
École Polytechnique 2025–2026

CSC_52064 Compilation
Mini Go

version 1 — January 9, 2026

The goal is to build a compiler for a tiny fragment of the Go programming language,
called Mini Go in the following, to x86-64 assembly. This fragment contains integers,
Booleans, strings, structures, and pointers. It is compatible with Go. This means that
Go can be used as a reference when needed.

The syntax of Mini Go is described in Sec. 1. A parser is provided, together with
abstract syntax. You have to implement static type checking (Sec. 2) and code generation
(Sec. 3).

1 Syntax
We use the following notations in grammars:

⟨rule⟩⋆ repeats ⟨rule⟩ an arbitrary number of times (including zero)
⟨rule⟩⋆t repeats ⟨rule⟩ an arbitrary number of times (including zero), with sep-

arator t
⟨rule⟩+ repeats ⟨rule⟩ at least once
⟨rule⟩+t repeats ⟨rule⟩ at least once, with separator t
⟨rule⟩? use ⟨rule⟩ optionally
(⟨rule⟩) grouping

Be careful not to confuse “⋆” and “+” with “*” and “+” that are Go symbols. Similarly,
do not confuse grammar parentheses with terminal symbols (and).

1.1 Lexical Conventions

Spaces, tabs, and newlines are blanks. Comments are of two kinds:

• delimited by /* and */ (and not nested);

• starting from // and extending to the end of line.

Identifiers follow the regular expression ⟨ident⟩:

⟨digit⟩ ::= 0–9
⟨alpha⟩ ::= a–z | A–Z | _
⟨ident⟩ ::= ⟨alpha⟩ (⟨alpha⟩ | ⟨digit⟩)⋆

The following identifiers are keywords:

1

https://go.dev/

else false for func if
import nil package return struct
true type var

Integer literals follow the regular expression ⟨integer⟩:

⟨hexa⟩ ::= 0–9 | a–f | A–F
⟨integer⟩ ::= ⟨digit⟩+

| (0x | 0X) ⟨hexa⟩+

Integer literals must be in the range −263 to 263 − 1. A string literal ⟨string⟩ is enclosed
with quotes ("). There are four escape sequences: \" (for the character "), \n (for a
newline character), \t (for a tabulation character), and \\ (for the character \).

Automatic insertion of semi-colons. To save the programmer the trouble of writing
semicolons at the end of lines that contain instructions, the lexical analyzer automatically
inserts a semicolon when it encounters a carriage return and the previously emitted token
was part of the following set:

⟨ident⟩ | ⟨integer⟩ | ⟨string⟩ | true | false | nil | return | ++ | – |) | }

1.2 Syntax

The grammar of source files is given in Fig. 1. The entry point is ⟨file⟩. Associativity
and priorities are given below, from lowest to strongest priority.

operation associativity
|| left
&& left
==, !=, >, >=, <, <= left
+, - left
*, /, % left
- (unary), * (unary), &, ! —
. left

Syntactic sugar. We have the following equivalences:

• instruction for b stands for for true b (infinite loop).

• instruction for i1; e; i2 b stands for { i1; for e { b i2 }}.

• instruction if e b stands for if e b else {}.

• instruction x1, . . . , xn := e1, . . . , em stands for var x1, . . . , xn = e1, . . . , em.

Syntactic sugar is eliminated at parsing time (in the provided parser).

