
École Polytechnique

CSC 52064 – Compilation

Jean-Christophe Filliâtre

object-oriented languages
functional languages

Jean-Christophe Filliâtre CSC 52064 – Compilation OO + fun 1

today

today we focus on the compilation of

1. object-oriented languages
• object layout
• dynamic dispatch

2. functional languages
• first-class functions
• tail call optimization

Jean-Christophe Filliâtre CSC 52064 – Compilation OO + fun 2

compiling OO languages

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 3

compiling OO languages

let us explain

• how an object is represented

• how a method call is implemented

let us use Java as an example (for the moment)

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 4

example

class Vehicle {

static int start = 10;

int position;

Vehicle() { position = start; }

void move(int d) { position += d; } }

class Car extends Vehicle {

int passengers;

void await(Vehicle v) {

if (v.position < position)

v.move(position - v.position);

else

move(10); } }

class Truck extends Vehicle {

int load;

void move(int d) {

if (d <= 55) position += d; else position += 55; } }

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 5

representing objects

an object is a heap-allocated block, containing

• its class (and a few other items of information)

• the values of its fields

the value of an object is a pointer to the block

key idea: simple inheritance allows us to store the value of some field x at
some fixed position in the block: own fields are placed after inherited fields

Vehicle

position

Car

position

passengers

Truck

position

load

note the absence of field start, which is static and thus allocated
elsewhere (for instance in the data segment)

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 6

example

Truck t = new Truck();

Car c = new Car();

c.passengers = 2;

c.move(60);

Vehicle v = c;

v.move(70);

c.await(t);

t

c

v

Truck
55
0

Car
130
2

position

load

position
passengers

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 7

field access

for each field, the compiler knows its position, that is the offset to add to
the object pointer

if for instance field position is at offset +16, then expression
e.position is compiled to

... # compile e in %rcx

movl 16(%rcx), %eax # field position at +16

this is sound, even if the compiler only knows the static type of e,
which may differ from the dynamic type (the class of the object)

it could even be a sub-class of Vehicule that is not yet defined!

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 8

terminology

overriding is the ability to redefine a method in a subclass
(so that objects in that subclass behave differently)

example: in class Truck

class Truck extends Vehicle {

...

void move(int d) { ... }

}

the method move, inherited from class Vehicle, is overridden

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 9

method call

the essence of OO languages lies in dynamic method call e.m(e1, . . . , en)
(aka dynamic dispatch / message passing)

to do this, we build class descriptors containing addresses to method
codes (aka dispatch table, vtable, etc.)

as for class fields, simple inheritance allows us to store the address of (the
code of) method m at a fixed offset in this descriptor

class descriptors can be allocated in the data segment; each object points
to its class descriptor

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 10

example

class Vehicule { void move(int d) {...} }

class Car extends Vehicule { void await(Vehicule v) {...}}

class Truck extends Vehicule { void move(int d) {...} }

descr. Vehicule

Vehicule move

descr. Car

Vehicule move

Car await

descr. Truck

Truck move

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 11

example

Truck t = new Truck();

Car c = new Car();

c.passengers = 2;

c.move(60);

Vehicle v = c;

v.move(70);

c.await(t);

t

c

v

55
0

130
2

Truck
Truck move

Car
Vehicule move
Car await

dynamic static

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 12

method call

to compile a call such as e.move(10)

1. we compile e; its value is a pointer to an object

2. this object contains a pointer to its class descriptor

3. inside, the code for method move is located at some offset known
from the compiler (for instance +8)

... # compile e into %rdi

movq $10, %rsi # parameter

movq (%rdi), %rcx # get the class descriptor

call *8(%rcx) # call method move

as for field access, the compiler has no need to know the actual class of
the object (the dynamic type)

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 13

be careful

if we write

Truck v = new Truck();

((Vehicule)v).move();

this is the method move from class Truck that is called
since the call is always compiled the same way

the cast only has an influence on the static type
(existence of the method + overloading resolution; see lecture 4)

