Reeb 1946]

Singh, Mémoli, Carlsson 2007]
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get a higher-level understanding of
the structure of data

exhibit relations between
clusters, variables, etc.
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principle: summarize the topological structuré of a map f : X — R through a graph



Mapper in the continuous setting
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Mapper in the continuous setting

Input:
- topological space X

- continuous function f: X — Y

- cover Z of im(f) by open intervals: imf C J; ., 1

Method:
o Compute pullback cover U of X: U = {f~1(I)}1er

e Refine U4 by separating each of its elements into its various con-
nected components in X — connected cover V

e The Mapper is the nerve of V:
- 1 vertex per element V € V
- 1 edge per intersection VNV’ £0, V.,V €V
- 1 k-simplex per (k + 1)-fold intersection ﬂ?:o Vi#£0, Vo, -, VL €V



Mapper in practice

Input:
- point cloud P C X with metric dp
- continuous function f : P — Y

- cover Z of im(f) by open intervals: imf C J; ., 1

Method: e Compute neighborhood graph G = (P, F)
o Compute pullback cover U of P: U = {f~1(I)}1ez

e Refine U4 by separating each of its elements into its various con-
nected components in G — connected cover V

e The Mapper is the nerve of V: (intersections materialized

- 1 vertex per element V € V by data pOintS)
- 1 edge per intersection VNV’ £0, V.,V €V
- 1 k-simplex per (k + 1)-fold intersection ﬂ?:o Vi#£0, Vo, -, VL €V



Mapper in practice

Mapper
M (G,Z)

G = d-neighborhood graph




Mapper in applications

3d shapes classification

[Singh, Mémoli, Carlsson 2007]



Mapper in applications

Colored by ESR1 levels Colored by chemaking levels
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breast cancer subtype identification

[Nicolau et al. 2011]



Mapper in applications
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recovery from spinal cord injuries

[Nielson et al. 2015]



Mapper in applications
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protein folding pathways

[Yao et al. 2009] 4
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Mapper in applications
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Mapper in applications

implicit networks in the US
house of representatives

[Lum et al. 2013]

Lowest valiie- /’.
High ESR1
: : : - ” A 1008

10 .
| w - = T2 —
_Figure 2 - AYASDI-Iris Analysis - .1< \
ke KW Ausain, 8 — BB, ok IO WBE,_ Mamloce in: — dymackinia ':_}_;.,r"g"' _/,J'

death

sparing Motor neuron sparing

survived

=

g ¢

% K @ /Jﬁ?\ |50%
Lowest valuesh

Tissue sparing

% I 31%
A, IR aﬁ\
o
ﬁ Hl 3%

“
\"1.\
.




Mapper in applications
classification of NBA players

[Alagappan 2012]
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Mapper in applications

Extracting insights from the shape of complex data using topology,
Lum et al., Nature, 2013

Topological Data Analysis for Discovery in Preclinical Spinal Cord
Injury and Traumatic Brain Injury, Nielson et al., Nature, 2015

Using Topological Data Analysis for Diagnosis Pulmonary Em-
bolism, Rucco et al., arXiv preprint, 2014

Topological Methods for Exploring Low-density States in
Biomolecular Folding Pathways, Yao et al., J. Chemical Physics, 2009

CD8 T-cell reactivity to islet antigens is unique to type 1 while
CD4 T-cell reactivity exists in both type 1 and type 2 diabetes,
Sarikonda et al., J. Autoimmunity, 2013

Innate and adaptive T cells in asthmatic patients: Relationship
to severity and disease mechanisms, Hinks et al., J. Allergy Clinical
Immunology, 2015



Mapper in applications

Two types of applications:

e clustering principle: identify statistically relevant sub-

populations through patterns (flares, loops)

e feature selection




Mapper in applications

1. clustering

Scheme:

compute the Mapper of your data

detect topological patterns ("loops”, "flares”) / subpopulations

use subpopulations to cluster data



Mapper in applications

1. clustering

Scheme:
compute the Mapper of your data

— selection of parameters

detect topological patterns ("loops”, "flares”) / subpopulations

— done by hand in general

— [Lum et al. 13] use persistence of eccentricity on Mapper graph

use subpopulations to cluster data

— visualize various features on the Mapper, check subpopulations
for having the same feature level

