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Abstract 

We give necessary and sufficient regularity conditions 
under which the curve reconstruction problem is solved 
by a Traveling Salesman path. 

1 Introduction 

In 1930 Karl Menger [6] proposed a new definition of 
arc length: 

The length of an arc be defined as the least 
upper bound of the set of all numbers that 
could be obtained by taking each finite 
set of points of the curve and determining 
the length of the shortest polygonal graph 
joining all the points. 
. . . . . 
We call this the messenger problem (because 
in practice the problem has to be solved by 
every postman, and also by many travelers): 
finding the shortest path joining all of a 
finite set of points, whose pairwise distances 
are known. 

This statement is one of the first references to the 
Traveling Salesman Problem. 

Arc length is commonly defined as the least upper 
bound of the set of numbers obtained by taking each 
finite set of points of the curve and determining the 
length of the polygonal graph joining all the points 
in their order along the arc. In [7] Menger proves 
the equivalence of his definition and the common one 
(Menger’s theorem). 
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It seems natural to think that this equivalence holds 
due to the fact that the shortest polygonal graph co- 
incides with the polygonal graph joining the points in 
their order along the arc, provided the set of points is 
sufficiently dense. In other words, for sufficiently dense 
point sets a Traveling Salesman path solves the polygo- 
nal reconstruction problem for arcs. This problem was 
stated by Amenta, Bern and Eppstein [2] as follows: 

Given a curve y E Rd and a finite set of sam- 
ple points S c y. A polygonal reconstruction 
of y from S is a graph that connects every 
pair of samples adjacent along y, and no oth- 
ers. 

But Menger’s proof does not show this at all. So we 
want to study the question whether the polygonal re- 
construction problem is solved by a Traveling Salesman 
path,’ provided the sample points are sufficiently dense 
in the curve. Since a Traveling Salesman path is always 
simple, we cannot expect that it solves the reconstruc- 
tion problem for curves with intersections. Even worse, 
the Traveling Salesman path may not coincide with the 
polygonal reconstruction for arbitrarily dense samples 
of simple curves. Consider the following example: 

Let y be the simple arc which consists of the unit 
interval on the x-axis and the graph of y = x2 on this 
interval. That is, 

y : [0, l] + R2, t r--) (1 - 2t, 0) : t<L 
(at - 1, (2t - 1)2) : t > ; 

For large n the samples 

with 
Pi = (‘4) 
p3=(%,%) ’ 

P;=(4,+;), 

n nn ’ P”, = &,g 

become arbitrarily dense in y. But the Traveling Sales- 
man path through S, is different from the polygonal 
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reconstruction from S, because 

l-3-2-4 is shorter than l-2-3-4 

In this example, the arc y has finite length and 
finite total curvature. Thus, even finite curvature, 
which is a stronger property than rectifiability, is not 
sufficient for the polygonal reconstruction problem to 
be solved by a Traveling Salesman path, provided the 
points are sampled densely enough. The crucial point 
is that y behaves quite well, but it is not regular in 
(0,O) E y. The regularity conditions necessary turn 
out to be only slightly stronger. 

In this article we prove: 

Suppose that for every point of the arc 

1. the left and the right tangents exist and 
are non-zero, 

2. the angle between these tangents is no 
more than 7r. 

Under these conditions there exists a finite 
sampling density such that the Traveling 
Salesman path solves the polygonal recon- 
struction problem for all samples with larger 
sample density. 

Regularity is a local property. In contrast to that, 
it is a global property for a path to be a shortest 
polygonal path through a finite point set. One of the 
most interesting aspects of our work is this transition 
from a local to a global property and the methods used 
therein. We first prove a local version of our global 
theorem by using a projection technique from Integral 
Geometry. We believe that this technique could be 
useful in many other contexts, even in the study of 
higher dimensional objects than curves. At a first 

glance it is not obvious how to derive the global version 
from the local one. This extension is achieved by an 
application of two corollaries of Menger’s theorem. 