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 14

super class

in practice, the class descriptor for C also points to the class that C
inherits from, called the super class of C

this can be a pointer to the descriptor of the super class
(for instance stored in the very first slot of the descriptor)

this allows subtyping tests at runtime (downcast or instanceof)

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 15

a few words on C++

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 16

example

let us reuse the vehicles example

class Vehicle {

static const int start = 10;

public:

int position;

Vehicle() { position = start; }

virtual void move(int d) { position += d; }

};

virtual means that method move can be overridden

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 17

example

class Car : public Vehicle {

public:

int passengers;

Car() {}

void await(Vehicle &v) { // call by reference

if (v.position < position)

v.move(position - v.position);

else

move(10);

}

};

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 18

example (cont’d)

class Truck : public Vehicle {

public:

int load;

Truck() {}

void move(int d) {

if (d <= 55) position += d; else position += 55;

}

};

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 19

example (cont’d)

#include <iostream>

using namespace std;

int main() {

Truck t; // object is stack-allocated

Car c;

c.passengers = 2;

c.move(60);

Vehicle *v = &c; // alias

v->move(70);

c.await(t);

}

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 20

representation

on this example, the object layout is not different from Java’s

descr. Vehicle

position

descr. Car

position

passengers

descr. Truck

position

load

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 21

multiple inheritance

but in C++, we also have multiple inheritance

consequence: we cannot use anymore the principle that

• the object layout for the super class is a prefix of the object layout of
the subclass

• the descriptor for the super class is a prefix of the descriptor for the
subclass

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 22

multiple inheritance

class Rocket {

public:

float thrust;

Rocket() { }

virtual void display() {}

};

class RocketCar : public Car, public Rocket {

public:

char *name;

void move(int d) { position += 2*d; }

};

descr. RocketCar

position

passengers

descr. Rocket

thrust

name

representations of Car and Rocket are appended

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 23

multiple inheritance

in particular, a cast such as

RocketCar rc;

... (Rocket)rc ...

is compiled using pointer arithmetic

... rc + 16 ...

this is not a no-op anymore

descr. RocketCar

position

passengers

descr. Rocket

thrust

name

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 24

multiple inheritance

let us now assume that Rocket also inherits from Vehicle

class Rocket : public Vehicle {

public:

float thrust;

Rocket() { }

virtual void display() {}

};

class RocketCar : public Car, public Rocket {

public:

char *name;

...

};

descr. RocketCar

position

passengers

descr. Rocket

position

thrust

name

we now have two fields position

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 25

multiple inheritance

and thus a possible ambiguity

class RocketCar : public Car, public Rocket {

public:

char *name;

void move(int d) { position += 2*d; }

};

vehicles.cc: In member function ‘virtual void RocketCar::move(int)’:

vehicles.cc:51:22: error: reference to ‘position’ is ambiguous

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 26

multiple inheritance

we have to say which one we refer to

class RocketCar : public Car, public Rocket {

public:

char *name;

void move(int d) { Rocket::position += 2*d; }

};

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 27

virtual inheritance

to have a single instance of Vehicle inside RocketCar, we need to modify
the way Car and Rocket inherit from Vehicle; this is virtual inheritance

class Vehicle { ... };

class Car : public virtual Vehicle { ... };

class Rocket : public virtual Vehicle { ... };

class RocketCar : public Car, public Rocket {

there is no ambiguity anymore:

public:

char *name;

void move(int d) { position += 2*d; }

};

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 28

three class diagrams

class Vehicle { ... };

class Car : Vehicle { ... };

class Rocket { ... };

class RocketCar : Car, Rocket { ... };

Vehicle

Car Rocket

RocketCar

class Vehicle { ... };

class Car : Vehicle { ... };

class Rocket : Vehicle { ... };

class RocketCar : Car, Rocket { ... };

