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goal

goal for the next two lectures: implementing an optimizing compiler

we intend to use x86-64 in the best possible way, notably

• its 16 registers
• to pass parameters and to return results
• for intermediate computations

• its instructions
• such as the ability to add a constant to a register

add $3, %rdi
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compiler phases

emitting optimized code in a single pass is doomed to failure

we decompose code production into several phases

1. instruction selection

2. RTL (Register Transfer Language)

3. ERTL (Explicit Register Transfer Language)

4. LTL (Location Transfer Language)

5. linearization

(we follow the architecture of the CompCert compiler by Xavier Leroy;
see http://compcert.inria.fr/)
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compiler phases

the starting point the abstract syntax tree output by the type checker

Ttree

Istree

Rtltree

Ertltree

Ltltree

X86 64

Is

Rtl

Ertl

Ltl

Lin
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remark

this compiler architecture is independent of the programming paradigm
(imperative, functional, object oriented, etc.)

it is illustrated on a small fragment of C
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mini-C

a small fragment of C with

• integers (type int)

• heap-allocated structures, only pointers to structures, no pointer
arithmetic

• functions

• library functions putchar and malloc

to keep it simple, we assume 64-bit signed integers for values of type int
(unusual, but standard compliant) so that integers and pointers have the
same size
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mini-C

E → n
| L
| L = E
| E op E | - E | ! E
| x(E , . . . ,E)
| sizeof(struct x)

L → x
| E->x

op → == | != | < | <= | > | >=
| && | || | + | - | * | /

D → T x(T x , . . . ,T x) B
| struct x {V . . .V };

S → ;

| E;
| if (E ) S else S
| while (E ) S
| return E;
| B

B → { V . . .V S . . . S }

V → int x , . . . , x;
| struct x *x , . . . , *x;

T → int | struct x *

P → D . . .D
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examples

int fact(int x) {

if (x <= 1) return 1;

return x * fact(x-1);

}

struct list { int val; struct list *next; };

int print(struct list *l) {

while (l) {

putchar(l->val);

l = l->next;

}

return 0;

}
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starting point

we assume that type checking is done

in particular, we know the type of any sub-expression

note: for mini-C, types are not useful for code generation; yet,

• type checking ensures some form of safety e.g. we do not confuse an
integer and a pointer

• for a larger fragment of C, types would be needed e.g. to select
signed vs unsigned operations, to perform pointer arithmetic, etc.
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phase 1: instruction selection

the first phase is instruction selection

goal:

• replace C arithmetic operations with x86-64 operations

• replace structure field access with explicit memory access
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arithmetic operations

naively, we could simply translate each C arithmetic operation with the
corresponding x86-64 operation

however, x86-64 provides us with better instructions in some cases,
notably

• addition of a register and a constant

• bit shifting to the left or to the right, corresponding to a
multiplication or a division by a power of 2

• comparison of a register and a constant
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partial evaluation

beside, it is advisable to perform as much evaluation as possible during
compilation (partial evaluation)

examples: in some cases, we can simplify

• (1 + e1) + (2 + e2) into e1 + e2 + 3

• e + 1 < 10 into e < 9

• !(e1 < e2) into e1 ≥ e2
• 0× e into 0

important: the semantics must be preserved
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example 1

if some left/right evaluation order would be specified, we could simplify
(0− e1) + e2 into e2 − e1 only when e1 and e2 do not interfere

for instance if e1 and e2 are pure i.e. without side effect

with C, the evaluation order is not specified, so we can make the
simplification
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example 2

with unsigned C arithmetic, we could not replace e + 1 < 10 with e < 9
since e + 1 may be 0 by arithmetic overflow (the standard says that
unsigned arithmetic wraps around)

if e is the greatest integer, e + 1 < 10 holds but e < 9 does not

with signed arithmetic, however, arithmetic overflow is an undefined
behavior (meaning that the compiler may choose any behavior)

consequently, we can turn e + 1 < 10 into e < 9 with type int
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example 3

we can replace 0× e with 0 only if expression e has no side effect

since our expressions may involve function calls,
checking whether e has no effect is not decidable

but we can over-approximate the absence of effect

pure(n) = true
pure(x) = true

pure(e1 + e2) = pure(e1) ∧ pure(e2)
...