2

⟨file⟩ ::= package main ; (import "fmt" ;)? ⟨decl⟩⋆ EOF
⟨decl⟩ ::= ⟨structure⟩ | ⟨function⟩
⟨structure⟩ ::= type ⟨ident⟩ struct { (⟨vars⟩+; ;?)? } ;
⟨function⟩ ::= func ⟨ident⟩ ((⟨vars⟩⋆, ,?)?) ⟨return _type⟩? ⟨bloc⟩ ;
⟨vars⟩ ::= ⟨ident⟩+, ⟨type⟩
⟨return_type⟩ ::= ⟨type⟩

| (⟨type⟩+, ,?)
⟨type⟩ ::= ⟨ident⟩

| * ⟨type⟩
⟨expr⟩ ::= ⟨integer⟩ | ⟨string⟩ | true | false | nil

| (⟨expr⟩)
| ⟨ident⟩
| ⟨expr⟩ . ⟨ident⟩
| ⟨ident⟩ (⟨expr⟩⋆,)
| fmt . Print (⟨expr⟩⋆,)
| ! ⟨expr⟩ | - ⟨expr⟩ | & ⟨expr⟩ | * ⟨expr⟩
| ⟨expr⟩ ⟨operator⟩ ⟨expr⟩

⟨operator⟩ ::= == | != | < | <= | > | >=
| + | - | * | / | % | && | ||

⟨bloc⟩ ::= { ((⟨stmt⟩)+; ;?)? }
⟨stmt⟩ ::= ⟨simple_stmt⟩ | ⟨bloc⟩ | ⟨stmt_if⟩

| var ⟨ident⟩+, ⟨type⟩? (= ⟨expr⟩+,)?
| return ⟨expr⟩⋆,
| for ⟨bloc⟩
| for ⟨expr⟩ ⟨bloc⟩
| for ⟨simple_stmt⟩? ; ⟨expr⟩ ; ⟨simple_stmt⟩? ⟨bloc⟩

⟨simple_stmt⟩ ::= ⟨expr⟩
| ⟨expr⟩ (++ | –)
| ⟨expr⟩+, = ⟨expr⟩+,
| ⟨ident⟩+, := ⟨expr⟩+,

⟨stmt_if⟩ ::= if ⟨expr⟩ ⟨bloc⟩ (else (⟨bloc⟩ | ⟨stmt_if⟩))?

Figure 1: Grammar of Mini Go.

3

2 Static Typing
Static types τ are given by the following abstract syntax:

τ ::= int | bool | string | S | *τ

where S is a structure name. A typing context Γ contains structures (written S), variables
(written x : τ), and functions (written f(τ1, . . . , τn) ⇒ τ ′1, . . . , τ

′
m with n ≥ 0 and m ≥ 0).

Well-formed types. The judgment Γ ⊢ τ bf means “the type τ is well-formed in
environment Γ”. It is defined as follows:

Γ ⊢ int bf Γ ⊢ bool bf Γ ⊢ string bf

S ∈ Γ

Γ ⊢ S bf

Γ ⊢ τ bf

Γ ⊢ *τ bf

Structure fields. We write S{ x : τ } the fact that structure S has a field x of type τ .

Typing expressions. The judgment Γ ⊢ e : τ means “in the context Γ, the expression
e is well typed with type τ ”. The judgment Γ ⊢l e : τ additionally means that e is a left
value. These two judgments are defined by the following set of rules.