Vehicle Vehicle

Car Rocket

RocketCar

class Vehicle { ... };

class Car : virtual Vehicle { ... };

class Rocket : virtual Vehicle { ... };

class RocketCar : Car, Rocket { ... };

Vehicle

Car Rocket

RocketCar

(the diamond)

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 29

if you are curious

g++’s command line option -fdump-lang-class outputs a text file
containing objects and tables layout

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 30

Java interfaces

though Java only features simple inheritance, interfaces make method call
more complex, in a way analogous to multiple inheritance

interface I {

void m();

}

class C {

void foo(I x) { x.m(); }

}

when compiling x.m(), we have no idea what the class of object x will be

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 31

multiple dispatch

instead of dispatching according to the type of the object, we can use the
types of all the actual parameters; this is called multiple dispatch

an example: Julia, a mathematically-oriented language

function +(x::Int64 , y::Int64) ... end

function +(x::Float64, y::Float64) ... end

function +(x::Date , y::Time) ... end

another example: CLOS (Common Lisp Object System)

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 32

remark

pattern matching, as we find in OCaml for instance, e.g.,

let rec eval = function

| Const n -> ...

| Call ("print", [e]) -> ...

| Call (f, el) -> ...

is a form of dynamic dispatch: the branch is selected according to some
runtime information

the polycopié (section 7.3) describes how the compiler turns pattern
matching into elementary operations

see also the comparison functional/object in lecture 2

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling OO languages 33

compiling functional languages

Jean-Christophe Filliâtre CSC 52064 – Compilation compiling functional languages 34

first-class functions

Jean-Christophe Filliâtre CSC 52064 – Compilation first-class functions 35

functional programming

on key aspect of functional programming is first-class functions, which
means that a function is a value like any other

in particular, we can

• receive a function as a parameter

• return a function as a result

• store a function in a data structure

• build new functions dynamically

Jean-Christophe Filliâtre CSC 52064 – Compilation first-class functions 36

be careful

the ability to pass functions as parameters already exists in languages such
as Algol, Pascal, Ada, etc.

similarly, the notion of function pointers already exists (Fortran, C, C++,
etc.)

but the notion of first-class functions is strictly more powerful

let us illustrate it with OCaml

Jean-Christophe Filliâtre CSC 52064 – Compilation first-class functions 37

a small fragment of OCaml

let us consider this fragment of OCaml

e ::= c
| x
| fun x → e
| e e
| let [rec] x = e in e
| if e then e else e

d ::= let [rec] x = e

p ::= d . . . d

Jean-Christophe Filliâtre CSC 52064 – Compilation first-class functions 38

nested functions

functions can be nested

let sum n =

let f x = x * x in

let rec loop i =

if i = n then 0 else f i + loop (i+1)

in

loop 0

scoping is usual

(let f x = x * x is sugar for let f = fun x -> x * x)

Jean-Christophe Filliâtre CSC 52064 – Compilation first-class functions 39

higher-order functions

we can pass functions as parameters

let square f x =

f (f x)

and return functions

let f x =

if x < 0 then fun y -> y - x else fun y -> y + x

here, the function returned by f uses x but the stack frame for f just
disappeared!

so we cannot compile functions in the usual way

Jean-Christophe Filliâtre CSC 52064 – Compilation first-class functions 40

closure

the solution is to use a closure (en français, une fermeture)

this is a heap-allocated data structure (to survive function calls)
containing

• a pointer to the code (of the function body)

• the values of the variables that may be needed by this code; this is
called the environment

P. J. Landin, The Mechanical Evaluation of Expressions,
The Computer Journal, 1964

Jean-Christophe Filliâtre CSC 52064 – Compilation first-class functions 41

variables in the environment

what are the variables to be stored in the environment of the closure
representing fun x → e ?