Many algorithms designed for the curve reconstruc- 
tion problem (for example [2, 3, 41) work by picking 
a cleverly chosen subset of the edges of the Delaunay 
triangulation of the sample points. From, the example 
above we can derive another example in which there is 
an edge of the polygonal reconstruction which is not a 
Delaunay edge for arbitrary dense samples. Let R, be 
the radius of the unique circle through the points pi, pz 
and pz. We can calculate that: 

lim R, = co 
n--to3 

That is, if we extend y to the halfspace {(z, y) : y < 0) 
and take sample points in this halfspace we find by the 
open ball criterion for Delaunay edges that the edge 
conv{pA, pi} cannot be a Delaunay edge for large n. It 
turns out that for curve reconstruction via the Delaunay 
triangulation the same regularity restrictions are neces- 
sary and sufficient as for reconstruction via a Traveling 
salesman path. In this article we do not want to give 
a proof of this, because we consider it less interesting 
than the proof for the Traveling Salesman path. Never- 
theless we want to point out two interesting questions 
which result from this observation: 

What are the necessary conditions on the regular- 
ity of a simple curve such that for dense samplings 
a Traveling Salesman path through a set of sam- 
ple points always consists of Delaunay edges? In 
[5] we show that it is sufficient that in every point 
of the curve a non-zero tangent exists. Here we 
claim without giving a proof that the regularity 
conditions mentioned before are sufficient. 

Is there an efficient algorithm that always com- 
putes a simple polygon, which consists only of De- 
launay edges and which for sufficiently dense sam- 
ples is a polygonal reconstruction? This algorithm 
should work for the weakest regularity conditions 
possible, i.e. in every point on the curve that we 
want to reconstruct left and right tangents have to 
exist and the angle between these tangents should 
be strictly smaller than A. 

2 Basic Definitions 

In this section we give the definition of regularity and 
the definition of a sample and its density. For the sim- 
plicity of presentation we restrict ourselves in this arti- 
cle on simple closed curves y : [0, l] + Rd. 

Here we abuse slightly the notions of Differential Ge- 
ometry and call a curve y regular if in every point on y 
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non-zero left and right tangents exist. This is expressed 
in the following definition: 

Definition 2.1 Let 

T = {(b, t2) : t1 < t2, t1, t2 E [O, 13) 

and 

T : T + Sd-‘, (t,, tz) I+ -dtz) - r(t1) 

lY(t2) - rw 

The curve y is called left (right) regular at y(to) with 
left (right) tangent t(y(to)) if for every sequence (&) 
in T which converges to (to, to) from the left (right) in 
closure(T) the sequence r(tra) converges to t(y(to)). We 
call y regular if it is left and right regular in all points 

y(t), t E LO, 11. 
The relationship between regularity and two of the 

most interesting geometric properties of curves, length 
and total absolute curvature, was shown by Aleksan- 
drov and Reshetnyak [l]: 

Theorem 2.1 Every curve y of finite total absolute 
curvature C(y) is regular and every regular curve has 
finite length L(y). 

The example we gave in the introduction shows that 
even the finiteness of total curvature and hence regu- 
larity are not sufficient for the Traveling Salesman tour 
to solve the reconstruction problem. Next we want to 
give the definition of a sample we use in this article: 

Definition 2.2 A sample S of y is a finite set 

s = {pl ,...,P”) 

of points where pi E y. We assume that the sam- 
ple points pi are ordered according to the order of the 

y-‘(pi) E [O,l]. T o every sample S its density is defined 
to be the inverse of the following number 

E(S) = supmin{jpi - 21 : i = 0,. . .n}. 
+EY 

Here we want to study what conditions on the reg- 
ularity of y are necessary such that there exists a pos- 
itive constant E, which of course depends on y, such 
that for every sample S of y with E(S) < E the Travel- 
ing Salesman tour through the sample points solves the 
reconstruction problem. 

3 A Local Analysis 

In this section we give several reformulations of our 
notion of regularity. We end up with a reformulation 
which is a local version of the theorem we want to prove 
in this article. 

Differentiability has two aspects. The first one is al- 
gorithmical in a certain sense: We can approximate a 
differentiable function locally by a linear one, which al- 
lows us to make use of the apparatus of Linear Algebra. 
The second aspect is regularity, which is independent 
of a underlying linear structure on the range space of 
our function. It only makes use of the metric struc- 
ture. The reformulation of regularity in the following 
lemma is a pure metric interpretation of our definition 
of regularity. 

Lemma 3.1 Let y be a simple closed curve, which is 
left (right) regular in p E y. Let (pn), (qn) and (rn) be 
sequences of points from y, that converge to p from the 
left (right), such that p, < qn < r, for all n E N in 
an order locally around p along y. Then the sequence 
of angles (on) converges to A, where cr, is the angle at 
qn of the triangle with corner points p,, q,, and r,. 

