 200 and 1000 iterations appear relatively stable over
many batch iterations.

2) Color: We train 60 CNN’s of configuration
C(64, 32, 64) for 100,000 batch iterations (test accuracy
of about 81.2%). This gives us 11,520 first-layer spatial
filters and 204,800 second-layer spatial filters. In Figure 6
we show Mapper applied to the 11,520 first layer spatial
filters at 100,000 batch iterations and density filtration
p = 0.14, k = 200. In the same Figure we also show Mapper
applied to the 2,048 second layer spatial filters of a single
network at 50,000 batch iterations (test accuracy of about
79.9%) and density filtration p = 0.32, k = 10.

We also compute the barcodes of the point cloud of the
first-layer spatial filters and find an equally persistent circle
and connected component as in the barcodes of Figure 2. We
also compute the barcodes of all the 204,800 second-layer
spatial filters at 100,000 batch iterations and density filtration
p = 0.1, k = 15 and find similar support for the circle as
found in the gray scaled case of Figure 4. In addition, we
look at the first layer spatial filters for each input channel, i.e.
red, green, and blue, independently and find the primary circle
in each one.

Next we train 82 CNN’s of configuration C(48, 0, 64) but
without max-pooling and find among the 11,808 first layer
spacial filters at 30,000 batch iterations (test accuracy of about
71.8%) and filtration p = 0.32, k = 200 the two-circle model
showed in Figure 7. We see that the circles intersect at two
points and that one of the circles (the weaker) is the primary
circle while the other (the stronger) is a strange circle we have
not seen before. Two circles intersecting at two points have
three loops and one connected component, which can be seen
among the barcodes in Figure 7.

A closer examination of the 11,520 first-layer spatial filters
of the configuration C(64, 32, 64), trained for 100,000 batch
iterations at filtration p = 0.35, k = 100, shows that the three
circle model found in the image patch data [2] appears. The
barcodes and Mapper applied to this point cloud can be seen
in Figure 8. Note the stronger outer primary circle and the



Fig. 5: Mapper(30, 3) of 100× C1(64, 32, 64) and Mapper(70, 2) of ρ(15, 0.5, 100× C2(64, 32, 64)) from 100-2000 batch
iterations. Best viewed in color.

Fig. 6: Mapper(30, 3) of ρ(200, 0.14, 60 ×
C1

100K(64, 32, 64)), and Mapper(30, 3) of
ρ(10, 0.32, C2

50K(64, 32, 64))

Dimension 0

0 0.08 0.16 0.24 0.32 0.40

Dimension 1

0 0.08 0.16 0.24 0.32 0.40

Fig. 7: Mapper(30, 3) and barcodes of ρ(200, 0.32, 82 ×
C∗1

30K(48, 0, 64)). *: Without max-pooling

two weaker secondary circles; each of the secondary circles
intersect the primary circle twice but they do not intersect each
other.

We look at the spatial filters of the first and second con-
volutional layers of 60 CNN’s of configuration C(64, 32, 64)
at batch iterations 100 to 1500. In Figure 9 we see Mapper
applied to both these point clouds. The vertical axis specifies
the index of the convolutional layer (1st or 2nd) and the
horizontal axis specifies the number of batch iterations. Note,
in the first layer, that the primary circle appears at 300 batch

Dimension 0

0 0.06 0.12 0.18 0.24 0.30

Dimension 1

0 0.06 0.12 0.18 0.24 0.30

Fig. 8: Mapper(30, 3) and barcodes of ρ(100, 0.35, 100 ×
C1

100K(64, 32, 64)).

iterations, breaks apart at 500 iterations, and then reappears
at 1500 batch iterations with some inner secondary structures.
The primary circle appears in the second convolutional layer
at 1000 batch iterations.

C. ImageNet and VGG

We look at the spatial filters of a single pre-trained network
VGG16 [4] trained on ImageNet. VGG16 contains 13 convo-
lutional layers. The first layer only has 3 × 64 = 192 spatial
filters which proved too few to locate a significant topological
structure using Mapper or Persistence. However, subsequent
layers have many more spatial filters. In Figure 10 we include
the Mapper output of the 12 convolutional layers following the
first layer. For each layer we use Mapper(30, 3) and for layer
3-13 we use ρ(100, 0.3) while for layer 2 we use ρ(100, 0.4).

In all but the last layer (layer 13) we find the primary circle
as the dominant structure. We also find some patches that have
no counterpart in the Klein bottle model in [2], notably in
layers 5,6,8,11,12,and 13. Note that they appear in the higher
layers and may reflect things detected in higher layers in the
human visual pathway. We also look at a pre-trained network
VGG19 [4] where we find other dominant structures at certain
layers, for example already at layer 5 in VGG19 we find the
dominant circle in layer 13 of VGG16, see Figure 11. Also
note that this circle closely resembles that found in Figure 7.