pure(e1 = e2) = false
pure(f (e1, . . . , en)) = false (we don’t know)
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smart constructors

to implement partial evaluation, we can use smart constructors

a smart constructor behaves like a syntax tree constructor but it performs
some simplifications on the fly

example: for addition, we introduce a smart constructor such as

val mk_add: expr -> expr -> expr (* OCaml *)

Expr mkAdd(Expr e1, Expr e2) // Java
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smart constructor for addition

here are some simplifications for addition:

mkAdd(n1, n2) = n1 + n2
mkAdd(0, e) = e
mkAdd(e, 0) = e
mkAdd(n, e) = addi n e
mkAdd(e, n) = addi n e

mkAdd(addi n1 e, n2) = mkAdd(n1 + n2, e)
mkAdd(e1, e2) = add e1 e2 otherwise
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termination

of course, the smart constructor must terminate

one has to figure out a positive measure over expressions that strictly
decreases at each recursive call of the smart constructor

Jean-Christophe Filliâtre CSC 52064 – Compilation optimizing compiler (1/2) 18



remark

instruction selection is where we can make a good use of lea (see lab 1)

example: 9x can be computed using lea(x,x,8)
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translation

instruction selection is then a recursive process over the expressions

IS(e1+e2) = mkAdd(IS(e1), IS(e2))
IS(e1-e2) = mkSub(IS(e1), IS(e2))
IS(!e1) = mkNot(IS(e1))
IS(-e1) = mkSub(0, IS(e1))

...

and a morphism for the other constructs
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memory access

instruction selection also introduces explicit memory access, written load

and store

a memory address is given by an expression together with a constant offset
(so that we make good use of indirect addressing)
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memory access

in our case, structure fields reads and assignments are turned into memory
accesses

we have a simple schema where each field is exactly one word long
(since type int is assumed to be 64 bits)

so

IS(e1->x) = load IS(e1) (n × wordsize)
IS(e1->x = e2) = store IS(e1) (n × wordsize) IS(e2)

where n is the index for field x in the structure and wordsize = 8 (64 bits)
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example

with the following structure

struct S { int a; int b; };

the instruction selection for expression

p->a = p->b + 2

is

store p 0 (addi 2 (load p 8))
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remark

with more types, we would have variable-length fields

the compiler then inserts padding bytes to align fields according to their
types

example: with the structure

struct S { int a; char b; int *c; char d; };

we get a total of 24 bytes and the following layout

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

a b ... c d ...
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statements and functions

instruction selection is a morphism over statements (if, while, etc.)

for functions, we erase types (not needed anymore) and we gather all
variables at the function level (type checking made all variables distinct)
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example

struct list {

int val;

struct list *next; };

int print(struct list *l) {

struct list *p;

p = l;

while (p) {

int c;

c = p->val;

putchar(c);

p = p->next;

}

return 0;

}

// no need for type list

// anymore

print(l) {

locals p, c;

p = l;

while (p) {

c = load p 0;

putchar(c);

p = load p 8;

}

return 0;

}
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another example

the classic factorial

int fact(int x) {

if (x <= 1) return 1;

return x * fact(x-1);

}

fact(x) {

locals:

if (setle x $1) return 1;

return imul x fact(addi $-1 x);

}
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phase 2: RTL

the next phase transforms the code into RTL (Register Transfer Language)

goal:

• get rid of the tree structure of expressions and statements, in favor of
a control-flow graph (CFG), to ease further phases; in particular, we
make no distinction between expressions and statements anymore

• introduce pseudo-registers to hold function parameters and
intermediate computations; there are infinitely many pseudo-registers,
that will later be either x86-64 registers or stack locations
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example

let us consider the C
expression

b * (3 + d)

that is the syntax tree

*

b +

3 d

let us assume that b and d

are in pseudo-registers #1 and
#2

and the final value in #3

then we build a CFG such as

mov #1 #4

mov #2 #5

add $3 #5

mov #4 #3

imul #5 #3

L1

L2

L3

L4

L5
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CFG representation

the CFG is a map from labels (program points) to RTL instructions

conversely, each RTL instruction lists the labels of the next instructions

for instance, the RTL instruction

mov n r → L

means “load constant n into pseudo-register r and transfer control to
label L”
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RTL instructions