PROOF. Since y is locally homeomorphic the sequences 

(rhl(pn)), (rml(qn)) and (r-‘(m)) converge to -Y-‘(P). 
Thus by our definition of left (right) regularity asymp- 
totically the three secants 

conv{p,, qn), conv{q,, rn) and conv{p,, rn) 

have to point in the direction of the left (right) tangent 
t(p). That is, limn+.m a, = r. 0 

We suppose that the metric aspect of regularity is 
the important one for our theorem to hold. In [5] we 
give a pure metric proof of this theorem under slightly 
stronger regularity conditions, but in the following we 
have to make use of the linear structure of Rd+‘. We 
exploit this linear structure by studying projections of 
a set of sample points on one-dimensional subspaces of 
Rd+‘. It is an interesting open question if the theorem 
as we want to prove it here can be proved in abstract 
metric spaces. 

In the following let p E y be a fixed point. We want 
to introduce the following notions. Let r] > 0. The 
connected component of 

{qEY: IP-ql<rlI 

which contains p is denoted by B,(p). The left tan- 
gent of y in p is denoted by tl(p) and the right tangent 
in p is denoted by t,(p). We assume that every one- 
dimensional subspace C of Rd+’ not perpendicular to 
tl(p) is oriented according to the orientation induced 
by the orthogonal projection rrl(tl(p)) of tr(p) on C and 
that every one-dimensional subspace ! perpendicular to 
tl(p) carries an arbitrary orientation. 

We want to compare the ordering of a set of sample 
points close to p on y with the ordering of the projec- 
tions of these points on one-dimensional subspaces of 
Rd+‘. The following reformulation of regularity states 
to which extent these orderings can be different: 
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Lemma 3.2 Assume there exists a sequence (&) of Therefore we find 
one-dimensional subspaces of Rd+l and sequences 
(Pn),(Qn),(Tn) E h/,(p) With pfl < qn < r, 5 p in 

1 
- 

the order along y, but 
cos(a) 

> lim Ine*(qn) - ~ee,(T,)l lPn-rnI 
ne,(qn) < ne,(pn) < rem(m) - *-kc0 lqn-rnl I%(Pn) - w,(r?%)l 

OT 

=e,(pn) < ree,(rn) < =e,(an) 

in the order on f,. Then the limit of every convergent 
subsequence of (&) has to be perpendicular to tl (p). 

PROOF. We want to do the proof by contradiction. 
That is, we can assume that (1,) converges and that 

0 5 cr := $ir L( tl(p), &en> < ;. 

For the proof we assume without loss of generality that 
ae,(qn) < re,(p,) < K~~(T~), and by the continuity of 
y and the continuity of the projection maps re,, we can 
assume that there exists 0 < X < 1 such that 

IW,(Pn) - w,(Tn)l= XCOS(~) be,(%) - %(%)I 

if we move qn or r, a little bit on y. From the regularity 
of y we find that 

= 
h,(h) - w,(rn)l IPn - 1’nI 

~5% Ine,(p?a) - ~e,(?Jl l4n - 1’nI 
be*(qn) - %(Tn)l 

= ?Jka Ike, - ?re,(rn)l 
lim I’, - ‘,I 

n-kc.2 qn - rn 1 
1 lim I’, - ‘,I 

= Xcos(a) 1 n+cc qn - T,( 

and thus 

lim ‘pn-rn’ <A<1 
n--tea (q,-r,( - ’ 

Hence there exists N E N such that Ip, -r, I < lqra -r,) 
for all rr > N. Now we consider the triangles with 
corner points p,, q,, and r,. From the law of cosines 
together with (p, - r, I 5 (qn - r, I we find 

cog& n ) = _ IPn - Tn I2 - IPn - qn I2 - IQ73 - Tn I2 > o 
21% - snll%2 - TnI 

Thus the angle at qn, denoted by on, has to be smaller 
or equal than 5 for all n 1 N. Since y is left regular 
in p that is a contradiction to Lemma 3.1. 0 

= 0 The collection of all one-dimensional subspaces of 

and together with the triangle inequality for spherical 
triangles 

JFrn 4conv{q,, T,), w(conv{h, ~~1)) 

I J& (L(convifh, m),tl(p)) 

+ L(tl(P), ~e,(conv{h ml))) 

Rd+’ forms the d-dimensional projective space Pd. In 
the following the elements of Pd are called lines. From a 
standard construction in Integral Geometry [8] we get a 
probability measure ,& on Pd. The next reformulation 
of regularity makes use of this measure: 

Lemma 3.3 For all n E N let pn, q,,, r, E B1,, (p) with 
p, < qn < r, 5 p in the order along y. Let 

= &% L(convi4h ~~1, h(p)) L = {fEPd : me < ne(pn) < Te(T,) or 

+ /em L(tlb-4, m,(conv{q,, r,})) ne(pn) < ne(r,) < ne(q,) in the order on f}, 

= 0 + J$ L(b(P), &I) 

= o<l 
2 

and analogously 

lim n-+co 4conv{Pn, T,}, ~e,(conv{p,, r,})) 5 0 < 5. 