these are the free variables of fun x → e

the set fv(e) of the free variables of the expression e is computed as
follows:

fv(c) = ∅
fv(x) = {x}

fv(fun x → e) = fv(e) \ {x}
fv(e1 e2) = fv(e1) ∪ fv(e2)

fv(let x = e1 in e2) = fv(e1) ∪ (fv(e2) \ {x})
fv(let rec x = e1 in e2) = (fv(e1) ∪ fv(e2)) \ {x}
fv(if e1 then e2 else e3) = fv(e1) ∪ fv(e2) ∪ fv(e3)

Jean-Christophe Filliâtre CSC 52064 – Compilation first-class functions 42

example

let us consider the following program approximating
∫ 1
0 xndx

let rec pow i x =

if i = 0 then 1. else x *. pow (i-1) x

let integrate_xn n =

let f = pow n in

let eps = 0.001 in

let rec sum x =

if x >= 1. then 0. else f x +. sum (x +. eps) in

sum 0. *. eps

Jean-Christophe Filliâtre CSC 52064 – Compilation first-class functions 43

example

let us make constructions fun explicit and let us consider the closures

let rec pow =

fun i ->

fun x -> if i = 0 then 1. else x *. pow (i-1) x

• in the first closure, fun i ->, the environment is {pow}
• in the second closure, fun x ->, it is {i, pow}

Jean-Christophe Filliâtre CSC 52064 – Compilation first-class functions 44

example

let integrate_xn = fun n ->

let f = pow n in

let eps = 0.001 in

let rec sum =

fun x -> if x >= 1. then 0. else f x +. sum (x+.eps) in

sum 0. *. eps

• for fun n ->, the environment is {pow}
• for fun x ->, the environment is {eps, f, sum}

Jean-Christophe Filliâtre CSC 52064 – Compilation first-class functions 45

implementing the closure

the closure is a single heap-allocated block, whose

• first field contains the code pointer

• next fields contains the values of the free variables (the environment)

Jean-Christophe Filliâtre CSC 52064 – Compilation first-class functions 46

example

let rec pow i x = if i = 0 then 1. else x *. pow (i-1) x

let integrate_xn n =

let f = pow n in

let eps = 0.001 in

let rec sum x = if x >= 1. then 0. else f x +. sum (x+.eps) in

sum 0. *. eps

during the execution of integrate xn 100, we have four closures:

integrate xn

code

pow code

sum code
0.001

f

code
100pow

pow

i

pow

sum

eps

f

Jean-Christophe Filliâtre CSC 52064 – Compilation first-class functions 47

compilation

a good way to compile closures is to proceed in two steps

1. first, we replace all expressions fun x → e by explicit closure
constructions

clos f [y1, . . . , yn]

where the yi are the free variables of fun x → e and f is the name of
a global function

letfun f [y1, . . . , yn] x = e ′

where e ′ is derived from e by replacing constructions fun recursively
(this is called closure conversion)

2. we compile the obtained code, which only contains letfun function
declarations

Jean-Christophe Filliâtre CSC 52064 – Compilation first-class functions 48

example

on the example, we get

letfun fun2 [i,pow] x =

if i = 0 then 1. else x *. pow (i-1) x

letfun fun1 [pow] i =

clos fun2 [i,pow]

let rec pow =

clos fun1 [pow]

letfun fun3 [eps,f,sum] x =

if x >= 1. then 0. else f x +. sum (x +. eps)

letfun fun4 [pow] n =

let f = pow n in

let eps = 0.001 in

let rec sum = clos fun3 [eps,f,sum] in

sum 0. *. eps

let integrate_xn =

clos fun4 [pow]

Jean-Christophe Filliâtre CSC 52064 – Compilation first-class functions 49

abstract syntax

before

e ::= c
| x
| fun x → e
| e e
| let [rec] x = e in e
| if e then e else e

d ::= let [rec] x = e

p ::= d . . . d

after

e ::= c
| x
| clos f [x , . . . , x]
| e e
| let [rec] x = e in e
| if e then e else e

d ::= let [rec] x = e
| letfun f [x , . . . , x] x = e

p ::= d . . . d

Jean-Christophe Filliâtre CSC 52064 – Compilation first-class functions 50

variables

in the new syntax trees, an identifier x can be

• a global variable introduced by let

(allocated in the data segment)