mov n r → L
load n(r1) r2 → L
store r1 n(r2) → L
unop op r → L unary operation (neg, etc.)
binop op r1 r2 → L binary operation (add, mov, etc.)
ubranch br r → L1, L2 unary branching (jz, etc.)
bbranch br r1 r2 → L1, L2 binary branching (jle, etc.)
call r ← f (r1, . . . , rn) → L
goto → L
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building the CFG

we build a separate CFG for each function, with its own pseudo-registers
(intraprocedural analysis)

we build the CFG from bottom to top, which means we always know the
label of the continuation (the next instructions)
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translating expressions

to translate an expression, we provide

• a pseudo-register rd to receive its value

• a label Ld corresponding to the continuation

we return the label of the entry point for the evaluation of the expression

RTL(e, rd , Ld)
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translating expressions

the translation is pretty straightforward

RTL(n, rd , Ld) = add L1 : mov n rd → Ld with L1 fresh
return L1

RTL(add e1 e2, rd , Ld) = add L3 : add r2 rd → Ld with r2, L3 fresh
L2 ← RTL(e2, r2, L3)
L1 ← RTL(e1, rd , L2)
return L1

etc.

(read the code from bottom to top)
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translating expressions

for local variables, we set up a table where each variable is mapped to a
fresh pseudo-register

then reading or writing a local variable is a mov instruction (one of the
RTL binary operations)
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statements

to translate C operations && and ||, as well as if and while statements,
we use RTL branching instructions

example:

if (p != 0 && p->val == 1)

...branch 1...

else

...branch 2...

p != 0

p->val == 1

branch 1 branch 2

(the four blocks are sub-graphs)
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translating a condition

to translate a condition, we provide two labels

• a label Lt corresponding to the continuation if the condition holds

• a label Lf when it does not hold

we return the label of the entry point for the evaluation of the condition

RTLc(e, Lt , Lf )
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translating a condition

RTLc(e1 && e2, Lt , Lf ) = RTLc(e1, RTLc(e2, Lt , Lf ), Lf )

RTLc(e1 ||,e2, Lt , Lf ) = RTLc(e1, Lt , RTLc(e2, Lt , Lf ))

RTLc(e1 <= e2, Lt , Lf ) = add L3 : bbranch jle r2 r1 → Lt , Lf
L2 ← RTL(e2, r2, L3)
L1 ← RTL(e1, r1, L2)
return L1

RTLc(e, Lt , Lf ) = add L2 : ubranch jz r → Lf , Lt
L1 ← RTL(e, r , L2)
return L1

(of course, we can handle more particular cases)
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translating statements

to translate return, we provide a pseudo-register rret to receive the
function result and a label Lret corresponding to the function exit

RTL(;, Ld) = return Ld

RTL(return e;, Ld) = RTL(e, rret , Lret)

RTL(if(e)s1 else s2, Ld) = RTLc(e, RTL(s1, Ld), RTL(s2, Ld))

etc.
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loop

for a while loop, we have to build a cycle in the CFG

while (e) {

...s...

}

e

s

goto

Ld

Le

L
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loop

RTL(while(e)s, Ld) = Le ← RTLc(e, ,RTL(s, L), Ld)
add L : goto Le
return Le

e

s

goto

Ld

Le

L
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functions

the formal parameters of a function, and its result, now are
pseudo-registers

#3 f(#1, #2) { ... }

as well as actual parameters and result in a call

call #4 <- f(#5, #6)
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translating a function

translating a function involves the following steps:

1. we allocate fresh pseudo-registers for its parameters, its result, and its
local variables

2. we start with an empty graph

3. we pick a fresh label for the function exit

4. we translate the function body to RTL code, and the output is the
entry label in the CFG
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example

with the factorial function

int fact(int x) {

if (x <= 1) return 1;

return x * fact(x-1);

}

we get

#2 fact(#1)

entry : L10

exit : L1

locals:

L10: mov #1 #6 --> L9

L9 : jle $1 #6 --> L8, L7

L8 : mov $1 #2 --> L1

L7 : mov #1 #5 --> L6

L6 : add $-1 #5 --> L5

L5 : call #3<-fact(#5)--> L4

L4 : mov #1 #4 --> L3

L3 : mov #3 #2 --> L2

L2 : imul #4 #2 --> L1

(the graph is printed arbitrarily)
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example

with the factorial function

int fact(int x) {

if (x <= 1) return 1;

return x * fact(x-1);