Hence 

0 < cos(o) < lim l%(4n) -owl 
- n-km lqn - Trill 5 l 

and 

0 < cos(o) < lim I%(Pn) - W,(~n)l 
7l+co IPn-ml 5 l* 

where ne .denotes the orthogonal projection on the line 
f. Then limra+oo ,Ud(&) = 0. 

PROOF. In [S] Reshetnyak shows: Let V be a d- 
dimensional subspace of Rd+’ and E c Pd be the set 
of all one-dimensional subspaces contained in V. Then 
/-hi(E) = 0. 

The proof of the lemma follows directly from this 
theorem of Reshetnyak and Lemma 3.2. 0 

Obviously an analogous result for sample points 
larger than p in the order along y also holds. 

Now we are prepared to prove a local version of our 
theorem. For a given sample S of a neighborhood of p 
we fix the smallest and the largest sample point along 

210 



y and consider paths through S which connect these 
points. One such path is the polygonal reconstruction 
P(S) which connects the sample points in their order 
along y. We distinguish three types of lines C E Pd: 

1. There exists a path through the sample points dif- 
ferent from P(S) which has a shorter projection 
on e than P(S). 

2. Every path through the sample points different 
from P(S) has a larger projection on d than P(S). 

3. There exist paths through the sample points dif- 
ferent from P(S) which projections on f? have the 
same length as the projection of P(S), but there 
is no path with shorter projection. 

The proof is subdivided in three parts. First, we show 
that the measure of the first set of lines tends to zero as 
the neighborhood of p shrinks to p itself. Second, there 
exists a constant larger than zero such that the measure 
of the second set of lines is larger than this constant for 
arbitrary small neighborhoods of p. Finally we conclude 
from the first two steps by integrating over the length 
of all projections that for small neighborhoods of p the 
polygonal reconstruction P(S) has to be the shortest 
path through the sample points. 

Theorem 3.1 Assume 

a = suP{=qtl(q),tr(q)) : 4 E 7) < r 

and let (S,) be a sequence of samples of Bl,,(p). Then 
there exists N E N such that 

TSP*(S,) = P(Sn), 

for all n 2 N. Where TSP*(S,) is a path of minimal 
length through the sample points S, with jixed startpoint 
min S, and fixed endpoint max S, . Here min and max 
are taken with respect to the order induced on S,, by y. 
Furthermore TSP* (Sn) is unique for all n > N. 

PROOF. First Step. We show that 

lim pd(Ln) = 0. 
n-+co 

Here L, C Pd is the set of lines for which the projection 
?re(P(S,)) is not a shortest path through the projected 
sample points ne ( Sn ) and pd is the probability measure 
on Pd introduced in [8]. We use the following abbrevi- 
ations 

ml = 7re(min Sn) 

m2 = mine{7re(minS,), ne(maxS,)} 

m3 = maxe{rre(minS,), ne(maxS,)} 

m4 = re(maxS,) 

& 0 0 4 
m2 ml m4 m3 

Path of minimal length 

Take e E Pd together with its orientation. A path of 
minimal length through the points XL($) which con- 
nects ml with m4 consists of 

conv{ml, mz} U conv(m2, m3) U conv(m3, m4) 

That is, the points of C between ml and m2 are cov- 
ered twice by a path of minimal length through the 
points rre(&), the points between ml and m4 are cov- 

ered once and the points between m3 and m4 are cov- 

ered twice again. If re(P(S,)) is not a path of minimal 
length through the points re(S,), then there has to ex- 
ists an interval 

I= [mine{m(dJ, n(pk+‘)), maxe{re(pi,), re(pL++l))l 

on e with pi,pktl E S,, which is covered by rl(P(S,)) 

1. 2 + 2k times, k 2 1, if 

m2 5 mine{re(pi,), ne(PL+,+‘)l 

< maxe{ne(R), Mel 

or 

m4 5 mine{re(&), re(Pi+‘)l 

< maxe{w(pX), XeK+l)l 

2. 1 + 2k times, k 1 1, if 

ml 5 mine{re(pk), ne(Pi+,+l)) 

L ml 

5 m3 

< maxt{~e(pL), ~e(Pk++l)l 5 m4. 