• a local variable introduced by let in

(allocated in the stack frame / a register)

• a variable contained in a closure

• the argument of a function (the x of fun x -> e)

Jean-Christophe Filliâtre CSC 52064 – Compilation first-class functions 51

compilation scheme

each function has a single argument, passed in register %rdi

the closure is passed in register %rsi

the stack frame is as follows,
where v1, . . . , vm are the local variables

return address
%rbp → saved %rbp

v1
...
vm
...
↓

Jean-Christophe Filliâtre CSC 52064 – Compilation first-class functions 52

compilation

let us detail how to compile

• the construction of a closure clos f [y1, . . . , yn]

• a function call e1 e2
• the access to a variable x

• a function declaration letfun f [y1, . . . , yn] x = e

Jean-Christophe Filliâtre CSC 52064 – Compilation first-class functions 53

construction of a closure

to compile
clos f [y1, . . . , yn]

we proceed as follows

1. we allocate a block of size n + 1 on the heap (with a GC)

2. we store the address of f in field 0
(f is a label in the assembly code and we get its address with $f)

3. we store the values of the variables y1, . . . , yn in fields 1 to n

4. we return a pointer to the block

note: we delegate the deallocation of the block to the GC (see lecture 9)

Jean-Christophe Filliâtre CSC 52064 – Compilation first-class functions 54

function call

to compile a function call
e1 e2

we proceed as follows

1. we compile e1 into register %rsi
(its value is a p1 to a closure)

2. we compile e2 into register %rdi

3. we call the function whose address is contained in the first field of the
closure, with call *(%rsi)

this is a jump to dynamic address
(similar to what we did earlier to compile OO languages)

Jean-Christophe Filliâtre CSC 52064 – Compilation first-class functions 55

access to a variable

to compile the access to the variable x , we distinguish four cases

global variable
the value is stored at the address given by label x

local variable
the value is at n(%rbp) / in a register

variable contained in a closure
the value is at n(%rsi)

function argument
the value is in register %rdi

Jean-Christophe Filliâtre CSC 52064 – Compilation first-class functions 56

function declaration

last, to compile the declaration

letfun f [y1, . . . , yn] x = e

return address
%rbp → saved %rbp

v1
...
vm
...

we proceed as for a usual function declaration

1. save and set %rbp

2. allocate the frame (for the local variables of e)

3. evaluate e in register %rax

4. delete the stack frame and restore %rbp

5. execute ret

Jean-Christophe Filliâtre CSC 52064 – Compilation first-class functions 57

other languages

today we find closures in

• Java (since 2014 and Java 8)

• C++ (since 2011 and C++11)

in these languages, anonymous functions are called lambdas

Jean-Christophe Filliâtre CSC 52064 – Compilation first-class functions 58

closures in Java 8

a function is a regular object, with a method apply

LinkedList map(LinkedList<A> l, Function<A, B> f) {

... f.apply(x) ...

}

an anonymous function is introduced with ->

map(l, x -> { System.out.print(x); return x+y; })

the compiler builds a closure object (here capturing the value of y) with a
method apply

Jean-Christophe Filliâtre CSC 52064 – Compilation first-class functions 59

closures in C++

an anonymous function is introduced with []

for each(v.begin(), v.end(), [y](int &x){ x += y; });

we specify the variables captured in the closure (here y)

the default behavior is to capture by value

we may specify a capture by reference instead (here of s)

for each(v.begin(), v.end(), [y,&s](int x){ s += y*x; });

the compiler builds a closure (whose type is not accessible ⇒ use auto)

Jean-Christophe Filliâtre CSC 52064 – Compilation first-class functions 60

tail call optimization

Jean-Christophe Filliâtre CSC 52064 – Compilation tail call optimization 61

tail call

Definition

We say that a function call f (e1, . . . , en) that appears in the body of a
function g is a tail call if this is the last thing that g computes before it
returns.