c constant of type τ

Γ ⊢ c : τ

Γ ⊢ τ bf

Γ ⊢ nil : *τ
x : τ ∈ Γ

Γ ⊢l x : τ

Γ ⊢l e : τ e ̸= _
Γ ⊢ e : τ

Γ ⊢ e : S S{ x : τ }
Γ ⊢ e.x : τ

Γ ⊢ e : *S e ̸= nil S{ x : τ }
Γ ⊢ e.x : τ

Γ ⊢l e : τ
′ Γ ⊢ e.x : τ

Γ ⊢l e.x : τ

Γ ⊢ e : int
Γ ⊢ - e : int

Γ ⊢ e : bool
Γ ⊢ !e : bool

Γ ⊢ e : *τ e ̸= nil
Γ ⊢l *e : τ

Γ ⊢l e : τ

Γ ⊢ &e : *τ
S ∈ Γ

Γ ⊢ new(S) : *S

Γ ⊢ e1 : τ Γ ⊢ e2 : τ op ∈ {==, !=} e1 ̸= nil ∨ e2 ̸= nil

Γ ⊢ e1 op e2 : bool

Γ ⊢ e1 : int Γ ⊢ e2 : int op ∈ {<, <=, >, >=}
Γ ⊢ e1 op e2 : bool

Γ ⊢ e1 : int Γ ⊢ e2 : int op ∈ {+, -, *, /, %}
Γ ⊢ e1 op e2 : int

Γ ⊢ e1 : bool Γ ⊢ e2 : bool op ∈ {&&, ||}
Γ ⊢ e1 op e2 : bool

Γ ⊢ f(e1, . . . , en) ⇒ τ1
Γ ⊢ f(e1, . . . , en) : τ1

4

Typing function calls. The judgment Γ ⊢ f(e1, . . . , en) ⇒ τ1, . . . , τm means “in the
context Γ, the function call f(e1, . . . , en) is well typed and returns m values of types
τ1, . . . , τm”. It is defined as follows:

f(τ1, . . . , τn) ⇒ τ ′1, . . . , τ
′
m ∈ Γ ∀i, Γ ⊢ ei : τi

Γ ⊢ f(e1, . . . , en) ⇒ τ ′1, . . . , τ
′
m

n ≥ 2 f(τ1, . . . , τn) ⇒ τ ′1, . . . , τ
′
m ∈ Γ Γ ⊢ g(e1, . . . , ek) ⇒ τ1, . . . , τn

Γ ⊢ f(g(e1, . . . , ek)) ⇒ τ ′1, . . . , τ
′
m

The second rule allows us to pass the n results of function g to a function f expecting n
parameters.

Typing statements. The judgment Γ ⊢ s means “in the context Γ, the statement s is
well typed”. It is defined as follows:

Γ ⊢l e : int
Γ ⊢ e++

Γ ⊢l e : int
Γ ⊢ e–

∀i, Γ ⊢ ei : τi
Γ ⊢ fmt.Print(e1, . . . , en)

n ≥ 2 Γ ⊢ f(e1, . . . , ek) ⇒ τ1, . . . , τn
Γ ⊢ fmt.Print(f(e1, . . . , ek))

∀i, Γ ⊢l ei : τi ∀i, Γ ⊢ e′i : τi
Γ ⊢ e1, . . . , en=e′1, . . . , e′n

∀i, Γ ⊢l ei : τi Γ ⊢ f(e′1, . . . , e
′
m) ⇒ τ1, . . . , τn

Γ ⊢ e1, . . . , en=f(e′1, . . . , e′m)

Γ ⊢ e : bool Γ ⊢ b1 Γ ⊢ b2
Γ ⊢ if(e) b1 else b2

Γ ⊢ e : bool Γ ⊢ b

Γ ⊢ for e b

∀i, Γ ⊢ ei : τi
Γ ⊢ return e1, . . . , en

Γ ⊢ f(e1, . . . , ek) ⇒ τ1, . . . , τn
Γ ⊢ return f(e1, . . . , ek)

Γ ⊢ τ bf Γ + x1 : τ, . . . , xn : τ ⊢ {s2; . . . ; sm}
Γ ⊢ {var x1, . . . , xn τ ; s2; . . . ; sm}

Γ ⊢ τ bf ∀i, Γ ⊢ ei : τ Γ + x1 : τ, . . . , xn : τ ⊢ {s2; . . . ; sn}
Γ ⊢ {var x1, . . . , xn τ = e1, . . . , en; s2; . . . ; sn}

∀i, ei ̸= nil ∀i, Γ ⊢ ei : τi Γ + x1 : τ1, . . . , xn : τn ⊢ {s2; . . . ; sm}
Γ ⊢ {var x1, . . . , xn = e1, . . . , en; s2; . . . ; sm}