For all $ E S, - {pi’“‘} we call the interval n 

bine{~e(d), ~(pi,+~)), mw-fm(d)), ~e(dtl)ll 

positive oriented if rl(pj,) < rt(pj,+‘) in the order on & 
and negative oriented otherwise. The intervals 

which we get from the projection of P(S,) and which 
cover the interval I must have alternating orientations. 
That is, if ne(P(S,)) is not a shortest path through 
the points ne(Sn) we find, using that P(S,) connects 
the pi E S,, in their order along y and using the con- 
tinuity of y and of the projection map ire, three points 
p,, qn, TV E B~i,(p) with p, < q,, < r, 5 p in the order 
along y, but 
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in the order on !. Or we find three points p,, qra, r, E Since Q < ?r we have pd(C) > 0. It remains to check 
Bl/,(p) with p, > q,, > rn 2 p in the order along y, conditions 1. and 2. to prove that for sufficiently large 
but n we have C c M,. 

3(sn) > m(pn) > n(m) or I > m(r,) > n(h) 

in the order on !. The points p,, q,, and r, need not be 
sample points. From Lemma 3.3 we can conclude that 

By construction 7re(tl (p)) and rl(t, (p)) point in the 
same direction on every e E C. Using the triangle in- 
equality for spherical triangles and a < r we find for 
all e E C, 

44 b(P)) 5 L(4eo) + L(eo, b(P)) 

Second Step. We show that there exist c > 0 and 
N’ E N such that for all n 2 N’ we have 

Here M, C Pd is the set of lines e for which we have 

T+a 
= -<; 

4 

and analogously 

L(4b(P)) < ;. 

1. 

2. 

the order of S,, along y and the order of S, induced 
by the order of re(Sn) on e coincide. 

for all conv{pi,pi+l} C P(&), pi,pisl E S, we 
have 

17re(p”+‘) - 7Q(pi)l 2 $Los(~)Ipi+l -piI, 

with 
J3(d + 1)/2) 

cd = J?FIy(d + 2)/2)’ 

For the proof we construct a set of lines C C Pd with 
,&(S) > 0 and show that there exists N’ E N such that 
C c M, for all n 2 N’. The set C is defined as follows: 
Let &J be the line, &, c span{tl(p), t,.(p)} such that 
&k c span{tl(p), b(p)} halves the angle L(tl(p), -b(p)) 
between the lines determined by tl(p) and t,.(p). Now 
we define 

c= eEPd 
{ 

: L(e,eo) < i(T -a) . 
> 

By L(.!!,P) for e, f? E Pd we denote the value of of the 
minimum of the two angles determined by ! and L’. The 
set Ue,c{~ E !} c Rd+’ is a double cone. 

-t SP) 4 (PI 

._-- _----_-. b 

The double cone C 

That is, every e E C is neither perpendicular to tl(p) 
nor to t,(p). 

1. Assume that for arbitrary large n we find 4?,, E 
C such that the first condition is violated. Then 
we can find three points p,, qn, r, E &l,(p) with 
p,, < qn < T, 5 p in the order along y, but 

%(4n) < ?re*(P”) < Q(m) 

or 
%(P?l) < m,(rTl) < Tl”(S7a) 

iii the order on &. Or we find three points 

pn7 qnr rn E Q,(P) with P, > qn > rn 2 P in 
the order along y, but 

or 
w, (Pi) > mfl (rn) > ntRe, (qn) 

in the order on f?,. By Lemma 3.1 the limit of every 
convergent subsequence of (&) has to be perpen- 
dicular to either tl(p) or t,(p). Since C is compact 
we find e E C as the limit of a convergent sub- 
sequence of (&) which is perpendicular to either 
tr (p) or t,(p). But using the triangle inequality for 
spherical triangles we find for all ! E C: 

44h(P)) 5 L(fJ,JJo) + 4lo,h(P)) 

< $-a)+ (g-y) 
n+a = 

4 

and analogously 

W,b(P)) < ; 

That is, every e E C is neither perpendicular to 
tl (P) nor to t,(p). S o we got a contradiction. That 
means, for all sufficiently large n the first condition 
cannot be violated. 
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2. From the regularity of y we have for p’,, pi+’ E S,, 
with p; < pL+’ 5 p and all ! E C, 

di% L(& conv{ph,pi+l}) 

= L(~,nl~~conv{pi,,p~+l})) 

= lim L(& Q(p)) 5 y. 
n-too 

That is, for all sufficiently large n and all e E C 
we have 

I%? (P’) - ~&“+l)( > cd cos( T$z)lpi -p’+l(. 

