
INF 556: Topological Data Analysis

Lecture 3: Solution to PC 3-4

Lecturer: Steve Oudot T.A.: Théo Lacombe

Disclaimer :

These notes have been written by Théo Lacombe. Some typos and errors may remain, please report

them to the instructor if you �nd any.

Homology groups of some common spaces

All the following computations are done with the �eld of coe�cient Z/2Z, which (among other things)

means that we do not care about orientation. The notation E ≃ F means that E and F are isomorphic

as vector spaces.

1. The circle.

1

2

3

K0 = {1}, {2}, {3}
K1 = {1, 2}, {1, 3}, {2, 3}

Figure 3.1: Triangulation of the circle

We detail in this simple example two approaches to compute homology. Let's begin with the "hand-

craft" one:

To compute H0, we need Z0 = ker(∂0) and B0 = im(∂1). One has ker(∂0) = span{{1}, {2}, {3}},
which are three linearly independent points in our complex (you cannot express {3} as a linear

combination of {1} and {2} and so on). Therefore:

ker(∂0) ≃
(

Z
2Z

)3

On the other hand, im(∂1) = span{{2} − {1}, {3} − {2}, {1} − {3}}. (Reminder: since we are

working with Z/2Z, +1 = −1 and thus signs do not matter). However, one can observe that

{1}−{3} = {2}−{1}− ({3}−{2}), so we actually have im(∂1) = span{{2}−{1}, {3}−{2}} (both
vectors are independent) and thus:

im(∂1) ≃
(

Z
2Z

)2

and �nally:

H0

(
S1; Z

2Z

)
≃

(
Z
2Z

)
(3.1)

In particular, β0 = 1, which can be interpreted as the circle has one connected component.

3-1
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In order to compute H1, we need to �nd the 1-cycles of our complex. One can easily observe that:

∂1({1, 2}+ {2, 3}+ {3, 1}) = {2} − {1}+ {3} − {2}+ {1} − {3}
= 0

and we do note have any other 1-cycle, so:

ker(∂1) ≃
(

Z
2Z

)

Aside, we do not have any 2-simplex and so im(∂2) = {0}, which �nally implies that:

H1

(
S1; Z

2Z

)
≃

(
Z
2Z

)
(3.2)

In particular, β1 = 1, which can be interpreted as there is one non-trivial loop in the circle (which

is not a boundary).

For k ⩾ 2, Ck

(
S1, Z

2Z
)
is trivial and thus so is Hk.

Other approach: The idea is the following one: we generally only care about the dimension of

Hk (i.e. the Betti number βk), and we have:

βk = dim(ker(∂k))− rk(∂k+1)

We also remind the following fundamental result of linear algebra (in �nite dimensional vector

spaces):

dim(E) = rk(u) + dim(ker(u))

for E a �nite dimensional vector space and u a linear application from E to some other vector space.

Therefore, we can turn this into the problem of �nding the rank of ∂k (which will also give us the

dimension of its kernel), which can be easily computed by writing the matrix of ∂k:



1 1 0
1 0 1
0 1 1




{1}
{2}
{3}

{1, 2}
{1, 3}

{2, 3}

Figure 3.2: Matrix of ∂1: the starting space is C1

(
K, Z

2Z
)
, its base is given by the three vectors

{1, 2}, {2, 3}, {3, 1}, and we write the coordinates of ∂1 in the basis {1}, {2}, {3} of C0

(
K, Z

2Z
)
.

Standard computations show that this matrix (whose coe�cients are in Z/2Z) has rank 2 (see

Gaussian elimination):



1 1 0
1 0 1
0 1 1






1 1 1
1 0 1
0 1 0






1 1 0
1 0 0
0 1 0


c3 ← c3 − c2 c3 ← c3 − c1

Figure 3.3: Sketch of Gaussian elimination to compute the rank of ∂1 for the circle, leading to a rank 2
matrix.

The interest of this algorithm is that it can be easily implemented (and is useful while dealing with

more complicated simplices).
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2. The disk B2.

1

2

31

2

3

K0 = {1}, {2}, {3}
K1 = {1, 2}, {1, 3}, {2, 3}
K2 = {1, 2, 3}

Figure 3.4: Triangulation of B2.

For H0, computations are exactly the same as the circle (see above).

