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Def: p-th diagram distance (extended metric):

dp(Dgm f,Dgm g) := inf
Γ⊆Dgm f×Dgm g

cp(Γ)

Def: bottleneck distance:

d∞(Dgm f,Dgm g) := lim
p→∞

dp(Dgm f,Dgm g)



The TDA pipeline
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· · ·

Vectors

VectorizationTopological

Persistence

Vectorization:map diagrams to (possibly infinite) Hilbert space and use kernel trick

D

H

Φ

k(·, ·) := ⟨Φ(·),Φ(·)⟩H

(ideally: Φ quasi-isometry)



The TDA pipeline
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DescriptorsData

· · ·

Vectors

VectorizationTopological

Persistence

Data exploration

[Ishkhanov et al. ’08]

[Carrière et al. ’15]

Features for ML

Topological regularizers

[Chen et al. ’19]

Neural network layers

Neural network monitoring

[Carrière et al. ’20]

[Rieck et al. ’19]

wi ≤ t



Detour: Supervised Machine Learning
Input: n observations + responses (x1, y1), · · · , (xn, yn) ∈ X × Y

X = images,
Y = {cat, dog, horse}

X = R

Y = R

regression

classification
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Detour: Supervised Machine Learning

Goal: build a predictor f : X → Y from (x1, y1), · · · , (xn, yn)

Input: n observations + responses (x1, y1), · · · , (xn, yn) ∈ X × Y
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Empirical Risk Minimization

Optimization problem (supervised regression / classification):

L : X ×X → R is the loss function

Ω : F → R is the regularizer

F is the class of predictors

f∗ = argmin
f∈F

1

n

n∑
i=1

L(yi, f(xi)) + Ω(f)

4



Empirical Risk Minimization

Optimization problem (supervised regression / classification):

L : X ×X → R is the loss function

Ω : F → R is the regularizer

F is the class of predictors

L(yi, f(xi)) Name

1yi ̸=f(xi) zero-one

max{0, 1− yif(xi)} hinge

exp(−yif(xi)) exponential

log(1 + exp(−yif(xi))) logistic

(yi − f(xi))
2 squared

→ Support Vector Machines

→ Adaptive boosting

→ Least squares

f∗ = argmin
f∈F

1

n

n∑
i=1

L(yi, f(xi)) + Ω(f)

→ Logistic regression

4

→ Bayes



Empirical Risk Minimization

Optimization problem (supervised regression / classification):

f∗ = argmin
f∈F

1

n

n∑
i=1

L(yi, f(xi)) + Ω(f)

zero-one

Adaptive boosting

Logistic regression

Least squares

SVM
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Empirical Risk Minimization

Optimization problem (supervised regression / classification):

L : X ×X → R is the loss function

Ω : F → R is the regularizer

F is the class of predictors

→ use regularizer to avoid overfitting

f∗ = argmin
f∈F

1

n

n∑
i=1

L(yi, f(xi)) + Ω(f)

4



Empirical Risk Minimization

Optimization problem (supervised regression / classification):

L : X ×X → R is the loss function

Ω : F → R is the regularizer

F is the class of predictors

Ω(w) Name
∥w∥22 ℓ2 (Tikhonov)

∥w∥1 ℓ1 (LASSO)

α∥w∥22 + (1− α)∥w∥1 elastic net

F = {fw : w ∈ Rd}

→ differentiable

→ sparse

f∗ = argmin
f∈F

1

n

n∑
i=1

L(yi, f(xi)) + Ω(f)

ℓ2

ℓ1

4



Empirical Risk Minimization

Optimization problem (supervised regression / classification):

L : X ×X → R is the loss function

Ω : F → R is the regularizer

F is the class of predictors

Complexity of the minimization grows with the one of F

Easy to control when F is a Reproducing Kernel Hilbert Space

f∗ = argmin
f∈F

1

n

n∑
i=1

L(yi, f(xi)) + Ω(f)