— [Lum et al. 13] also use Monte-Carlo simulations with multivari-
ate Gaussian distributions to validate the presence of flares



Extracting insights from the shape of complex data using topology,
Lum et al., Nature, 2013

Goal: detect clusters in the US House of Representatives

Points: member of the House

Filters: 1st and 2nd eigenvectors of the SVD of the coordinate matrix

Mapper colored by Republican/Democrat



Number of clusters
for each political
party through the
years

PCA was only able
to show the Republi-
can/Democrat divide

House Fragmentation |ndex
/

= Damocral = Bapublican Total

2009

f: 1st and 2nd ev
r — 1/12()7 g = 22%, k=77 Democrat ~ Republican



Same scheme: detect new clusters for NBA players (same paper)

A Role Players
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e |
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Mapper in applications

2. feature selection

Scheme:

compute the Mapper of your data

detect topological patterns ("loops”, "flares™)

select features that best discriminate the corresponding subpopulations



Mapper in applications

2. feature selection

Scheme:
compute the Mapper of your data

— selection of parameters

detect topological patterns ("loops”, "flares™)

— done mostly by hand

— [Lum et al. 13] use persistence of eccentricity on Mapper graph

select features that best discriminate the corresponding subpopulations

— use 2-sample tests (typically Kolmogorov-Smirnov) on
feature(substructure) vs feature(whole data set), then select
features with low p-value (best discriminate subpopulation)



Extracting insights from the shape of complex data using topology,
Lum et al., Nature, 2013

Goal: detect factors that influence survival after therapy in
breast cancer patients

Points: breast cancer patients that went through specific therapy

Filters: eccentricity

Mapper colored by ESR1 level since it is understood that low-ESR1
groups are correlated to poor prognosis



f: eccentricity
r=1/30,g = 33%,k =77
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"Y" letter for survivors and ccs for non-survivors indicate structure

coloring with ESR1 level exhibits subcluster of survivors with low-ESR1
level (lower arm of the "Y")

genes with lowest p-value after KS test are the ones responsible for
chemokine

coloring with chemokine level confirms this

Clustering PCA
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Choice of parameters

Parameters:
lens | filter

- function f: P - R -
- cover Z of im(f) by open intervals

- neighborhood size ¢ \

T range scale

geometric scale



Choice of parameters

Parameters:

lens | filter
-functionf:P%]R{¢ ’

- cover Z of im(f) by open intervals

- neighborhood size ¢ \

T range scale

geometric scale

— uniform cover Z:

- resolution / granularity: r (diameter of intervals)

- gain: g (percentage of overlap)




Choice of parameters

— In practice: trial-and-error

high-dimensional data sets*»**. This is performed automatically within the

software, by deploying an ensemble machine learning algorithm that iterates
through overlapping subject bins of different sizes that resample the metric space
(with replacement), thereby using a combination of the metric location and
similarity of subjects in the network topology. |After performing millions of

iterations, the algorithm returns the most stable, consensus vote for the resultin

‘solden network’ (Reeb graph), representing the multidimensional data shape'*

Nielson et al.: Topological Data Analysis for Discovery in Preclinical Spinal Cord
Injury and Traumatic Brain Injury, Nature, 2015




Choice of parameters

Example: P C R? sampled from a
known probability distribution
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Choice of parameters
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Choice of parameters

Recent contributions:

— clarify the roles of » and g in the continuous setting
— Introduce metrics between mappers
— establish stability and convergence results for Mappers

— relate discrete and continuous Mappers under conditions on 0

2 approaches:

e connection to topological persistence and representation theory
[Carriere, O. 2016] < [Bauer, Ge, Wang 2013] [Cohen-Steiner, Edelsbrunner, Harer 2008]

e connection to constructible cosheaves in Sets and stratification theory
[Munch, Wang 2016] < [de Silva, Munch, Patel 2015]



Choice of parameters

Recent contributions:

— clarify the roles of » and g in the continuous setting
— Introduce metrics between mappers
— establish stability and convergence results for Mappers

— relate discrete and continuous Mappers under conditions on 0

2 approaches:

e connection to topological persistence and representation theory
[Carriere, O. 2016] < [Bauer, Ge, Wang 2013] [Cohen-Steiner, Edelsbrunner, Harer 2008]

e connection to constructible cosheaves in Sets and stratification theory
[Munch, Wang 2016] < [de Silva, Munch, Patel 2015]



principle: summarize the topological structure of a map f : X — R through a graph



Reeb Graph

f(y) and z,y belong to same cc of f~'({f(x)}) ]

&
X
<
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Reeb Graph

T~y <= [ f(z) = f(y) and z,y belong to same cc of f~'({f(z)}) ]

X > R
1
yd
N\L //
/
Ry (X)

Prop: R¢(X) is a 1-d stratified space
(graph) e.g. when (X, f) is Morse,
or more generally of Morse type




Reeb Graph

T~y <= [ f(z) = f(y) and z,y belong to same cc of f~'({f(z)}) ]

mapper = pixelized Reeb graph

— build a descriptor for Reeb graphs




Descriptor for Reeb graph

Dg R ¢: bag-of-features descriptor for R ¢(X):

OrdoR s <— downward branches | ExtoRs <— trunks (cc)

ReliR ¢ <— upward branches ExtiRf <— loops

e ordinary / relative

m extended



Descriptor for Reeb graph

Construction uses extended persistence: [Cohen-Steiner, Edelsbrunner, Harer 2008]

- family of excursion sets (sublevel then superlevel sets) of Reeb graph

- use homological algebra to encode the evolution of the topology of the family

e ordinary / relative

m extended

10
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Descriptor for Reeb graph

Construction uses extended persistence: [Cohen-Steiner, Edelsbrunner, Harer 2008

- family of excursion sets (sublevel then superlevel sets) of Reeb graph

- use homological algebra to encode the evolution of the topology of the family

e ordinary / relative

m extended

10



or for Reeb graph

perSiStence [Cohen-Steiner, Edelsbrunner, Harer 2008]

vlevel then superlevel sets) of Reeb graph

e ordinary / relative

m extended

encode the evolution of the topology of the family

10
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or for Reeb graph
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or for Reeb graph

perSiStence [Cohen-Steiner, Edelsbrunner, Harer 2008]

blevel then superlevel sets) of Reeb graph

encode the evolution of the topology of the family
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Descriptor for Reeb graph

Construction uses extended persistence: [Cohen-Steiner, Edelsbrunner, Harer 2008]

- family of excursion sets (sublevel then superlevel sets) of Reeb graph

- use homological algebra to encode the evolution of the topology of the family

Ord: appears/dies in sublevels

e ordinary / relative

Rel: appears/dies in superlevels

Ext: appears in sublevels, dies in superlevels B extended 10



Descriptor for Reeb graph

Construction uses extended persistence: [Cohen-Steiner, Edelsbrunner, Harer 2008]

- family of excursion sets (sublevel then superlevel sets) of Reeb graph

- use homological algebra to encode the evolution of the topology of the family

Theorem (decomposition): [Crawley-Boevey'12] < --- < [Gabriel'72]
Every extended persistence module M decomposes as a direct sum:

M= Pk,

el

where each summand k; is an interval module, i.e. kj :=

0 0 0 1 1 0 0 0
OH...HOH\I{H...HI{JHOH...

N

tel

Moreover, the decomposition is essentially unique [Azumaya'51].