For H1, we have the same result for ker(∂1) (one 1-cycle). However, in this case, im(∂2) is not empty

(we have a 2-simplex), leading to:

H1

(
B2;

Z
2Z

)
= {0} (3.3)

For H2, despite having a 2-simplex, we do not have any 2-cycle (∂2{1, 2, 3} = {1, 2}+{2, 3}+{3, 1} ≠
0). Furthermore, we do not have any 3-simplex in this complex, and thus:

H2

(
B2;

Z
2Z

)
= {0} (3.4)

Finally, B2 has the same homology groups as a single point, which is actually not a surprise since it

is homotopy equivalent to a point!

3. The cylinder c = S1 × [0, 1]

1

2

3

45

6

K0 = {1}, {2}, {3}, {4}, {5}, {6}
K1 = {1, 2}, {1, 3}, {2, 3}, {4, 5}, {4, 6}, {5, 6}...

...{1, 5}, {1, 6}, {2, 6}, {2, 4}, {3, 4}, {3, 5}

K2 = {1, 5, 6}, {1, 6, 2}, {2, 4, 6}, {2, 3, 4}, {1, 5, 3}, {3, 4, 5}

1

2

3

45

6
1

2

3

5

6

4

Figure 3.5: Triangulation of the cylinder. The 2-faces {1, 2, 3} and {4, 5, 6} do not belong to the complex.

On the smaller graph, in red, edges such that ∂1(edges) gives the generators of B0. On the right, a

representation of the triangulation "from the top", which can help for computations.

Since we have 6 points in this triangulation, dim(Z0) = 6. On the other hand, computations show

that im(∂1) has 5 (independent) generators (see Fig 3.5). The idea is that the boundary of any other
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1-simplex (edge) in the complex can be obtained by going through these edges. For example, {1, 6}
has {6}−{1} has a boundary, which can be obtained by taking the boundary of {1, 3}+{3, 4}+{4, 6}.
Therefore,

H0

(
c;

Z
2Z

)
≃

(
Z
2Z

)
(3.5)

In order to compute H1, we have to �nd the 1-cycles and the 1-boundary. There are many 1-cycles in
this complex...! For example, any element of the form {a, b}+{b, c}+{c, a} (with {a, b}, {b, c}, {c, a}
in the complex) is a 1-cycle. However, there are 7 1-cycles (you will �nd 8 1-cycles, but one of them
can be written as a linear combination of the others), showing that dim(Z1) = 7. On the other

hand, we have six 2-faces (triangles). We �nally have:

H1

(
c;

Z
2Z

)
≃

(
Z
2Z

)
(3.6)

For H2, we observe that we do not have any 2-cycle, and no 3-simplex, leading to:

H2

(
c;

Z
2Z

)
= {0} (3.7)

Of course, higher dimensional homology groups are also trivial.

Remark: This is the same homology as the circle in question 1. This is not a surprise, since these

two spaces are actually homotopy equivalent.

4. The sphere S2

1

2

3

4

{1}, {2}, {3}, {4}
{1, 2}, {1, 3}, {2, 3}, {1, 4}, {2, 4}, {3, 4}
{1, 2, 3}, {1, 2, 4}, {2, 3, 4}, {1, 3, 4}

Figure 3.6: Triangulation of S2. Warning, the 3-face {1, 2, 3, 4} does not belong to the complex.

H0 can be computed "by hand" or by computing the rank of the matrix:

∂1 =




1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1
0 0 0 1 1 1




which are the coordinates of ∂1(x), x ∈ C1 written in the base {1}, {2}, {3}, {4}. This matrix has

rank 3, and thus β0 = 4− 3 = 1, then:

H0

(
S2; Z

2Z

)
≃

(
Z
2Z

)
(3.8)
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Similarly, H1 looks at the rank of (boundaries of 2-simplicies written on the base of 1-simplicies):




1 1 0 0
1 0 0 1
1 0 1 0
0 1 0 1
0 1 1 0
0 0 1 1




which is 3. Since we already know that the rank of ∂1 is 3, we have dim(ker(∂1)) = 6− 3 = 3. And
thus, β1 = dim(ker(∂1))− rk(∂2) = 3− 3 = 0. So:

H1

(
S2; Z

2Z

)
= {0} (3.9)