4



Transition: RKHS are spaces of real-valued functions on X, where evaluation on points of x is given by their inner product

The kernel k is the pullback of the inner product onto the space of observations

H is a subspace of functions X → R

H contains the functions kx = k(x, ·)

Reproducing Kernel Hilbert Space

Def: Let H ⊂ RX Hilbert, with inner product ⟨·, ·⟩H
Then, H is a RKHS on X if ∃Φ : X → H s.t.:

∀x ∈ X, ∀f ∈ H, f(x) = ⟨f,Φ(x)⟩H

Terminology:

• feature space H, feature map Φ

• feature vector Φ(x)

• kernel k = ⟨Φ(·), Φ(·)⟩H : X ×X → R

X

H

Φ

5

reproducing
property



here, X∗ denotes the continuous dual of X, consisting of all continuous linear functionals X → R here, ”isometric” isomorphism is in the sense that the norm is preserved (the norm on H is pushed forward from X through Φ). The facts that Φ is surjective and preserves the inner product (hence is also injective) imply the reproducing property: given f ∈ H, there exists a unique y ∈ X such that f = ⟨y, ·⟩. Then, for any x ∈ X we have f(x) = ⟨y, x⟩ = ⟨f,Φ(x)⟩.

Transition: RKHS are spaces of real-valued functions on X, where evaluation on points of x is given by their inner product

The kernel k is the pullback of the inner product onto the space of observations

H is a subspace of functions X → R

H contains the functions kx = k(x, ·)

Reproducing Kernel Hilbert Space

Def: Let H ⊂ RX Hilbert, with inner product ⟨·, ·⟩H
Then, H is a RKHS on X if ∃Φ : X → H s.t.:

∀x ∈ X, ∀f ∈ H, f(x) = ⟨f,Φ(x)⟩H

Case X Hilbert space:

H = X∗, Φ(x) = ⟨x, ·⟩X
Φ isometric isomorphism [Riesz]

⟨·, ·⟩H := ⟨Φ−1(·),Φ−1(·)⟩X

Terminology:

• feature space H, feature map Φ

• feature vector Φ(x)

• kernel k = ⟨Φ(·), Φ(·)⟩H : X ×X → R

X

H

Φ

5

reproducing
property



uniqueness of the kernel implies uniqueness of the feature map: Φ(x) = k(x, ·)

Transition: RKHS are spaces of real-valued functions on X, where evaluation on points of x is given by their inner product

H is a subspace of functions X → R

H contains the functions kx = k(x, ·)

Reproducing Kernel Hilbert Space

Def: Let H ⊂ RX Hilbert, with inner product ⟨·, ·⟩H
Then, H is a RKHS on X if ∃Φ : X → H s.t.:

∀x ∈ X, ∀f ∈ H, f(x) = ⟨f,Φ(x)⟩H

Prop: Given X, the kernel of a RKHS on X is unique.
Conversely, k is the kernel of at most one RKHS on X.

5

reproducing
property

⇝ Φ(x) = k(x, ·)



uniqueness of the kernel implies uniqueness of the feature map: Φ(x) = k(x, ·)

Transition: RKHS are spaces of real-valued functions on X, where evaluation on points of x is given by their inner product

in other words, the Gram matrix (k(xi, xj))i,j is positive semi-definite

H is a subspace of functions X → R

H contains the functions kx = k(x, ·)

Reproducing Kernel Hilbert Space

Def: Let H ⊂ RX Hilbert, with inner product ⟨·, ·⟩H
Then, H is a RKHS on X if ∃Φ : X → H s.t.:

∀x ∈ X, ∀f ∈ H, f(x) = ⟨f,Φ(x)⟩H

Prop: Given X, the kernel of a RKHS on X is unique.
Conversely, k is the kernel of at most one RKHS on X.