10



Descriptor for Reeb graph

Construction uses extended persistence: [Cohen-Steiner, Edelsbrunner, Harer 2008]

- family of excursion sets (sublevel then superlevel sets) of Reeb graph

- use homological algebra to encode the evolution of the topology of the family

Theorem (decomposition): [Crawley-Boevey'12] < --- < [Gabriel'72]
Every extended persistence module M decomposes as a direct sum:

M= Pk,

el

10



Descriptor for Reeb graph

Theorem (stability): [Bauer, Ge, Wang 2013]

dB(Dg Rf, Dg Rg) < GdGH(Rf, Rg)

e ordinary / relative

m extended

10



Descriptor for Reeb graph
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Descriptor for Reeb graph
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Descriptor for Reeb graph

Theorem (stability): [Bauer, Ge, Wang 2013]

dB(Dg Rf, Dg Rg) < GdGH(Rf, Rg)

cost(m)

10



Descriptor for Reeb graph

Note: dg(Dg-,Dg-) is only a pseudometric on Reeb graphs

e ordinary / relative

m extended

10



Descriptor for Reeb graph

Note: dg(Dg-,Dg-) is only a pseudometric on Reeb graphs

Thm: [Carriere, O. 2017]
dp(Dg-,Dg-) is locally a metric equivalent to dgn

e ordinary / relative

m extended

10



Descriptor for Mapper

Reminder: mapper = pixelized Reeb graph

AR Ra

|
"




Descriptor for Mapper

Def: Given X, f,Z:

DgM; := (Ord Ry \ Q2") U (Rel Ry \ Q) U (Ext Ry \ QF)

11



Descriptor for Mapper

Def: Given X, f,Z

DgM; := (Ord Ry \ Q2") U (Rel Ry \ Q) U (Ext Ry \ QF)

O d _ R I __ Ext _
r U QIU.H' ) U QI Ul Qr = U Qrus

Ie’l IcT

11



Descriptor for Mapper

Thm: [Carriere, O. 2016]

Dg My provides a bag-of-features descriptor for M ¢ (X, 7):

Ordgy +— downward branches

Rel; <— upward branches

Extg <— trunks (cc)

Ext, «— loops
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Descriptor for Mapper

Thm: [Carriere, O. 2016]

Dg My provides a bag-of-features descriptor for M ¢ (X, 7):

Ordgy +— downward branches

Rel; <— upward branches

Extg <— trunks (cc)

Ext, «— loops

./.
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Descriptor for Mapper

Thm: [Carriere, O. 2016]

Dg My provides a bag-of-features descriptor for M ¢ (X, 7):

Ordgy +— downward branches

Rel; <— upward branches

Extg <— trunks (cc)

Ext, «— loops

_____

11



Descriptor for Mapper

Corollary: Dg M = Dg R whenever the resolution 7 of Z is smaller
than the smallest distance from Dg Ry \ A to the diagonal A.

_____

11



Stability of Mapper

Definition: Dg M; := (Ord Ry \ Q2*%) U (Rel Ry \ Q%) U (Ext Ry \ Q%)

Observation: distance to staircase boundary measures (in-)stability of each
feature of M (X, Z) w.r.t. perturbations of (X, f,7)

12
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Stability of Mapper

Definition: Dg M; := (Ord Ry \ Q2*%) U (Rel Ry \ Q%) U (Ext Ry \ Q%)

Observation: distance to staircase boundary measures (in-)stability of each

feature of M (X, Z) w.r.t. perturbations of (X, f,7)

12



Stability of Mapper

Definition: Given X, Z:

dz(DgMy¢, DgM,) := inf costz(m)

\

"

m: DgM¢ <— DgM,
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Stability of Mapper

Definition: Given X, Z:

dz(DgMy¢, DgM,) := inf costz(m)

Thm: [Carriere, O. 2016]
For any Morse-type functions f,g : X — R:

dz(DgMy(X,Z), DgMy(X,7)) < [|f — gll

\

"

m: DgM¢ <— DgM,

13



Stability of Mapper

Definition: Given X, Z:

dz(DgMy¢, DgM,) := inf costz(m)

Thm: [Carriere, O. 2016]
For any Morse-type functions f,g : X — R:

dz(DgMy(X,Z), DgMy(X,7)) < [|f — gll

Extensions to:
e perturbations of X

e perturbations of Z

\

"

m: DgM¢ <— DgM,

13



Statistics via push-forwards

(X,dx) compact metric space [Chazal et al.] [Wasserman et al ]

1 probability measure with suppu = X

Sample n points iid
according to L.
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Statistics via push-forwards

(X,dx) compact metric space [Chazal et al.] [Wasserman et al ]

1 probability measure with suppu = X

\ F(X) —n

Sample n points iid
according to L.

