
Statistics on Persistence Diagrams

INF556 — Topological Data Analysis



this one possible solution among othersPros:

• information of a different nature

• strong invariance and stability:

Persistence diagrams as descriptors for data
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• flexible and versatile

dataset 1-parameter family of spaces persistence diagram
(geometry) (algebraic

topology)

Cons:

• space of diagrams is not linear

• positive intrinsic curvature

• slow to compare

dp(DgX,Dg Y ) ≤ cst dGH(X,Y )



Statistics for persistence diagrams
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Statistics:

- signal vs noise discrimination

- convergence rates

- confidence indices/intervals, principal components, etc.



Statistics for persistence diagrams
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H

3 approaches for statistics:

- Fréchet means in diagrams space

- embedding into Hilbert spaces

- push-forwards from data space

(TDA) (vectorization)
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- embedding into Hilbert spaces

- push-forwards from data space

(TDA) (vectorization)
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today’s menu



1. Fréchet means in diagrams space

3

Means as a gateway to statistical analysis

central limit theorems, confidence intervals, geodesic PCA,

clustering (k-means, EM, Mean-Shift, etc.)

mean , , =



1. Fréchet means in diagrams space

3

No coordinates  means as minimizers of variance (Fréchet means)

D̄ ∈ arg min
D

1

n

∑
i

dp(D, Di)
2

Given diagrams D1, · · · , Dn:

[K. Turner et al.: ”Fréchet means for distributions of persistence diagrams”, 2012]

Means as a gateway to statistical analysis

central limit theorems, confidence intervals, geodesic PCA,

clustering (k-means, EM, Mean-Shift, etc.)

mean , , =

Prop.: minimizers do exist

(diagram space is complete and separable)
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[K. Turner et al.: ”Fréchet means for distributions of persistence diagrams”, 2012]

Problem: non-unique argmin, local minima, num. issues

Means as a gateway to statistical analysis

central limit theorems, confidence intervals, geodesic PCA,

clustering (k-means, EM, Mean-Shift, etc.)
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(non-convex energy, highly curved space)
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Given diagrams D1, · · · , Dn:

[K. Turner et al.: ”Fréchet means for distributions of persistence diagrams”, 2012]

Problem: non-unique argmin, local minima, num. issues

Means as a gateway to statistical analysis

central limit theorems, confidence intervals, geodesic PCA,

clustering (k-means, EM, Mean-Shift, etc.)

mean , , =

barcode distance is a
transportation type
distance  connection
to Optimal Transport

(non-convex energy, highly curved space)



1. Fréchet means in diagrams space

3

Means as a gateway to statistical analysis

central limit theorems, confidence intervals, geodesic PCA,

clustering (k-means, EM, Mean-Shift, etc.)

mean , , =

OT Approach: recast problem in measure space

B 7→ µB

 use relaxations from Optimal Transport (OT):

measures: µB 7→ µB ∗ U[0,ε]2

metric: W2,γ(µBi , µBj )2 := inf
ν

∫
‖x− y‖2dν(x, y) + γ H(ν)

[M. Agueh, G. Carlier: ”Barycenters in the Wasserstein Space”, 2011]

[M. Cuturi, A. Doucet: ”Fast computation of Wasserstein barycenters”, 2014]

strictly convex problem
⇒ unique mean

easy to compute

B

δx

x

birth birth
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h
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∆

discrete
µB

µD :=
∑
x∈D δx

measure

∆

[Lacombe, Cuturi, O. 2018]



2. Hilbert space embedding
Persistence Landscape [Bubenik 2015]

Rotate PD
Compute rank function

Use boundaries of
rank function



2. Hilbert space embedding
Persistence Landscape [Bubenik 2015]

Use boundaries of
rank function

Rotate PD
Compute rank function

Rank function is defined as λ(x, y) = rank ιyx

ιyx : H(f−1(−∞, x))→ H(f−1(−∞, y)) induced linear map

x ≤ y =⇒ f−1(−∞, x) ⊆ f−1(−∞, y)



2. Hilbert space embedding
Persistence Landscape [Bubenik 2015]

Rotate PD
Compute rank function

Use boundaries of
rank function

Landscape Λ : R2 → R is defined as: Λ(i, t) = λbic(t)