For pk , pit ’ E S, with p 5 pi < pAt’ we get the 
same result using t,(p) instead of tl (p) in the trian- 
gle inequality for spherical triangles. Now choose 
q > 0 such that 

cos(y+q) > ;cos(+. 

For pk 5 p < phtl or p; < p 5 pLt’ and suffi- 
ciently large n we find 

L(l0, conv{p~,p~+‘}) L W0, h(p)) + 7) 

= L([o, h(P)) + 17 

= :+q, 
L 

because the regularity of y implies 

limsup(L(&,~(conv{p~,p~+l})) 2 

= 
L(%7 tl(P)) 
qo, b(P)), 

where ‘IF is the projection on span{ti(p), t,.(p)}, and 

/$ L(wan{t~(p), b(p)), conv{pi,p~+‘>) = 0. 

That means, we have for sufficiently large n, 

L(& conv{pi,,pL+,+l}) 

I 44 f0) + L(%, conv{d,$‘>> 

I G,~o) + qo, G(P)) 

< - y+ (%+o) 

r+cL. = - + q. 
4 

Hence for all sufficiently large n and all e E C we 
have 

MP’) - W(P*+l)l > $ cos( ~)~p’ - pi+l( 

for all pi,pi+l E S,. 

That is, there exists N’ E N such that for all n 2 N’ 
we have C c M,, hence 

pd(Mn) 2 pd(c) > 0. 

Third step. In the first two steps we considered the 
measures of the subspaces L, and M, of Pd, the space 
on which we want to integrate. In this step we want to 
compare the integrands. For e E L, we define we define 
permutations pe,n of { 1,. . . , IS, I} such that 

pe,,(i) 1 l{j : rre($i) < ne(pk) in the order of !}I. 

and ~e,~(j) = p(i) + 1 if re(pL) = ne(p$$) and i < j. If 
all ze(&) are distinct ~e,~(i) is, the position of ne(pk) in 
the order on e. For any path P(S,) through the points 

S ISnI _ which connects pi = minS, with p, max S, , 
wZh shorter projection zf(P(S,)) than ae(P&)) there 
has to exist at least one non-degenerate interval 

I = [*e(pP@)), 7Q(p;‘“‘+‘)] n 

which is covered less often (at least two times) by 
re(P(S,)) than by ne(P(S,)). That is, there has to 
exist j E {l,...,IS,l- 1) such that the oriented seg- 
ment conv{pi,,pjn+‘} 4 P($) and the interval 

bind?reM,), xi tdtl)) , maxe{w(pj,), w(dtl)ll 
cover I. It is still possible that the same segment 
conv{$itl,pi,} with opposite orientation is part of 
k(&), e.g. if pi,,(i) = j + 1 and pe,,(i) + 1 = j! We 
distinguish two cases. 

1. j # 1, IS,1 - 1: For all e’ E 44% the interval 
[rp (pjj), rp (pj,+‘)] has to be covered by Tel (P(Sn)) 
at least two times more than by ~lf(F’(s,)). 

2. j = 1 or j = IS,1 - 1: We want to reduce this case 
to the first one and assume j = 1. For j = I$( - 1 
there is an analogous reasoning. Since I has to 
be covered at least three times by re(P(S,)) and 
the covering intervals have alternating orientations 
(see first step) we find k E (2,. . . IS,1 - 2) such 
that 