}

we get

mov #1 #6

jle $1 #6

mov $1 #2 mov #1 #5

add $-1 #5

call #3<-fact(#5)

mov #1 #4

mov #3 #2

imul #4 #2

L2

L3

L4

L5

L6

L7L8

L9

L10
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example

with a loop

int loop(int x) {

int r;

r = 1;

while (2 <= x) {

r = r * x;

x = x - 1;

}

return r;

}

#2 loop(#1)

entry : L12

exit : L1

locals: #3

L12: mov $1 #3 --> L11

L11: mov $2 #6 --> L10

L10: mov #1 #7 --> L9

L9 : jle #7 #6 --> L8, L2

L8 : mov #3 #4 --> L7

L7 : mov #1 #5 --> L6

L6 : mov #4 #3 --> L5

L5 : imul #5 #3 --> L4

L4 : add $-1 #1 --> L3

L3 : goto L11

L2 : mov #3 #2 --> L1
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example

with a loop

int loop(int x) {

int r;

r = 1;

while (2 <= x) {

r = r * x;

x = x - 1;

}

return r;

}

mov $1 #3

mov $2 #6

mov #1 #7

jle #7 #6

mov #3 #2 mov #3 #4

mov #1 #5

mov #4 #3

imul #5 #3

add $-1 #1

goto L11

L2

L3

L4

L5

L6

L7

L8

L9

L10

L11

L12
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phase 3: ERTL

the third phase turns RTL into ERTL (Explicit Register Transfer
Language)

goal: make calling conventions explicit, namely here

• the first six parameters are passed in %rdi, %rsi, %rdx, %rcx, %r8,
%r9 and the next ones on the stack

• the result is returned in %rax

• in particular, putchar and malloc are library functions with a
parameter in %rdi and a result in %rax

• the division idivq requires dividend and quotient in %rax

• callee-saved registers must be preserved by the callee
(%rbx, %r12, %r13, %r14, %r15, %rbp)
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stack frame

the stack frame is as follows:

...
param. n

...
param. 7

return addr.
%rbp → saved %rbp

local 1
...

%rsp → local m
...

the m local variables area will hold all the pseudo-registers that could not
be allocated to physical registers; register allocation (phase 4) will
determine the value of m
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ERTL instructions (1/3)

in ERTL, we have those same instructions as in RTL:

mov n r → L
load n(r1) r2 → L
store r1 n(r2) → L
unop op r → L unary operation (neg, etc.)
binop op r1 r2 → L binary operation (add, mov, etc.)
ubranch br r → L1, L2 unary branching (jz, etc.)
bbranch br r1 r2 → L1, L2 binary branching (jle, etc.)
goto → L
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ERTL instructions (2/3)

in RTL, we had

call r ← f (r1, . . . , rn)→ L

in ERTL, we now have

call f (k)→ L

i.e. we are only left with the name of the function to call, since new
instructions will be inserted to load parameters into registers and stack,
and to get the result from %rax

we only keep the number k of parameters passed into registers (to be used
in phase 4)
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ERTL instructions (3/3)

finally, we have new instructions:

alloc frame → L allocate the stack frame
delete frame → L delete the stack frame

(note: we do not know its size yet)

get param n r → L access a parameter on stack (with n(%rbp))
push param r → L push the value of r

return explicit return instruction
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inserting new instructions

we do not change the structure of the control-flow graph; we simply insert
new instructions
• at the beginning of each function, to

• allocate the stack frame
• save the callee-saved registers
• copy the parameters into the corresponding pseudo-registers

• at the end of each function, to
• copy the pseudo-register holding the result into %rax
• restore the callee-saved registers
• delete the stack frame
• execute return

• around each function call, to
• copy the pseudo-registers holding the parameters into %rdi, . . . and

one the stack before the call
• copy %rax into the pseudo-register holding the result after the call
• pop the parameters, if any
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translation

we translate each RTL instruction to one/several ERTL instructions

mostly the identity operation, except for calls and division
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division

dividend and quotient are in %rax

the RTL instruction

L1 : binop div r1 r2 → L

becomes three ERTL instructions

L1 : binop mov r2 %rax→ L2
L2 : binop div r1 %rax→ L3
L3 : binop mov %rax r2 → L

where L2 and L3 are fresh labels

(beware of the direction: here we divide r2 by r1)
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translating a call

we translate the RTL instruction

L1 : call r ← f (r1, . . . , rn)→ L

into a sequence of ERTL instructions

1. copy min(n, 6) parameters r1, r2, . . . into %rdi,%rsi,. . .