Boundaries of rank function: λi(t) = sup{s ≥ 0 : λ(t− s, t+ s) ≥ i}



i.e. measurable when the domain and codomain are equipped with their Borel algebras, i.e. the σ-algebras induced by their open sets

2. Hilbert space embedding
Persistence Landscape [Bubenik 2015]

Prop: [Bubenik 2015]

‖Λ(Dg )− Λ(Dg ′)‖∞ ≤ d∞(Dg ,Dg ′)

Λ is Lipschitz hence Borel measurable⇒



i.e. measurable when the domain and codomain are equipped with their Borel algebras, i.e. the σ-algebras induced by their open sets

a.s. = almost surely: proba of equality converges to 1

2. Hilbert space embedding
Persistence Landscape [Bubenik 2015]

Prop: [Bubenik 2015]

‖Λ(Dg )− Λ(Dg ′)‖∞ ≤ d∞(Dg ,Dg ′)

Λ is Lipschitz hence Borel measurable⇒
Given D1, · · · , Dn ∼ µ iid, let Λ̄n = 1

n

∑n
i=1 Λ(Di)

Thm: (strong law of large numbers) [Bubenik 2015]

If E(‖Λ(µ)‖) < +∞, then Λ̄n
a.s.−→ E(Λ(µ)).



finite first and second moments note: Λ(µ) is a measure on the function space L2(R2) d = convergence in distribution, or weak convergence: cumulative distribution function of empirical measure converges pointwise to that of the true measure

i.e. measurable when the domain and codomain are equipped with their Borel algebras, i.e. the σ-algebras induced by their open sets

a.s. = almost surely: proba of equality converges to 1

2. Hilbert space embedding
Persistence Landscape [Bubenik 2015]

Prop: [Bubenik 2015]

‖Λ(Dg )− Λ(Dg ′)‖∞ ≤ d∞(Dg ,Dg ′)

Λ is Lipschitz hence Borel measurable⇒
Given D1, · · · , Dn ∼ µ iid, let Λ̄n = 1

n

∑n
i=1 Λ(Di)

Thm: (strong law of large numbers) [Bubenik 2015]

If E(‖Λ(µ)‖) < +∞, then Λ̄n
a.s.−→ E(Λ(µ)).

Thm: (central limit theorem) [Bubenik 2015]

If E(‖Λ(µ)‖) < +∞ and E(‖Λ(µ)‖2) < +∞, then

√
n
(
Λ̄n − E(Λ(µ))

) d−→ N (0,Σ(Λ(µ))).



2. Hilbert space embedding
Persistence Landscape [Bubenik 2015]

Problem: mean landscape is not a landscape



basically, we push the measure on the initial topological space onto the space of persistence diagrams via the filtration+decomposition operator. Now, a random variable of law µ×n is mapped to a random variable taking values in the space of persistence diagrams

compared to the previous setup, now we have a ground truth to compare to → no more need for a well-defined mean

X̂n ∼ µ⊗n F(X̂n)

DgF(X̂n)

(X, dX) compact metric space

µ probability measure with suppµ = X

Sample n points iid
according to µ.

Questions:

• Statistical properties of the estimator DgF(X̂n) ?

• Convergence to the ground truth DgF(X) ? Deviation bounds?

[Chazal et al.] [Wasserman et al.]

DgF(X)

F(X)

ground
truth

3. Push-forwards from data space

(Rips) filtration



basically, we push the measure on the initial topological space onto the space of persistence diagrams via the filtration+decomposition operator. Now, a random variable of law µ×n is mapped to a random variable taking values in the space of persistence diagrams

the problem is now reduced to a classical problem of support estimation in dH

compared to the previous setup, now we have a ground truth to compare to → no more need for a well-defined mean

X̂n ∼ µ⊗n F(X̂n)

DgF(X̂n)

(X, dX) compact metric space

µ probability measure with suppµ = X

Sample n points iid
according to µ.

P
(

d∞
(

DgF(X̂n),DgF(X),
)
> ε
)
≤ P

(
dH(X̂n, X) >

ε

2

)⇒ for any ε > 0,

[Chazal et al.] [Wasserman et al.]

