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Context: the data deluge

» total amount of data stored in the world (including 10% of unique data):

2 Zo (2010) — 79 Zo (2021) P8 181 Zo (2025) (1 Zo = 102! octets)

— source: International Data Corporation
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reveal & exploit underlying structures
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Enter topological data analysis ( TDA)

algebraic invariants

Algebraic topology

Topological data analysis

topological space oo TR Y
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Enter topological data analysis ( TDA)

® Invariance properties
0 | o provable stability guarantees

M e complementary to other descriptors

e few parameters, automatically tunable

Topological data analysis

topological space
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Example of application: shape segmentation

Task : segment 3d shapes from examples
Supervised learning approach:
- train a predictor on descriptors extracted from the examples

- apply the predictor to the descriptors extracted from the test shapes

. & g p{$ (test shapes)
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[M. Carriere, S. Oudot, M. Ovsjanikov: Stable Topological Signatures for Points on 3D Shapes, Proc. SGP, 2015]




Example of application: shape segmentation

Task : segment 3d shapes from examples
Supervised learning approach:
- train a predictor on descriptors extracted from the examples

- apply the predictor to the descriptors extracted from the test shapes

Error rates (%):

geom/stat | TDA | geom/stat + TDA
Humanoids 21.3 26.0 11.3
Airplanes 18.7 27.4 9.3
Ants 9.7 (.7 1.5
Four legs 25.6 27.0 15.8
Octopuses 5.5 14.8 3.4
Birds 24.8 28.0 13.5
Fish 20.9 20.4 7.7

[M. Carriere, S. Oudot, M. Ovsjanikov: Stable Topological Signatures for Points on 3D Shapes, Proc. SGP, 2015]



The TDA pipeline in a nutshell
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The TDA pipeline in

a nutshell
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4 foundational pillars (persistence theory):

e decomposition theorems (3 barcodes)

e algorithms (barcodes calculation)

e stability theorems (barcodes as descriptors)

persistence diagram

e connections to other domains (geometry / analysis / statistics / Al)



Course outline

e Session 1: introduction to persistence theory + lab

e Sessions 2-3: homology theory + exercises

e Session 4-5: persistence theory + lab (graded)

e Session 5: topological inference + lab

e Session 6: topological descriptors + lab

e Session 7: learning with topological descriptors + exercises
e Session 8: statistics with topological descriptors + exercises

e Session 9: Reeb graphs and Mapper + lab

e Final written exam



Historical view

e origins: Morse theory
(1930's-1940's)

- rank =

- span

Interval

length / persistence

Awnara or MATHEMATICE
Yaol, 41, No. 2, April, 1940

RANK AND SPAN IN FUNCTIONAL TOPOLOGY

By Marston Morsk
(Received August 9, 1939)

1. Introduction.

The analysis of functions F on metric spaces M of the type which appear in
variational theories is made difficult by the fact that the eritical limits, such as
absolute minima, relative minima, minimax values etc., are in general infinite in
number. These limits are associated with relative k-cycles of various dimen-
sions and are classified as 0-limits, 1-limits etc. The number of k-limits suitably
counted is called the k® type number my of F. The theory seeks to establish
relations between the numbers m; and the connectivities p, of M. The numbers

pr are finite in the most important applications. It is otherwise with the
numbers my .




Historical view

e origins: Morse theory
(1930's-1940's)
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- span = length / persistence

e subsequent echoes (1990's)

- size theory [Frosini et al ]

- canonical forms [Barannikov]
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- persistent Betti numbers [Robins]
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Historical view
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e persistence theory (2000's-)

- persistence algorithm

|[Edelsbrunner, Letscher, Zomorodian]
- persistence modules [Carlsson, Zomorodian]

- interleaving distance and stability
(Cohen-Steiner, Edelsbrunner, Harer]

(Chazal, Cohen-Steiner, Glisse, Guibas, Oudot]
Lesnick]




Historical view

e origins: Morse theory
(1930's-1940's)

- rank = interval
- span = length / persistence

e subsequent echoes (1990's)
- size theory [Frosini et al ]

- canonical forms [Barannikov]

Awnara or MATHEMATICE
Yaol, 41, No. 2, April, 1940

RANK AND SPAN IN FUNCTIONAL TOPOLOGY

By Marston Morsk
(Received August 9, 1939)

1. Introduction.

The analysis of functions F on metric spaces M of the type which appear in
variational theories is made difficult by the fact that the eritical limits, such as
absolute minima, relative minima, minimax values etc., are in general infinite in
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- persistent Betti numbers [Robins]

e persistence theory (2000's-)

- persistence algorithm

|[Edelsbrunner, Letscher, Zomorodian]

- connection to representation theory
[Carlsson, de Silva] [Crawley-Boevey]

connection to sheaf theory
[Curry] [Kashiwara, Shapira]

- connection to symplectic geometry

- persistence modules [Carlsson, Zomorodian| [Polterovich, Shelukhin et al.]

- interleaving distance and stability

(Chazal, Cohen-Steiner, Glisse, Gu
[Lesnick]

(Cohen-Steiner, Edelsbrunner, Harer]

- connection to statistical inference
[Wasserman et al.] [Chazal et al.]

ibas, Oudot] |- connection to optimal transport
[Carriere, Cuturi, Oudot] [Divol, Lacombe]