2. if n > 6, pass other parameters on the stack with push param

3. execute call f (min(n, 6))

4. copy %rax into r

5. if n > 6, pop 8× (n − 6) bytes

that starts at the same label L1 and transfers the control at the end to the
same label L
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example

the RTL code

L5: call #3 <- fact(#5) --> L4

is translated into the ERTL code

L5 : mov #5 %rdi --> L12

L12: call fact(1) --> L11

L11: mov %rax #3 --> L4
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translating functions

RTL

r f(r,..,r)

locals : { r, ... }

entry : L

exit : L

cfg : ...

ERTL

f(n)

locals : { r, ... }

entry : L

cfg : ...
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callee-saved registers

for each callee-saved register, we allocate a fresh pseudo-register to save
it, that we add to the local variables of the function

note: for the moment, we do not try to figure out which callee-saved
registers will be used by the function
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function entry

at the function entry, we

• allocate the stack frame with alloc frame

• save the callee-saved registers

• copy the parameters into their pseudo-registers
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example

RTL

#2 fact(#1)

entry : L10

exit : L1

locals:

L10: mov #1 #6 --> L9

...

ERTL

fact(1)

entry : L17

locals: #7, #8

L17: alloc frame --> L16

L16: mov %rbx #7 --> L15

L15: mov %r12 #8 --> L14

L14: mov %rdi #1 --> L10

L10: mov #1 #6 --> L9

...

to make things simpler, we here assume that callee-saved registers are
limited to %rbx and %r12 (in practice, we also have %r13, %r14, %r15)
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function exit

at function exit, we

• copy the pseudo-register holding the result into %rax

• restore the saved registers

• delete the stack frame
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example

RTL

#2 fact(#1)

entry : L10

exit : L1

locals:

...

L8 : mov $1 #2 --> L1

...

L2 : imul #4 #2 --> L1

ERTL

fact(1)

entry : L17

locals: #7, #8

...

L8 : mov $1 #2 --> L1

...

L2 : imul #4 #2 --> L1

L1 : mov #2 %rax --> L21

L21: mov #7 %rbx --> L20

L20: mov #8 %r12 --> L19

L19: delete_frame --> L18

L18: return
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example

altogether, we get the following ERTL code:

fact(1)

entry : L17

locals: #7,#8

L17: alloc_frame --> L16

L16: mov %rbx #7 --> L15

L15: mov %r12 #8 --> L14

L14: mov %rdi #1 --> L10

L10: mov #1 #6 --> L9

L9 : jle $1 #6 --> L8, L7

L8 : mov $1 #2 --> L1

L1 : goto --> L22

L22: mov #2 %rax --> L21

L21: mov #7 %rbx --> L20

L20: mov #8 %r12 --> L19

L19: delete_frame --> L18

L18: return

L7 : mov #1 #5 --> L6

L6 : add $-1 #5 --> L5

L5 : goto --> L13

L13: mov #5 %rdi --> L12

L12: call fact(1) --> L11

L11: mov %rax #3 --> L4

L4 : mov #1 #4 --> L3

L3 : mov #3 #2 --> L2

L2 : imul #4 #2 --> L1
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disappointment

this is far from being what we think is a good x86-64 code for the factorial

at this point, we have to understand that

• register allocation (phase 4) will try to match physical registers to
pseudo-registers to minimize the use of the stack and the number of
mov

if for instance we map #8 to %r12, we remove the two instructions at
L15 and L20

• the code is not linearized yet (the graph is simply printed in some
arbitrary order); this will be done in phase 5, where we will try to
minimize jumps
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tail calls

if we intend to optimize tail calls, it has to be done during the RTL to
ERTL translation

indeed, the ERTL instructions will differ, and this change influences the
next phase (register allocation)
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tail calls

there is a difficulty, however, if the called function in a tail call does not
have the same number of stack parameters or of local variables, since the
stack frame has to be modified

at least two solutions

• limit tail call optimization to cases where the stack frame has the
same layout; this is the case for recursive calls!