Questions:

e Statistical properties of the estimator Dg .F()A(n) ?

e Convergence to the ground truth Dg F(X) 7 Deviation bounds?

14



Statistics via push-forwards

(X,dx) compact metric space [Chazal et al.] [Wasserman et al ]

1 probability measure with suppu = X

\ F(X) —n

Sample n points iid
according to L.

Stability thm: dz(Dg F(X,),Dg F(X)) < 2du(Xn, X) [Chazal et al. 2009/13]

= for any € > 0,

P (dB (Dgf()?n),DgF(X),) > s) <P (dH()?n,X) > g)

14



Deviation inequality / rate of convergence

4.

o * . Dg F(Xn)
— . ° '.
n points sampled ¢ n . |
l.i.d. according to p. *, o |

Hyp: w is (a, b)-standard:
Ve € X, Vr >0, w(B(z,r)) > min(ar’,1)

Theorem [Chazal, Glisse, Labruere, Michel 2014-15]:
If 1 is (a,b)-standard then for any € > 0:

P (dB (Dg]:()?n),Dg]:(X)) > 5) < S—b exp(—nae’)

ae®
Corollary [Chazal, Glisse, Labruére, Michel 2014-15]:

sup E [dB (Dgf()?n), Dg]—"(X)ﬂ <C (log”>l/b,
pneP

where C' depends only on a, b. Moreover, the estimator Dg ]-"()?n) Is minimax optimal
(up to logn factors) on the space P of (a,b)-standard probability measures on X.

15



Confidence regions
Setup: (X,dx,pn) — )A(n — f()?n) — Dg]—"()?n)

Goal: given a € (0,1), estimate ¢, («) > 0 such that

lim sup P <dB (Dg]—“()?@,Dg]—“(X)) > cn(oz)) < «

n—oo

— confidence region: dp-ball of radius ¢, («) around Dg ]:()A(n)

A A
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° / ® -
o * o . °
[ ® y
~ y noise
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Confidence regions
Setup: (X,dx,pn) — )A(n — F()?n) — Dg]—"()A(n)

Goal: given a € (0,1), estimate ¢, («) > 0 such that

lim sup P (dB (Dg F(X,),Dg ]—"(X)) > cn(a)) <a

n—oo

Note: we already have an inequality of this kind but...

8b
@_(v)

g

exp(—nae”)

P (dB (Dg]’()?n),Dg]:(X)) > 8) <

unknown
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Confidence regions
Setup: (X,dx,pn) — )A(n — f()?n) — Dg]—"()?n)

Goal: given a € (0,1), estimate ¢, («) > 0 such that

lim sup P <dB (Dg F(X,),Dg ]—"(X)) > cn(a)) <a

n—oo

Bootstrap: (ideally)

AN

e draw X* = X7,---, X, iid from pug (empirical measure on X,,)
o compute d* = dp (Dg F(X*),Deg f()?n))

e repeat N times to get d7, - ,dy
e let g, be the (1 — ) quantile of + SV I(ndl > t)

Principle [Efron 1979]: variations of Dg F(X*) around Dg F(X,,) are

AN

same as variations of Dg F(X,,) around Dg F(X).

Note: requires some conditions on (X,dx, i), hence the \/n.
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Confidence regions
Setup: (X,dx,pn) — )A(n — F()?n) — Dg]—"()A(n)

Goal: given a € (0,1), estimate ¢, («) > 0 such that

lim sup P (dB (Dg F(X,),Dg ]—"(X)) > cn(a)) <a

n—oo

Bootstrap: (in fact)

AN

e draw X* = X7,---, X, iid from pug (empirical measure on X,,)

e compute d* :dﬁ—@%ﬁ%@;— dH(X*aXn)

e repeat N times to get d7, - ,dy
e let g, be the (1 — ) quantile of + SV I(y/ndf > t)

Theorem [Balakrishnan et al. 2013] [Chazal et al. 2014]:

. <> C_Za
limsupP |dp (Dg F(X,),Dg F(X)) > — | <.
msupP (dp (Dg (), DeF(X)) > % )
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n points sampled Xn : 5
- . n \ ®
I.1.d. according to . Y o
g ,u . ° I( gn, 'rn) @@_ @
X
@
f )
®
Questions:

e Statistical properties of the estimator M¢( Xy, 0n, Z(gn,7n)) ?

e Convergence to the ground truth R¢(X) in dg? Deviation bounds?
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A A,
— .o. .o u ‘
_ ° ~ : —l Qv (@
n points sampled . Xn : 5
i.i.d. according to . ‘ " o® @
g % °. . . ° I(gn, Tn) @;@\@@
-
Theorem [Carriere, Michel, O. 2017]:
: : : : 1/b
If uis (a,b)-standard, f is c-Lipschitz, ¢, = 4 (2125") 4 , On € (%, ), T = Cg(ss,
then Ve > O:

~ logn
sup E [dB (Dng(Xn,én,I(gn,rn)), Dng(X))] <C ( = )
neP n

where C' depends only on a, b, c. Moreover, the estimator Dg M ¢ ()?n, On, L(gn,Tn))

is minimax optimal (up to log n factors) on the space P of (a, b)-standard probability
measures on X.
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A A e ©
. S .o. .o N “
_ ° ~ : - Qg (@
n points sampled |, Xn : 5
i.i.d. according to 1t | « A T(gn. ) ot o
° ° nyln 2.0
. o0 :
Theorem [Carriere, Michel, O. 2017]:
: : : : 1 .
If uis (a,b)-standard, f is c-Lipschitz, ¢, = 4 (21@5 ) /@ gn € (%, ), T = 95?:’,
then Ve > 0:

~ logn
sup E [dB (Dng(Xn,én,I(gn,rn)), Dng(X))] <C ( = )
neP n

where C' depends only on a, b, c. Moreover, the estimator Dg M ¢ ()?n, On, L(gn,Tn))

is minimax optimal (up to log n factors) on the space P of (a, b)-standard probability
measures on X.
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A A :
. e © ° o ¢
o. () . @@@,OQ
. ° o~ ¢ ’* °
n points sampled |, Xn ° 5
I.i.d. according to u 'Y . . T(gn, ) @@@@
. o2
< *~
f
— subsampling to tune d,: let 8 > 0 and take (s,) = log(%1+5

O,

du(X:™ | X,) where X5™ is a subset of X,, of size s(n)
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A T
— i .o * ° q@’@@p@
. . > P . “
n points sampled |, Xn ° 5
I.i.d. according to u .. . J* T(gn, ) @@\@@@
. el .
— subsampling to tune d,: let 8 > 0 and take (s,) = 1og(r7:)1+5
5n = du (X2, X,,) where X5 is a subset of X,, of size s(n)
Theorem [Carriere, Michel, O. 2016]:
If 1 is (a,b)-standard, f is c-Lipschitz, J,, as above, g, € (%, %) Ty = Cg‘sg,
then Ve > O:

log(n)?*F

sup E |dp (Dg M (Xn, 6, Z(gn, 7)), DgRy(X))| < C (
pneP

where C' depends only on a, b, c.

n

>1/b
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_ ° ~ . ’* ’"U Q@
n points sampled |, Xn ° 5
- . ® ° n
I.i.d. according to u .. o Z(gn, ) “®e, o

R

<JT @

— subsampling to tune d,: let 8 > 0 and take (s,) = log($1+5

5n = du (X2, X,,) where X5 is a subset of X,, of size s(n)

Theorem [Carriere, Michel, O. 2016]:

If wis (a,b)-standard, f is c-Lipschitz, d,, as above, gn € (3, 3), 70 = 095:,
then Ve > 0:

~ log(n)2+F t/b
sup E [dB (Dng(Xn,én,I(gn,rn)), Dng(X))} <C ( ) |
pneP n

where C depends only on a,b,c. —> iterate subsampling to get confidence regions
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Experiments

confidence level: 85%
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confidence level: 85%
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