DgF(X)

F(X)

ground
truth

3. Push-forwards from data spacebasically, we push the measure on the initial topological space onto the space of persistence diagrams via the filtration+decomposition operator. Now, a random variable of law µ×n is mapped to a random variable taking values in the space of persistence diagrams

Stability thm: d∞(DgF(X̂n),DgF(X)) ≤ 2dH(X̂n, X)

3. Push-forwards from data space

(Rips) filtration



X̂n F(X̂n)(X, dX , µ) n points sampled i.i.d.
according to µ.

For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x ∈ X and any
r > 0, we have µ(B(x, r)) ≥ min(arb, 1).

Theorem [Chazal, Glisse, Labruère, Michel 2014-15]:

If µ is (a, b)-standard then for any ε > 0:

Deviation inequality

4

P
(

d∞
(

DgF(X̂n),DgF(X)
)
> ε
)
≤ 8b

aεb
exp(−naεb)



X̂n F(X̂n)(X, dX , µ) n points sampled i.i.d.
according to µ.

For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x ∈ X and any
r > 0, we have µ(B(x, r)) ≥ min(arb, 1).

Theorem [Chazal, Glisse, Labruère, Michel 2014-15]:

If µ is (a, b)-standard then for any ε > 0:

Deviation inequality

4

P
(

d∞
(

DgF(X̂n),DgF(X)
)
> ε
)
≤ 8b

aεb
exp(−naεb)

Corollary [Chazal, Glisse, Labruère, Michel 2014-15]:

sup
µ∈P

E
[
d∞

(
DgF(X̂n), DgF(X)

)]
≤ C

(
logn

n

)1/b

,

where C depends only on a, b. Moreover, the estimator DgF(X̂n) is minimax optimal (up
to a logn factor) on the space P of (a, b)-standard probability measures on X.

/ rate of convergence



k ranges from 2100 to 3000 every 100 steps (sample k point clouds each time)

- µ: unif. measure on Lissajous curve X.
- F : distance to X in R2.
- sample k = 300 sets of n points for n =
[2100 : 100 : 3000].
- compute

Ên = Ê[d∞(DgF(X̂n),DgF(X))].

- plot log(Ên) as a function of log(log(n)/n).

Numerical illustrations

5



- µ: unif. measure on a torus X.
- F : distance to X in R3.
- sample k = 300 sets of n points for n =
[12000 : 1000 : 21000].
- compute

Ên = Ê[d∞(DgF(X̂n),DgF(X))].

- plot log(Ên) as a function of log(log(n)/n).

Numerical illustrations

5



Note: the analysis is asymptotic, and the lim sup comes from the fact that the probability depends on n, and the sequence of such probabilities does not have to converge (as it does not go to zero).

Confidence regions

6

Setup: (X,dX , µ) → X̂n → F(X̂n) → DgF(X̂n)

Goal: given α ∈ (0, 1), estimate cn(α) ≥ 0 such that

lim sup
n→∞

P
(

d∞

(
DgF(X̂n),DgF(X)

)
> cn(α)

)
≤ α

→ confidence region: d∞-ball of radius cn(α) around DgF(X̂n)

signal

noise

say α = 5%...



Note: the analysis is asymptotic, and the lim sup comes from the fact that the probability depends on n, and the sequence of such probabilities does not have to converge (as it does not go to zero).

If a, b were known, we would only have to invert the right-hand side of the inequality as a function of ε

Confidence regions

6

Setup: (X,dX , µ) → X̂n → F(X̂n) → DgF(X̂n)

Goal: given α ∈ (0, 1), estimate cn(α) ≥ 0 such that

lim sup
n→∞

P
(

d∞

(
DgF(X̂n),DgF(X)

)
> cn(α)

)
≤ α

Note: we already have an inequality of this kind but...

P
(

d∞
(

DgF(X̂n),DgF(X)
)
> ε
)
≤ 8b

aεb
exp(−naεb)

unknown

say α = 5%...



Basically, the formula is that of the empirical measure associated with d∗1, · · · , d∗n. The (1− α) quantile qα of this distribution is defined such that a fraction 1− α of the values lie below qα (for instance 1− α = 95% when α = 5%). The quantiles are usually determined from the cumulative distribution function of the measure.

basically, the class of distance functions needs to be so-called Donsker, which the diagram distance(s) are not.

Note: the analysis is asymptotic, and the lim sup comes from the fact that the probability depends on n, and the sequence of such probabilities does not have to converge (as it does not go to zero).