Γ ⊢ τ bf Γ ⊢ f(e1, . . . , ek) ⇒ τn Γ + x1 : τ, . . . , xn : τ ⊢ {s2; . . . ; sm}
Γ ⊢ {var x1, . . . , xn τ = f(e1, . . . , ek); s2; . . . ; sm}

Γ ⊢ f(e1, . . . , ek) ⇒ τ1, . . . , τn Γ + x1 : τ1, . . . , xn : τn ⊢ {s2; . . . ; sm}
Γ ⊢ {var x1, . . . , xn = f(e1, . . . , ek); s2; . . . ; sm}

Γ ⊢ {}
Γ ⊢ s1 Γ ⊢ {s2; . . . ; sn}

Γ ⊢ {s1; . . . ; sn}

In addition, all the variables introduced in the same block must have distinct names,
with the exception of variables named _.

5

Typing a file. The declarations in a file can appear in any order. In particular, func-
tions and structures are mutually recursive. It is suggested to proceed in three steps:

1. We add all the structures (but not their fields) to the environment, checking the
uniqueness of the structure names.

2. (a) We add all the functions to the environment, checking the uniqueness of the
function names. For a function declaration of the form

func f(x1 : τ1, . . . , xn : τn) (τ
′
1, . . . , τ

′
m) {b}

we check that the xi are pairwise distinct and that all types τi and τ ′j are
well-formed.

(b) We check and add all the structure fields to the environment. For a structure
declaration of the form

type S struct { x1 : τ1, . . . , xn : τn }

we check that the xi are pairwise distinct and that all types τi are well-formed.

3. (a) For each function declaration

func f(x1 : τ1, . . . , xn : τn) (τ
′
1, . . . , τ

′
m) {b}

we construct a new environment Γ by adding all the variables xi : τi to the
environment containing the structures and functions, and we type the block b
in Γ, i.e., we check Γ ⊢ b. Additionally, we check

• that every return statement in b returns a list of m values of the expected
types τ ′1, . . . , τ

′
m;

• if m > 0, that any control-flow branch in b reaches a return statement;
• that any local variable introduced in b, other than _, is further used.

(b) We check that there is no “recursive” structure, that is, no structure S with a
field (which contains a field, which contains a field, etc.) of type S, without
passing through a pointer.

Finally, we check that there exists a function main without parameters and without return
type and that the file contains import "fmt" if and only if there is at least one fmt.Print
instruction somewhere in the file.

6

3 Code Generation
The aim is to produce a simple but correct compiler. In particular, we do not attempt
to do any kind of register allocation, but simply use the stack to store any intermediate
calculations. Of course, it is possible, and even desirable, to use some x86-64 registers
locally. Memory is allocated using malloc and no attempt will be made to free memory.

Simplification. To make things simpler, you can assume that your project will not be
tested on programs passing structures by value, returning structures from functions, or
assigning structures. Beside, some program transformations are performed on the typed
syntax trees, between static typing and code generation, to

• get rid of multiple assignments;

• get rid of multiple returns;

• allocate all structures on the heap;

• allocate on the heap any variable whose address is taken with &.

(This is the purpose of module Rewrite, already implemented and used in minigo.ml.)

Value Representation. We propose a simple compilation scheme but you are free to
use any other. A value of type int, bool, string, or *τ is a 64-bit word. The value nil
is the integer 0. The values false and true are the integers 0 and 1, respectively. A
string is a pointer to a 0-terminated string allocated on the data segment (since it is not
possible to build strings dynamically in our fragment).

A structure is a heap-allocated block of a size large enough to accommodate all fields.
Your compiler maintains, for each field, its position within the structure, relative to the
start of the structure. Note that structures can be nested.

parameter n
...

parameter 1
return address

%rbp → saved %rbp
local variables

...
temporary values

%rsp → ...
↓

Stack Layout. We suggest a compilation scheme
where all parameters are passed on the stack (each of
them being a 64-bit word, since structures are never
passed), and where the return value is in register %rax
(again, no structure is returned). The stack frame is
depicted beside. Local variables are allocated on the
stack. (But note that no structure is allocated on the
stack, thanks to the rewriting performed prior to code
generation; see above.) The top of the stack is used
to store intermediate computations, such as the value
of the first operand during the evaluation of a binary
operation.