by extension, we can say that a function is a tail recursive function if it
is a recursive function whose recursive calls are all tail calls

Jean-Christophe Filliâtre CSC 52064 – Compilation tail call optimization 62

tail calls and recursive functions

a tail call is not necessarily a recursive call

int g(int x) {

int y = x * x;

return f(y);

}

in a recursive function, we may have recursive calls that are tail calls and
others that are not

int f91(int n) {

if (n > 100) return n - 10;

return f91(f91(n + 11));

}

Jean-Christophe Filliâtre CSC 52064 – Compilation tail call optimization 63

compilation

what is the point with tail calls?

we can delete the stack frame of the function performing the tail call
before we make the call, since it is not needed afterwards

better, we can reuse it to make the tail call (in particular, the return
address is the right one)

said otherwise, we can make a jump rather than a call

Jean-Christophe Filliâtre CSC 52064 – Compilation tail call optimization 64

example

int fact(int acc, int n) {

if (n <= 1) return acc;

return fact(acc * n, n - 1);

}

traditional compilation

fact: cmpq $1, %rsi

jle L0

imulq %rsi, %rdi

decq %rsi

call fact

ret

L0: movq %rdi, %rax

ret

optimization

fact: cmpq $1, %rsi

jle L0

imulq %rsi, %rdi

decq %rsi

jmp fact # <--

L0: movq %rdi, %rax

ret

Jean-Christophe Filliâtre CSC 52064 – Compilation tail call optimization 65

example

the result is a loop

the code is indeed identical to the compilation of

int fact(int acc, int n) {

while (n > 1) {

acc *= n;

n--;

}

return acc;

}

Jean-Christophe Filliâtre CSC 52064 – Compilation tail call optimization 66

experimenting with gcc

the compiler gcc optimizes tail calls when we pass option
-foptimize-sibling-calls (included in option -O2)

have a look at the code produced by gcc -O2 on programs such as fact
or those of slide 63

Jean-Christophe Filliâtre CSC 52064 – Compilation tail call optimization 67

experimenting with gcc

in particular, we notice that

int f91(int n) {

if (n > 100) return n - 10;

return f91(f91(n + 11));

}

is compiled exactly as if we were compiling

int f91(int n) {

while (n <= 100)

n = f91(n + 11);

return n - 10;

}

Jean-Christophe Filliâtre CSC 52064 – Compilation tail call optimization 68

experimenting with ocamlopt

the OCaml compiler optimizes tail calls by default

the compilation of

let rec fact acc n =

if n <= 1 then acc else fact (acc * n) (n - 1)

is a loop, as with the C program

even if we started with a functional program (variables acc and n are
immutable)

Jean-Christophe Filliâtre CSC 52064 – Compilation tail call optimization 69

consequence

with tail call optimization, we get a more efficient code since we have
reduced memory access (we do not use call and ret anymore, which
manipulate the stack)

Jean-Christophe Filliâtre CSC 52064 – Compilation tail call optimization 70

other consequence

on the fact example, the stack space becomes constant

in particular, we avoid any stack overflow due to a too large number of
nested calls

Stack overflow during evaluation (looping recursion?).

Fatal error: exception Stack_overflow

Exception in thread "main" java.lang.StackOverflowError

Segmentation fault

etc.