• the caller patches the stack frame and transfers the control after the
instructions that allocate the stack frame
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phase 4: LTL

the next phase translates ERTL to LTL (Location Transfer Language)

the goal is to get rid of pseudo-registers, replacing them with

• physical registers preferably

• stack locations otherwise

this is called register allocation
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register allocation

register allocation is complex, and decomposed into several steps

1. we perform a liveness analysis
• it tells when the value contained in a pseudo-register is needed for the

remaining of the computation

2. we build an interference graph
• it tells what are the pseudo-registers that cannot be mapped to the

same location

3. we allocate registers using graph coloring
• it maps pseudo-registers to physical registers or stack locations
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liveness analysis

in the following, a variable stands for a pseudo-register or a physical
register

Definition (live variable)

Given a program point, a variable is said to be live if the value it contains
is likely to be used in the remaining of the computation.

we say “is likely” since “is used” is not decidable; so we seek for a sound
over-approximation
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example

live variables are drawn on
edges

mov $0 a

mov $1 b

L1: mov a c

mov b a

add c b

jl $1000 b L1

mov a %rax

mov $0 a

mov $1 b

mov a c

mov b a

add c b

jl $1000 b

mov a %rax

a

a, b

b, c

a, b, c

a, b

a, b

a

Jean-Christophe Filliâtre CSC 52064 – Compilation optimizing compiler (1/2) 71



definitions and uses

live variables can be deduced from definitions and uses of variables by the
various instructions

Definition

For an instruction at label ℓ in the control-flow graph, we write

• def (ℓ) for the set of variables defined by this instruction,

• use(ℓ) for the set of variables used by this instruction.

example: for the instruction add r1 r2 we have

def (ℓ) = {r2} and use(ℓ) = {r1, r2}
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computing live variables

to compute live variables, it is handy to map them to labels in the
control-flow graph (instead of edges)

but then we have to distinguish between variables live at entry and
variables live at exit of a given instruction

Definition

For an instruction at label ℓ in the control-flow graph, we write

• in(ℓ) for the set of live variables on the set of incoming edges to ℓ,

• out(ℓ) for the set of live variables on the set of outcoming edges
from ℓ.
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equations

the equations defining in(ℓ) and out(ℓ) are the following

 in(ℓ) = use(ℓ) ∪ (out(ℓ)\def (ℓ))

out(ℓ) =
⋃

s∈succ(ℓ) in(s)

these are mutually recursive functions and we seek for the smallest solution

we are in the case of a monotonous function over a finite domain and thus
we can use Tarski’s theorem (see lecture 3)
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fixpoint computation

mov $0 a

mov $1 b

mov a c

mov b a

add c b

jl $1000 b

mov a %rax

1

2

3

4

5

6

7

 in(ℓ) = use(ℓ) ∪ (out(ℓ)\def (ℓ))

out(ℓ) =
⋃

s∈succ(ℓ) in(s)

use def in out in out in out
1 a . . . a
2 b a . . . a a,b
3 a c a a b . . . a,b b,c
4 b a b b b,c . . . b,c a,b,c
5 b,c b b,c b,c b . . . a,b,c a,b
6 b b b a . . . a,b a,b
7 a a a . . . a

we get the fixpoint with 7 iterations
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fixpoint computation

assuming the control-flow graph has N nodes and N variables, a brute
force computation has complexity O(N3) in the worst case

we can improve efficiency in several ways

• traversing the graph in ”reverse order” and computing out before in
(on the previous example, we converge in 3 iterations instead of 7)

• merging nodes with a unique predecessor and a unique successor
(basic blocks)

• using a more subtle algorithm that only recomputes the in and out
that may have changed; this is Kildall’s algorithm

Jean-Christophe Filliâtre CSC 52064 – Compilation optimizing compiler (1/2) 76



Kildall’s algorithm

idea: if in(ℓ) changes, then we only need to redo the computation for the
predecessors of l{

out(ℓ) =
⋃

s∈succ(ℓ) in(s)

in(ℓ) = use(ℓ) ∪ (out(ℓ)\def (ℓ))

here is the algorithm:

let WS be a set containing all nodes

while WS is not empty

remove a node l from WS

old_in <- in(l)

out(l) <- ...