Confidence regions

6

Setup: (X,dX , µ) → X̂n → F(X̂n) → DgF(X̂n)

Goal: given α ∈ (0, 1), estimate cn(α) ≥ 0 such that

lim sup
n→∞

P
(

d∞

(
DgF(X̂n),DgF(X)

)
> cn(α)

)
≤ α

Bootstrap:

• draw X∗ = X∗1 , · · · , X∗n iid from µX̂n (empirical measure on X̂n)

• compute d∗ = d∞
(

DgF(X∗),DgF(X̂n)
)

• repeat N times to get d∗1, · · · , d∗N
• let qα be the (1− α) quantile of 1

N

∑N
i=1 δd∗i

Principle [Efron 1979]: variations of DgF(X∗) around DgF(X̂n) are

same as variations of DgF(X̂n) around DgF(X).

(ideally)

Note: requires some conditions on (X, dX , µ)...

say α = 5%...



Basically, the formula is that of the empirical measure associated with d∗1, · · · , d∗n. The (1− α) quantile qα of this distribution is defined such that a fraction 1− α of the values lie below qα (for instance 1− α = 95% when α = 5%). The quantiles are usually determined from the cumulative distribution function of the measure.
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Confidence regions
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Setup: (X,dX , µ) → X̂n → F(X̂n) → DgF(X̂n)

Goal: given α ∈ (0, 1), estimate cn(α) ≥ 0 such that

lim sup
n→∞

P
(

d∞

(
DgF(X̂n),DgF(X)

)
> cn(α)

)
≤ α

Bootstrap:

• draw X∗ = X∗1 , · · · , X∗n iid from µX̂n (empirical measure on X̂n)

• compute d∗ = d∞
(

DgF(X∗),DgF(X̂n)
)

• repeat N times to get d∗1, · · · , d∗N
• let qα be the (1− α) quantile of 1

N

∑N
i=1 δd∗i

Theorem [Balakrishnan et al. 2013] + [Chazal et al. 2014]:

lim sup
n→∞

P
(

d∞
(

DgF(X̂n),DgF(X)
)
> qα

)
≤ α.

(in fact)

dH(X∗, X̂n)

say α = 5%...



Confidence regions
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Setup: (X,dX , µ) → X̂1
n, · · · , X̂r

n → φ(D1
n), · · · , φ(Dr

n)

v̄ = 1
r

∑r
i=1 φ(Di

n)

↓
empirical mean feature vector



Confidence regions

6

Setup: (X,dX , µ) → X̂1
n, · · · , X̂r

n → φ(D1
n), · · · , φ(Dr

n)

Goal: given α ∈ (0, 1), estimate cn(α) ≥ 0 such that

lim sup
n→∞

P
(∥∥v̄ − E(φ◦Dg ◦F)∗(µ⊗n)[v]

∥∥
H > cn(α)

)
≤ α

v̄ = 1
r

∑r
i=1 φ(Di

n)

↓

mean feature vector according to the measure induced by µ⊗n

(call it Λµ,n for landscapes)

empirical mean feature vector



Confidence regions
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Bootstrap with landscapes:

• draw Λ∗1, · · · ,Λ∗r iid from 1
r

∑r
i=1 δΛ(Din)

• compute Λ̄∗ = 1
r

∑r
i=1 Λ∗i and d∗ = ‖Λ̄∗ − Λ̄‖∞

• repeat N times to get d∗1, · · · , d∗N
• let qα be the (1− α) quantile of 1

N

∑N
i=1 δd∗i

Setup: (X,dX , µ) → X̂1
n, · · · , X̂r

n → Λ(D1
n), · · · ,Λ(Dr

n)

Λ̄ = 1
r

∑r
i=1 Λ(Di

n)

↓



Λµ,n is the average landscape obtained by sampling sets of n points at random from µ⊗. Note that we do not approximate the mean of the push-forward of the distribution µ here: by bootstrapping on the means of our samples we introduce a bias.

Confidence regions

6

Theorem [Chazal et al. 2014]:

lim sup
r→∞

P
(∥∥Λ̄− Λµ,n

∥∥
∞ > qα

)
≤ α.