also covers I and has opposite orientation than 

~~~w!u(P~), m(p~)),maxe{m(pS,)~ ~(pi3>3. 
7 

Pe,n (k) < P4n (1) and pe+(k + 1) > p+(2) 

if I+ > f+G% 

&n(k) > P&n(l) and pt,,(k + 1) < pe+(2) 

if ~e,~(l) < PL,~P). If the oriented segment 
conv{7rL(pfE), re(pk+‘)} c P(S,) we have the same 
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situation as in the first case. Otherwise j(S,) 
has to contain a segment s on the way from p: to 
pk which projection covers the interval I. Since 
ne(P(S,)) covers I more often than p(Sn) there 
has to exist k’ E (2,. . . IS, ] - 1) such that the 
interval 

covers I and has the same orientation than 

[mine Ire (~4 ), ne (d ) 3, maw { re (PA), =e b-4 ) 11 and 
the oriented segment conv{ re (pk ), re (&‘+‘) } 6 
P. If Ic’-# IS,] - 1 we are in the first case. Oth- 
erwise P(Sn) has to contain a segment s’ on the 

ISni way from pk+l to pn which projection covers the 
interval I, because we have from the orientations 
of the covering intervals 

Pe,72(lGO > Pe,ta(k + 1) 

Pe,nWnl) > Pe,n(k + 1) 

By construction we have 

if Pe,,(l) < fJe,n (2) 

if pf~,~(l) > Pe,n(2). 

s’ # s. That is, p(&) 
covers I at least three times. Since re(P(&)) cov- 
ers I at more often than P($) there has to exist 
k” E (2,. . . IS,1 - 2) such that the interval 

bine{ne(K’), re(P i.“+l)), mw{~e(&“), ~e(PfE”+‘)Il 

also covers I and we have for the oriented segment 
conv{rr~(p~“), rl(&‘+l)} 6 I?($). So we are fi- 
nally in the first case. 

Using this property of the coverings and using that 

I~P(Pi+l) - nel(J++l)l 2 “d cos( 2 
T+qIp~+l _ $1 

for all pi E S, - {pisn’} and all e’ E n/r, we find that 
the incr:ase of length of the projections on f? E M, is 
bounded from below by the decrease of length of the 
projection on e as follows, 

L(nef(P(S))) - L(net(P(S))) 
r+0 

1 ?cos(- 
4 ) 

This inequality is valid for all e E L, and all e’ E M,. 
That is, we get for the increase of length on M, 

J, (L(re(P(S,))l - L(~e(P(sn))))+de) 
” 

and for the decrease of length on L, 

S, (L(Q(P(S,))) - L(dP(S,))))+&) 

2 Pd(L) f;z (L(re(P(S,))) - L(neCP(Sn))))- 
11 

Since lim,,, pd(Ln) = 0 there exists N 2 N’ such for 
all n > N we have - 

pd(Ln) < T cos(y)lld(c) 

r+a 
5 ycos(- 4 )pd(“n). 

Using another theorem of Reshetnyak [8] which states 
for regular curves +y: 

J 
L(ne(Y))@d(e) = cd(Y) 

Pd 

we find that for all n 2 N there is no shortcut possible 
and that P(S,) is the unique path of minimal length 
through the points S, with fixed start- and endpoint, 
because the polygon connecting the points in the order 
induced by y has a shorter projection on all e E C than 
every other polygon through the points S, with fixed 
start- and endpoint. 0 

4 From Local to Global 

In this section we finally want to prove the promised 
theorem. That is, here we achieve the transition from 
the local results of the last section to the global. In do- 
ing so we make heavy use of two corollaries of Menger’s 
theorem [7]. 

To formulate these corollaries let (Sra) be a sequence 
of samples with lim, -,oo ~(5’~) = 0. The first corollary 
states 

)rir L(TSP(S,)) = L(y). 

The second one states, if rr, is a permutation of S,, such 
that for all n E N 

IS,/-1 

Cl 
“n(i+l) _ P?2 P;n(i)l 5 L(Y) 

i=l 

Then 

That is, the maximal length of a segment in the Trav- 
eling Salesman tour tends to zero as the density of the 
samples goes to infinity. 

Furthermore we need another two definitions. Let 
s= {pl,. . . , p”} be a sample of y. We write 

i a j if L(y(pi : pi)) 5 L(r(pi : p”)), 
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where -y(p” : pi) c y is the arc connecting pi and pi in 
the order along y. We write i a j if we want to include 
the possibility that i = j. These notions are well defined 
if y is regular, because regular curves have finite length 
according to Theorem 2.1. 
We call r E S a return point, if r is connected top, q E S 
and r Q p, q or Y D p, q in the order along y. In the first 
case we call the return point positive and in the second 
case we call it negative. 

But it is possible that i;A = ~2 and Pi = T:! 
We observe that the sum of the signs of the return 

points in S,, always has to sum up to zero and that 