in(l) <- ...

if in(l) is different from old_in(l) then

add all predecessors of l in WS
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computing def and use

computing the sets def (ℓ) and use(ℓ) is straightforward for most
instructions

examples:

def use

mov n r {r} ∅
mov r1 r2 {r2} {r1}
unop op r {r} {r}
goto ∅ ∅
. . .
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computing def and use

this is more subtle for function calls

for a call, we express that any caller-saved register may be erased by the
call

def use

call f (k) caller-saved the first k registers of %rdi,%rsi,. . . ,%r9

last, for return, we express that %rax and all callee-saved registers may
be used

def use

return ∅ {%rax} ∪ callee-saved
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example

this was the ERTL code for fact

fact(1)

entry : L17

locals: #7,#8

L17: alloc_frame --> L16

L16: mov %rbx #7 --> L15

L15: mov %r12 #8 --> L14

L14: mov %rdi #1 --> L10

L10: mov #1 #6 --> L9

L9 : jle $1 #6 --> L8, L7

L8 : mov $1 #2 --> L1

L1 : goto --> L22

L22: mov #2 %rax --> L21

L21: mov #7 %rbx --> L20

L20: mov #8 %r12 --> L19

L19: delete_frame --> L18

L18: return

L7 : mov #1 #5 --> L6

L6 : add $-1 #5 --> L5

L5 : goto --> L13

L13: mov #5 %rdi --> L12

L12: call fact(1) --> L11

L11: mov %rax #3 --> L4

L4 : mov #1 #4 --> L3

L3 : mov #3 #2 --> L2

L2 : imul #4 #2 --> L1
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liveness for fact

L17: alloc_frame --> L16 in = %r12,%rbx,%rdi out = %r12,%rbx,%rdi

L16: mov %rbx #7 --> L15 in = %r12,%rbx,%rdi out = #7,%r12,%rdi

L15: mov %r12 #8 --> L14 in = #7,%r12,%rdi out = #7,#8,%rdi

L14: mov %rdi #1 --> L10 in = #7,#8,%rdi out = #1,#7,#8

L10: mov #1 #6 --> L9 in = #1,#7,#8 out = #1,#6,#7,#8

L9 : jle $1 #6 -> L8, L7 in = #1,#6,#7,#8 out = #1,#7,#8

L8 : mov $1 #2 --> L1 in = #7,#8 out = #2,#7,#8

L1 : goto --> L22 in = #2,#7,#8 out = #2,#7,#8

L22: mov #2 %rax --> L21 in = #2,#7,#8 out = #7,#8,%rax

L21: mov #7 %rbx --> L20 in = #7,#8,%rax out = #8,%rax,%rbx

L20: mov #8 %r12 --> L19 in = #8,%rax,%rbx out = %r12,%rax,%rbx

L19: delete_frame--> L18 in = %r12,%rax,%rbx out = %r12,%rax,%rbx

L18: return in = %r12,%rax,%rbx out =

L7 : mov #1 #5 --> L6 in = #1,#7,#8 out = #1,#5,#7,#8

L6 : add $-1 #5 --> L5 in = #1,#5,#7,#8 out = #1,#5,#7,#8

L5 : goto --> L13 in = #1,#5,#7,#8 out = #1,#5,#7,#8

L13: mov #5 %rdi --> L12 in = #1,#5,#7,#8 out = #1,#7,#8,%rdi

L12: call fact(1)--> L11 in = #1,#7,#8,%rdi out = #1,#7,#8,%rax

L11: mov %rax #3 --> L4 in = #1,#7,#8,%rax out = #1,#3,#7,#8

L4 : mov #1 #4 --> L3 in = #1,#3,#7,#8 out = #3,#4,#7,#8

L3 : mov #3 #2 --> L2 in = #3,#4,#7,#8 out = #2,#4,#7,#8

L2 : imul #4 #2 --> L1 in = #2,#4,#7,#8 out = #2,#7,#8
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next

• lab 7
• mini-Java continued

• lecture 8
• optimizing compiler 2/2
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