7

The assembly code generated by your compiler should look like:

.text

.globl main
main: call of Mini Go function main

xorq %rax, %rax
ret

. . . code of Mini Go functions

. . . assembly functions, if needed
.data

. . . string literals

Stack alignment. With recent versions of the libc, it is important to have a 16-byte
stack alignment when calling library functions such as malloc or printf (this is required
by the System V Application Binary Interface). Since it is not always easy to ensure
stack alignment when calling library functions (because of intermediate computations
temporarily stored on the stack), it may be convenient to introduce wrappers around
library functions, as follows:

malloc_
pushq %rbp
movq %rsp, %rbp
andq $-16, %rsp # 16-byte stack alignment
call malloc
movq %rbp, %rsp
popq %rbp
ret

These wrappers are simply concatenated to the generated assembly code — and of course
any call to malloc is replaced with a call to malloc_.

Here is a list of functions from the C standard library that you may want to use (feel
free to use any other):

void *malloc(size_t size);
malloc(n) returns a pointer to a freshly heap-allocated block of size n.
You don’t have to free memory.

void *calloc(size_t nmemb, size_t size);
calloc(n, s) returns a pointer to a freshly heap-allocated block of size n× s.
The memory is set to zero. You don’t have to free memory.

int printf(const char *format, ...);
printf(f,...) writes to standard output according to the format string
(ignore the return value). Register %rax must be set to zero before calling printf.

Important Notice. Grading involves (for one part only) some automated tests using
small Go programs with fmt.Print commands. They are compiled with your compiler,
and the output is compared to the expected output. This means you should be careful
in compiling calls to fmt.Print.

8

4 Project Assignment (due March 15, 6pm)
The project must be done alone or in pair. It must be delivered on Moodle, as a
compressed archive containing a directory with your name(s) (e.g. dupont-durand).
Inside this directory, source files of the compiler must be provided (no need to include
compiled files). The command make must create the compiler, named minigo. The
compilation may involve any tool (such as dune for OCaml) and the Makefile can be
as simple as a call to such a tool. The command minigo may be a script to run the
compiler, for instance if the compiler is not implemented in OCaml.

The archive must also contain a short report explaining the technical choices and,
if any, the issues with the project and the list of whatever is not delivered. The report
can be in format ASCII, Markdown, or PDF.

The command line of minigo accepts an option (among --debug, --parse-only and
--type-only) and exactly one file with extension .go. If the file is parsed successfully,
the compiler must terminate with code 0 if option --parse-only is on the command line.
Otherwise, the compiler moves to static type checking. Any type error must be reported
as follows:

file.go:4:6:
bad arity for function f

The location indicates the filename name, the line number, and the column number. Feel
free to design your own error messages. The exit code must be 1.

If the file is type-checked successfully, the compiler must exit with code 0 if option
--type-only is on the command line. Otherwise, the compiler generates x86-64 assembly
code in file file.s (same name as the input file, but with extension .s instead of extension
.go). The x86-64 file will be compiled and run as follows

gcc file.s -o file
./file

possibly with option -no-pie on the gcc command line. The output must be identical
to that of the command

go run file.go

For your convenience, the expected output is provided in file.out for each test file.

Tips. It is strongly recommended to proceed construction by construction, whether for
typing or code generation, in this order: output, arithmetic, local variables, functions,
structures.

9

https://moodle.ip-paris.fr/mod/assign/view.php?id=184429

	Syntax
	Lexical Conventions
	Syntax

	Static Typing
	Code Generation
	Project Assignment (due March 15, 6pm)