Bootstrap with landscapes:

• draw Λ∗1, · · · ,Λ∗r iid from 1
r

∑r
i=1 δΛ(Din)

• compute Λ̄∗ = 1
r

∑r
i=1 Λ∗i and d∗ = ‖Λ̄∗ − Λ̄‖∞

• repeat N times to get d∗1, · · · , d∗N
• let qα be the (1− α) quantile of 1

N

∑N
i=1 δd∗i

Setup: (X,dX , µ) → X̂1
n, · · · , X̂r

n → Λ(D1
n), · · · ,Λ(Dr

n)

Λ̄ = 1
r

∑r
i=1 Λ(Di

n)

↓



Confidence regions
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Bootstrap with landscapes:

• draw Λ∗1, · · · ,Λ∗r iid from 1
r

∑r
i=1 δΛ(Din)

• compute Λ̄∗ = 1
r

∑r
i=1 Λ∗i and d∗ = ‖Λ̄∗ − Λ̄‖∞

• repeat N times to get d∗1, · · · , d∗N
• let qα be the (1− α) quantile of 1

N

∑N
i=1 δd∗i

Setup: (X,dX , µ) → X̂1
n, · · · , X̂r

n → Λ(D1
n), · · · ,Λ(Dr

n)

Λ̄ = 1
r

∑r
i=1 Λ(Di

n)

↓

Theorem [Chazal et al. 2015]:∥∥Λ̄− Λ(DgF(X))
∥∥
∞ ≤

∥∥Λ̄− Λµ,n
∥∥
∞ + ‖Λµ,n − Λ(DgF(X))‖∞

variance term bias term ≤ C
(

logn
an

)1/b
when µ is (a, b)-standard



Subsampling

7

Setup: (X,dX , µ) → X̂m with m large (e.g. m ≥ 106 or 109 or 1012)



Subsampling

7

Setup: (X,dX , µ) → X̂m with m large (e.g. m ≥ 106 or 109 or 1012)

Subsampling with landscapes:

• draw X∗ from µ⊗n
X̂m

(n points iid from empirical measure on X̂m)

• compute Λ∗ = Λ(DgF(X∗))

• repeat N times to get Λ∗1, · · · ,Λ∗N
• compute Λ̄∗ = 1

N

∑N
i=1 Λ∗i

Let n << m



the dependence on n may look strange at first, but it is justified in [Chazal et al. 2015]: basically, as n grows, the sampling of n points converges to the support of µ (resp. µX̂m ) in Hausdorff distance, therefore the average lanscape obtained from µ (resp. µX̂m ) converges to that of the support of µ (resp. µX̂m ). However, the supports of µ and µX̂m can be vastly different even when their Wasserstein distance is small, and this difference is better and better captured as n grows. Hence the monotonously increasing dependence of the bound on n.

the rest of the analysis (namely, relating the empirical mean Λ̄∗ to Λµ
X̂n

,m) uses the previous techniques (bootstrap: requires to sample more point clouds, e.g. from X∗1 )

Subsampling

7

Setup: (X,dX , µ) → X̂m with m large (e.g. m ≥ 106 or 109 or 1012)

Subsampling with landscapes:

• draw X∗ from µ⊗n
X̂m

(n points iid from empirical measure on X̂m)

• compute Λ∗ = Λ(DgF(X∗))

• repeat N times to get Λ∗1, · · · ,Λ∗N
• compute Λ̄∗ = 1

N

∑N
i=1 Λ∗i

Let n << m

Theorem [Chazal et al. 2015]:∥∥∥Λµ
X̂m

,n − Λµ,n

∥∥∥
∞
≤ n1/pWp(µX̂m , µ)

→ by approximating Λµ
X̂m

,n, the empirical mean Λ̄∗ also approximates Λµ,n



Some applications
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Application 1: 3D shapes classification

From N = 100 subsamples of size m = 300

each mesh has 7K to 40K vertices

flam
.
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these plots represent just 1 of the 3 coordinates in space measured by the accelerometer

Some applications

8

Application 2: walking behaviors classification from smartphone accelerometer data

- spatial time series (accelerometer data from the smarphone of users).
- no registration/calibration preprocessing step needed to compare!



Recap’
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• statistical analysis based on stability theorem(s):

- stats. on diagrams (Fréchet means [Turner et al. 2012])

- cvgence rates

- confidence regions (bootstrap, subsampling)

- stats. on feature vectors (landscapes)

dataset filtration persistence diagram

H