Jean-Christophe Filliâtre CSC 52064 – Compilation tail call optimization 71

application: quicksort

if we implement quicksort as follows

void quicksort(int a[], int l, int r) {

if (r - l <= 1) return;

// partition a[l..r[in three

// l lo hi r

// +--------+--------+--------+

// a|...<p...|...=p...|...>p...|

// +--------+--------+--------+

...

quicksort(a, l, lo);

quicksort(a, hi, r);

}

we can overflow the stack

Jean-Christophe Filliâtre CSC 52064 – Compilation tail call optimization 72

application: quicksort

but if we make the first recursive call on the smallest half

void quicksort(int a[], int l, int r) {

...

if (lo - l < r - hi) {

quicksort(a, l, lo);

quicksort(a, hi, r);

} else {

quicksort(a, hi, r);

quicksort(a, l, lo);

}

}

the second call is a tail call and a logarithmic stack space is now
guaranteed

Jean-Christophe Filliâtre CSC 52064 – Compilation tail call optimization 73

application: quicksort

what if my compiler does not optimize tail calls (e.g. Java)?

no problem, do it yourself!

void quicksort(int a[], int l, int r) {

while (r - l > 1) {

...

if (lo - l < r - hi) {

quicksort(a, l, lo);

l = hi;

} else {

quicksort(a, hi, r);

r = lo;

}

}

}

Jean-Christophe Filliâtre CSC 52064 – Compilation tail call optimization 74

remark

it is important to point out that the notion of tail call

• could be optimized in any language
(but Java and Python do not, for instance)

• is not related to recursion
(even if it is likely that a stack overflow is due to a recursive function)

Jean-Christophe Filliâtre CSC 52064 – Compilation tail call optimization 75

remark

it is not always easy to turn calls into tail calls

example: given a type for immutable binary trees, such as

type ’a tree = Empty | Node of ’a tree * ’a * ’a tree

implement a function to compute the height of a tree

val height: ’a tree -> int

Jean-Christophe Filliâtre CSC 52064 – Compilation tail call optimization 76

difficulty

the natural code

let rec height = function

| Empty -> 0

| Node (l, _, r) -> 1 + max (height l) (height r)

causes a stack overflow on a tree with a large height
. . .

Jean-Christophe Filliâtre CSC 52064 – Compilation tail call optimization 77

one solution

instead of computing the height h of the tree, let us compute k(h) for
some arbitrary function k, called a continuation

val height: ’a tree -> (int -> ’b) -> ’b

we call this continuation-passing style (or CPS)

the height of a tree is then obtained with the identity continuation

height t (fun h -> h)

Jean-Christophe Filliâtre CSC 52064 – Compilation tail call optimization 78

what is the point?

the code looks like

let rec height t k = match t with

| Empty ->

k 0

| Node (l, _, r) ->

height l (fun hl ->

height r (fun hr ->

k (1 + max hl hr)))

we note that all calls to height and k are tail calls

thus height runs in constant stack space

Jean-Christophe Filliâtre CSC 52064 – Compilation tail call optimization 79

explanation

we have traded stack space for heap space

it holds closures

the first closure captures r and k, the second one captures hl and k

0 id

Jean-Christophe Filliâtre CSC 52064 – Compilation tail call optimization 80

note

of course, there are other, ad hoc, solutions to compute the height of a
tree without overflowing the stack (e.g. a breadth-first traversal)

similarly, there are solutions for mutable trees, trees with parent pointers,
etc.

but the CPS-based solution is systematic

Jean-Christophe Filliâtre CSC 52064 – Compilation tail call optimization 81

a last question

and what if the compiler optimizes tail calls but the language does not
feature anonymous functions (e.g. C)?

we simply have to build closures by ourselves, manually
(a structure with a function pointer and an environment)

Jean-Christophe Filliâtre CSC 52064 – Compilation tail call optimization 82

ad hoc closures

we can even introduce some ad hoc data type for closures

enum kind { Kid, Kleft, Kright };

struct Kont {

enum kind kind;

union { struct Node *r; int hl; };

struct Kont *kont;

};

together with a function to apply it

int apply(struct Kont *k, int v) { ... }

this is called defunctionalization (Reynolds 1972)

Jean-Christophe Filliâtre CSC 52064 – Compilation tail call optimization 83

next

• lab 6
• Mini Java compiler continued

• next lecture
• optimizing compiler 1/2

Jean-Christophe Filliâtre CSC 52064 – Compilation tail call optimization 84