For H2, we observe that we have one 2-cycle ({1, 2, 3} + {1, 3, 4} + {1, 2, 4} + {2, 3, 4}), and no

3-simplex. Thus:

H2

(
S2; Z

2Z

)
≃

(
Z
2Z

)
(3.10)

5. The ball R3

1

2

3

4

{1}, {2}, {3}, {4}
{1, 2}, {1, 3}, {2, 3}, {1, 4}, {2, 4}, {3, 4}
{1, 2, 3}, {1, 2, 4}, {2, 3, 4}, {1, 3, 4}
{1, 2, 3, 4}

Figure 3.7: Triangulation of B3.

Computation for H0 and H1 are exactly the same as above. For H2, we still have one 2-cycle, but
we also have an element in im(∂3), leading to H2 = {0}. Since there are no 3-cycles nor higher

dimensional simplices, higher dimensional homology groups are trivial.

Remark: As for B2, the homology is the same as that of a single point.

6. The Torus

The �rst di�culty is to �nd a proper triangulation that is not too large, so that we can handle

the calculations. Figure 3.8 (left) shows an example of a triangulation, which we will now use to

compute homology.
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1 1

11

4 4

77
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5 6

98

1 1

11

4 4

77
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3

3

5 6

98

Figure 3.8: (left) Triangulation of the torus. (right) pairings for homology computation.

To compute β0, we simply pair each vertex other than 1 with the edge connecting it to vertex 1 (see

the red edges in Figure 3.8 (right)), so as to form a spanning tree. Then, inserting vertex 1 �rst

increments β0, and each further vertex insertion creates an independent 0-cycle that is immediately

killed by the insertion of its paired edge. It follows that β0 = 1.

Now, every remaining edge in the triangulation will create an independent 1-cycle at the time of its

insertion. We therefore pair each edge other than {2, 3} and {4, 7} with an incident triangle (see

the red ticks in Figure 3.8 (right)). Then, inserting {2, 3} then {4, 7} increases β1 by 2, while each
further edge insertion creates an independent 1-cycle that is immediately killed by the insertion of

its paired triangle. It follows that β1 = 2.

Finally, one triangle is left out by the pairing, namely {6, 8, 9} (in blue in Figure 3.8 (right)). Inserting
this triangle last gives ∂2{6, 8, 9} = 0 because the triangle's boundary is already the boundary of

the chain involving all the other triangles. As a consequence, the insertion of {6, 8, 9} creates an
independent 2-cycle and therefore increments β2. In conclusion, β2 = 1.

Note that βr = 0 for all r ≥ 3 since there are no r-simplices in the triangulation (hence the

corresponding vector space of r-chains is trivial).
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Homology groups of the sphere Sd

We �rst observe that the sphere Sd is homeomorphic to the boundary of a (d+1)-simplex ∆ embedded in

Rd. To see this, realign ∆ so that its vertices lie on the sphere Sd and the origin O lies in its interior, then

project its boundary radially onto Sd. By convexity, the radial projection restricted to ∂∆ is bijective and

bi-continuous, hence a homeomorphism. Thus, what we need to do now is compute the homology of the

boundary ∂∆ of the (d+ 1)-simplex ∆.

Note that ∆ itself is convex hence homotopy equivalent to a point. To see this, choose an arbitrary

point p inside ∆, then consider the map F : [0, 1]×∆→ ∆ de�ned by F (t, x) = (1− t)x+ t p. This map

is well-de�ned by convexity of ∆, and it is a homotopy between the identity map id∆ and the projection

πp onto p. The homotopy equivalence is then given by πp and by the inclusion p ↪→ ∆. Thus, we have

β0(∆) = 1 and βr(∆) = 0 for all r > 0.
Now, let us apply the homology computation algorithm to ∆ and to its boundary respectively. The

only di�erence between the two executions is that, in the case of ∆, there is an extra column in the

boundary matrix, corresponding to the insertion of the (d + 1)-simplex itself. Since there are no other

(d + 1)-simplices, the column does not reduce to zero, hence the insertion of the (d + 1)-simplex kills a

d-cycle and thus decrements βd. We conclude that

βd(Sd) = βd(∂∆) = βd(∆) + 1 = 1

β0(Sd) = β0(∂∆) = β0(∆) = 1

βr(Sd) = βr(∂∆) = βr(∆) = 0 ∀r /∈ {0, d}.