Fig. 9: Mapper(33, 2) of 60 × C1(64, 32, 64) and Mapper(60, 2) of ρ(100, 0.3, 60 × C2(64, 32, 64)) from 100-1500 batch
iterations. Best viewed in color.

Fig. 10: Mapper applied to the convolutional spatial filters of VGG16

Fig. 11: Mapper(30, 3) of ρ(100, 0.3) of the fifth convolu-
tional layer in VGG19

VI. INTERPRETATION: A MEASURE OF GENERALITY

In this section we demonstrate a connection between the
simplicity of the topological structure of a network’s learned
weights and its ability to generalize to unseen data.

We look both at the networks ability to generalize to a
new dataset (Street House View Numbers, or SVHN [22])
and unseen data in form of held out test data. First we
train a network of type M(64, 32, 64) (Figure I) on MNIST
[5] under three different circumstances: (i) we fix the first
convolutional layer to a perfect discretization of the primary
circle (Figure 1), (ii) we fix the first convolutional layer to a
random gaussian, and (iii) we train the network as in regular
circumstances with nothing fixed. We train for 40,000 batch



iterations (to test accuracies of about 99%) and then evaluate
all the three networks on SVHN (we train and evaluate each
network three times and take the average of the evaluation
accuracies). We test on 26,032 images of SVHN that we
rescale to 28x28 and grayscale. We get the following test
accuracies: (i) 28 %, (ii) 12 %, and (iii) 11 %. This suggests
that enforcing an idealized version of the topological structure
found in the data helps improve the ability to generalize
across different data sets. SVHN is a more diverse dataset
that contains a greater variety of fonts and styles, including
digits that look handwritten. Indeed, training a network on
SVHN (to test accuracy of about 85%) and then evaluating
it on MNIST (50,000 images) we achieve a test accuracy of
54%. Therefore, in line with the hypothesis that a simpler
topology implies better generalization capabilities, we should
expect the network to learn a simpler structure when trained
on SVHN than on MNIST. We find that the first layer weights
of the network trained on SVHN learn a primary circle as
when trained on MNIST (Figure 2), only that the primary
circle is stronger in the SVHN case: the lifetime (birth time
subtracted from death time) of the most persistent (greatest
lifetime) 1-homology is significantly greater when trained for
40,000 batch iterations on SVHN than on MNIST (1.27 versus
1.10), where we used filtration ρ(100, 0.1) as defined in section
4.

Next, we train networks of type M(64, 32, 64) on MNIST
and SVHN and look at the correlation between the lifetime of
the most persistent 1-homology of the spatial filters at filtration
ρ(100, 0.1) and the test-accuracy within the same domain (i.e.
held out test data). We mean-center and normalize the data
and plot the test accuracy and persistence versus number of
batch iterations (Figure 12).

Fig. 12: Test Acc. and Persistence. Left: MNIST, right: SVHN

These results indicate a connection between test-accuracy
and the lifetime of the most persistent 1-dim homology of the
first-layer spatial filters, i.e. the ’topological simplicity.’

Lastly, we investigate the effect of appending idealized
weight features found in our topological analysis to the raw
input pixel values. To this end, we preprocessed each input
image with a set of fixed 3× 3 weights whose inner product
with each 3×3 patch of the input image was appended to the
central pixel value of the patch. We used three different sets
of preprocessing weights: (1) 64 weights from the idealized
primary circle found in Figure 2, (2) 64 weights from the
idealized extension to the three-circle structure found in Figure

Fig. 13: Network with appended information trained on
SVHN. Test accuracy vs. batch iterations

8, i.e. the Klein bottle as per [2], and (3) a random gaussian. In
Figure 13 we plot the test accuracy versus the number of batch
iterations for these three sets as well as for a ”Normal” network
without any appended preprocessed features, for networks
trained on SVHN. Networks trained on MNIST under the
same circumstances showed the same trend but the differences
were smaller. In accordance with our findings of their relative
strength in the weights of networks trained on MNIST or
SVHN, the idealized primary circle provides the greatest
improvements, followed by the Klein bottle. These both do
better than a set of random gaussians. We found substantial
improvement in the training time for both MNIST and SVHN
when using the additional primary circle features. A factor of
2 speed up was realized for MNIST, and a factor of 3.5 for
SVHN. MNIST is a much cleaner and therefore easier data
set, and we suspect that the speed up will in general be larger
for more complex data sets.

VII. DISCUSSION

We have demonstrated that topological modeling can be
used as an effective tool to obtain understanding of the func-
tioning of CNN’s. Many results we found about the topological
spaces of the trained weights were unexpected and non-trivial,
and went beyond those of the motivating paper [2]. We have
shown that the spaces of spatial filters learn simple global
structures. This is true not only for the first layer, but occurs
at least up to layers at depth 13. We also demonstrated the
change of the simple structures over the course of training.
We provided an interpretation of the topological structures we
found and how they might be used. We showed that topological
information can increase a network’s ability to generalize to
unseen data, be indicative of the generality of the dataset on
which the network was trained, and it can improve and speed
up the training of networks. We also showed a measure of
the strength (or simplicity) of a topological feature and how
it correlates with test accuracy on unseen test data. This lays
the foundations for future work that further demonstrates and
investigates the connection between the existence of simple
topological models of the learned weight spaces on the one
hand and the ability to generalize across data sets on the



other. We see both how topological information may serve
as a measure of generality as well as a potential regularizer.