return points incident along TSP(S,) always have dif- 
ferent signs. So we can conclude from the first step 
that for sufficiently large n there exist at least two re- 
turn points. Assume that for all incident return points 
we find situation (4.1) then all return points have to 
accumulate in between two return points. 

Now we are prepared to prove our main theorem. 
The proof is done by contradiction and it is subdivided 
in three steps. We show in the third step that the local 
version of the theorem does not hold if the global one 
does not hold. That is, the local version implies the 
global version. 

-- 

Accumulating return points 
Theorem 4.1 Assume 

Q = sw{Nq),r(q)) : 4 E ~1 < r That is impossible since TSP(&) is closed. 

and let (Sra) be a sequence of samples of y with 
lim,,,E(S,) = 0. Th en there exists N E N such 

that TSP(S,) = P(&) for all n 2 N. Here TSP(&) 
is a shortest tour through the points S,. Furthermore 

TSP($) is unique for all n 2 N. 

PROOF. We want to do the proof by contradic- 
tion and assume without loss of generality that 
TSP(&) # P(Sn) for all n E N. 

Third Step. In this step we make the transition from 
the local version of this theorem to the global one. We 
want to make use of the return points r; and rf we 
found in the second step and choose the orientation of 
TSP(&) such that ri a r:along TSP(S,). Let YE E 
S,, be the last sample point we find running through 
TSP(&) with 

First Step. We show that there has to exist a return 
point for large n. Assume the contrary. That is, there 
does not exist a return point in S,, for arbitrary large 
n. By turning to a subsequence we can assume with- 
out loss of generality that there does not exist a return 
point for all 71 E N. Since TSP(&) # P(Sn) there ex- 
ists p’, E S, which is not connected top;-’ in TSP(&). 
We cut TSP(&) in two polygonal arcs P,‘, with start- 
point p: and endpoint pk-‘, and P,“, with startpoint 
p;-’ and endpoint pk. By our assumption that there 
does not exist a return point in S, the sample points in 
both polygonal arcs are connected in their order along 
y. From the two corollaries of Menger’s theorem we can 
conclude that 

r: a r; along y and ri Q ri along TSP($) 

and let rz E S, be the first sample point we find running 
through TSP($) with 

Y: Q r-z along y and r$, CI rz along TSP(&). 

That is, we have the following situation: 

Shortcut through return points 

liminf L(P,1), liminf L(Pz) 2 L(y). 

That is, liminfL(TSP(S,) >_ 2L(y). Which is a 
contradiction. 

Second Step. We show that there must exist two re- 
turn points r: Q ri incident along TSP(S,) such that 
the other return points i;A incident to r: and Tz inci- 
dent to ri along TSP($) are not in between r: and 
r-2. That is, we do not have the following situation 

By the compactness of y we can assume by turn- 
ing to convergent subsequences that (rz), (PA), (~2) and 
(rz) converge to T+‘, ’ 2 3 r , r , r E y. Let s, E S,, be the 
successor of rz and let pn E S, be the successor of rz 
along TSP($). By construction we have 

0 1 T, a T, u s,, and p, a r-f a ri along y. 

From the second corollary of Menger’s theorem we con- 
clude 

lim Irt - 
n-b03 

s, 1 = lim Ip, - rz/ = 0. 
n+co 

That, is > TO = r1 and r2 = r3. Now assume r1 a r2, We 
consider three sets of sample points 

(1) 
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Mi = {pES, : r: fps~: along TSP($)} 

M3 = {p E S, : pD r: along TSP(&)}. ?a 

We have using the first corollary of Menger’s theorem 

= $il (L(TsP(M;)) + L(TSP(M,2)) + 

L(TSP(M,3))) 

= Jimm L(TSP(M,‘)) + Jmm L(TSP(&)) 3 

Krl L(TSP(M,3)) 

= J%l[O,r-‘(r2)J) + L(Yl[,-1(,1),,-1(,2)]) + 

W[-P(r%l]) 

= L(Y) + 2L(yl[,-1(,1),,-1(rZ)]) > L(Y). 

That is a contradiction. Hence we have 

TO = r1 = r2 = 7-3 =: r E y. 

By turning to an appropriate subsequence of (Sn) we 
can assume without loss of generality that 

C d, & $ E sn n h/,(T). 

That is a contradiction to Theorem 3.1, which is the 
local version of this theorem. cl 

The example in the introduction shows that the 
regularity conditions required to prove this theorem 
are necessary. That is, this theorem is best possible. 
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