Brouwer's �xed point theorem

1. The open half-line ]f(p), p) is always well-de�ned since there is no �xed point, and it evolves contin-

uously with p as f is continuous. Finding its intersection ϕ(p) with the bounding circle of the unit

disk boils down to solving for λ > 0 in the following equation:

∥f(p) + λ (p− f(p))∥2 = 1.

The reduced discriminant of this degree-2 equation in λ is

⟨f(p), p− f(p)⟩2 − (f(p)2 − 1)(p− f(p))2,

which is always non-negative since f(p) is located in the unit disk (f(p)2 ≤ 1). Moreover, the product

of the two roots of the polynomial is non-positive, and when it is zero the sum is positive (since

when the product is zero we have f(p)2 = 1 and so ⟨f(p), p − f(p)⟩ < 0 because p lies in the unit

disk minus f(p) and f(p) lies on the disk's boundary). Therefore, there is always a unique positive

root, and it evolves continuously with the parameters of the equation, hence with p. It follows that
ϕ(p) is well-de�ned and continuous.

2. Note that ϕ ◦ ι = idS1 , therefore ϕ∗ ◦ ι∗ is an isomorphism and ϕ∗ is surjective.

3. ϕ∗ : H∗(B2;k) → H∗(S1;k) surjective implies that the dimension of H∗(B2;k) is no smaller than

that of H∗(S1;k), which in the case ∗ = 1 contradicts the fact that H1(S1;k) = 1 > 0 = H1(B2;k).

The chain of arguments used here is independent of the ambient dimension and of the �eld of coe�cients.
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The hairy ball theorem

1. We can de�ne a homotopy Γ analytically via the formula:

(t, x) 7→ (cosπt)x+ (sinπt)V (x)/∥V (x)∥

Note that the normalization of the vector V (x) is possible because we assumed that V (x) ̸= 0. To
check that Γ(t, x) lies on the unit sphere at any time t, we use that both vectors x and V (x)/∥V (x)∥
have norm 1, and that they are orthogonal to each other because x is on the sphere and V (x) is a
tangent vector at x� the rest is a simple calculation. Finally, the continuity of Γ in both parameters

is immediate from the formula, as is the fact that Γ(0, x) = x while Γ(1, x) = −x.

2. This is a direct consequence of Hd(Sd) being 1-dimensional (see Exercise on the homology of the

sphere in all dimensions).

3. deg(id(Sd)) = 1 because the morphism induced in homology by the identity map is itself the identity

map. Now, since homotopy preserves the induced morphism, it also preserves the degree. As a

consequence, we have 1 = (−1)d+1, which raises a contradiction when d is even.

The dunce hat

1. The homotopy f between idS1 and ϕ is illustrated in Figure 3.9, where the three copies of p (as well

as the three copies of a) are matched after the transformation, as illustrated on the right-hand side

of the �gure.

p

p p

a

a

a

p

a

Figure 3.9: Homotopy between the identity and the gluing map.

Formally, viewing S1 as the group of unit complex numbers, with the argument set to 0 at the top

of the circle, f is de�ned analytically as follows:

f(t, eiθ) =

{
e3iθ if θ ∈ [0, 4π/3]

e−3iθ if θ ∈ [4π/3, 2π)

2. There is a homeomorphism h mapping B2 to a simplicial complex and S1 to a subcomplex. For

instance, map B2 to a triangle and S1 to its boundary via a radial projection. Then, one can

compose h with the homotopy for simplicial complexes given by the homotopy extension property,

to obtain a homotopy for the continuous spaces.
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3. We de�ne maps between B2 and the dunce hat D as follows. For f : B2 → D, we let f(x) = ϕ(x)
if x ∈ S1 and f(x) = x otherwise. For g : D → B2, we let g(x) = x if x ∈ S1 and g(x) = F (1, x)
otherwise, where F is the homotopy [0, 1] × B2 → B2 given by the extension of the homotopy

between idS1 and ϕ. By construction, g ◦ f is homotopic to idB2 and f ◦ g is homotopic to idD (run

F backwards each time). Hence, B2 and D are homotopy equivalent, which means that the Dunce

hat is contractible.