VIII. ACKNOWLEDGEMENTS

We thank Primoz Skraba for his help and useful input. This
work was supported by Altor Equity Partners AB through
Unbox AI (unboxai.org).

REFERENCES

[1] Zeiler, Matthew D. & Fergus, Rob. (2014) Visualizing and Un-
derstanding Convolutional Networks. Computer Vision ECCV 2014,
pp. 818–833. Springer International Publishing

[2] Carlsson, Gunnar and Ishkhanov, Tigran and de Silva, Vin
and Zomorodian, Afra. (2008) On the Local Behavior of Spaces of
Natural Images. International Journal of Computer Vision 76(1)1-12

[3] Carlsson, Gunnar. (2009) Topology and Data. Bulletin (New
Series) of the American Mathematical Society 46(2) 255308

[4] Karen Simonyan and Andrew Zisserman. (2014) Very Deep
Convolutional Networks for Large-Scale Image Recognition. CoRR
1409.1556

[5] Y. LeCun. The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist.

[6] A. Krizhevsky. (2009) Learning multiple layers of features
from tiny images. Technical report, University of Toronto

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. FeiFei.
(2009) Imagenet: A large-scale hierarchical image database. In IEEE
Conference on Computer Vision and Pattern Recognition.

[9] G. Carlsson. (2014) Topological pattern recognition for point
cloud data. Acta Numerica 23 289-368

[10] G. Singh, F. Memoli, and G. Carlsson. (2007) Topological
methods for the analysis of high dimensional data sets and 3D object
recognition. Point Based Graphics, Prague

[11] M. Carriere and S. Oudot. (2015) Structure and stability of
the 1-Dimensional Mapper. arXiv:1511.05823.

[12] Ayasdi, TDA and machine learning (2016)
https://www.ayasdi.com/wp-content/uploads/ downloads/wp-tda-
and-machine-learning.pdf

[14] H. Sexton, J. Kloke. (2015) Systems and methods for capture
of relationships within information. U.S. Patent. 14/639,954. Filed
Mar. 5, 2015

[15] Tierny, Julien. (2017) Topological data analysis for scientific
visualization. Mathematics and Visualization. Springer, Cham. ISBN:
978-3-319-71506-3; 978-3-319-71507-062-07

[16] Topological and statistical methods for complex data. Tackling
large-scale, high-dimensional, and multivariate data spaces. Papers
from the Workshop on the Analysis of Largescale, High-Dimensional,
and Multi-Dimensional and Multi-Variate Data Using Topology and
Statistics held in Le Barp, June 1214, (2013). Edited by Janine
Bennett, Fabien Vivodtzev and Valerio Pascucci. Mathematics and
Visualization. Springer, Heidelberg, (2015). ISBN: 978-3-662-44899-
1; 978-3-662-44900-4 94-06

[17] Karen Simonyan, Andrea Vedaldi, Andrew Zisserman. (2014)
Deep Inside Convolutional Networks: Visualising Image Classifica-
tion Models and Saliency Maps. arXiv:1312.6034

[18] Anh Nguyen, Jason Yosinski, Jeff Clune. (2016) Multi-
faceted Feature Visualization: Uncovering the Different Types of
Features Learned By Each Neuron in Deep Neural Networks.
arXiv:1602.03616v2

[19] Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas
Brox, Jeff Clune. (2016) Synthesizing the preferred inputs for neurons
in neural networks via deep generator networks. arXiv:1605.09304

[20] A. Mahendran and A. Vedaldi. (2015) Understanding deep im-
age representations by inverting them. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Boston, MA, pp. 5188-5196

[21] Abhishek Sinha, Mausoom Sarkar, Aahitagni Mukherjee,
Balaji Krishnamurthy. (2017) Introspection: Accelerating Neural Net-
work Training By Learning Weight Evolution. arXiv:1704.04959

[22] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco,
Bo Wu, Andrew Y. Ng. (2011) Reading Digits in Natural Images with
Unsupervised Feature Learning NIPS Workshop on Deep Learning
and Unsupervised Feature Learning

http://yann.lecun.com/exdb/mnist
http://arxiv.org/abs/1511.05823
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1602.03616
http://arxiv.org/abs/1605.09304
http://arxiv.org/abs/1704.04959

	I Introduction
	II Persistent Homology
	III Mapper
	IV Density Filtration
	V Topological Analysis of Weight Spaces
	V-A MNIST
	V-B CIFAR-10
	V-B1 Grayscaled
	V-B2 Color

	V-C ImageNet and VGG

	VI Interpretation: A Measure of Generality
	VII Discussion
	VIII Acknowledgements