Thm: [Moore 1950] k : X × X → R is a kernel iff it is positive
(semi-)definite, i.e. ∀n ∈ N, ∀x1, · · · , xn ∈ X, the Gram matrix
(k(xi, xj))i,j is positive semi-definite.
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uniqueness of the kernel implies uniqueness of the feature map: Φ(x) = k(x, ·)

Transition: RKHS are spaces of real-valued functions on X, where evaluation on points of x is given by their inner product

in other words, the Gram matrix (k(xi, xj))i,j is positive semi-definite

H is a subspace of functions X → R

H contains the functions kx = k(x, ·)

Reproducing Kernel Hilbert Space

Def: Let H ⊂ RX Hilbert, with inner product ⟨·, ·⟩H
Then, H is a RKHS on X if ∃Φ : X → H s.t.:

∀x ∈ X, ∀f ∈ H, f(x) = ⟨f,Φ(x)⟩H

Prop: Given X, the kernel of a RKHS on X is unique.
Conversely, k is the kernel of at most one RKHS on X.

• linear: k(x, y) = ⟨x, y⟩

k(x, y) = (1 + ⟨x, y⟩)N =
∑

n1+···+nd=N

(
N

n1,··· ,nd

)
xn1
1 · · ·x

nd
d yn1

1 · · · y
nd
d

• Gaussian: k(x, y) = exp

(
− ∥x−y∥22

2σ2

)
, σ > 0.

Thm: [Moore 1950] k : X × X → R is a kernel iff it is positive
(semi-)definite, i.e. ∀n ∈ N, ∀x1, · · · , xn ∈ X, the Gram matrix
(k(xi, xj))i,j is positive semi-definite.

H = (Rd)∗, Φ(x) = ⟨x, ·⟩

• polynomial:

∝ Φ(x)

H ⊂ L2(Rd)
5

reproducing
property

Examples in X = (Rd, ⟨·, ·⟩):



Transition: RKHS are spaces of real-valued functions on X, where evaluation on points of x is given by their inner product

H is a subspace of functions X → R

H contains the functions kx = k(x, ·)

Reproducing Kernel Hilbert Space

Def: Let H ⊂ RX Hilbert, with inner product ⟨·, ·⟩H
Then, H is a RKHS on X if ∃Φ : X → H s.t.:

∀x ∈ X, ∀f ∈ H, f(x) = ⟨f,Φ(x)⟩H

Thm: (Representer) [Kimeldorf, Wahba 1971] [Schölkopf et al 2001]

Given RKHS H with kernel k, there is a function f∗ ∈ H minimizing

1
n

∑n
i=1 L(yi, f(xi)) + Ω(∥f∥H)

of the form f∗(·) =
∑n

j=1 αjk(xj , ·), where α1, · · · , αn ∈ R.
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here we have replace ∥f∥H by its square, which does not change anything since Ω can be chosen arbitrarily a priori. More generally, one can replace simply ∥f∥H by ∥α∥p for some p ≥ 1.

Transition: RKHS are spaces of real-valued functions on X, where evaluation on points of x is given by their inner product

H is a subspace of functions X → R

H contains the functions kx = k(x, ·)

Reproducing Kernel Hilbert Space

Def: Let H ⊂ RX Hilbert, with inner product ⟨·, ·⟩H
Then, H is a RKHS on X if ∃Φ : X → H s.t.:

∀x ∈ X, ∀f ∈ H, f(x) = ⟨f,Φ(x)⟩H

Thm: (Representer) [Kimeldorf, Wahba 1971] [Schölkopf et al 2001]

Given RKHS H with kernel k, there is a function f∗ ∈ H minimizing

1
n

∑n
i=1 L(yi, f(xi)) + Ω(∥f∥H)

of the form f∗(·) =
∑n

j=1 αjk(xj , ·), where α1, · · · , αn ∈ R.

only the k(xi, xj) are
required to minimize
(kernel trick) 5

reproducing
property

⇝ argmin
α

1

n

n∑
i=1

L

yi,

n∑
j=1

αjk(xj , xi)

+ Ω

 n∑
i,j=1

αiαjk(xi, xj)


where α =

[ α1

...
αn

]
and K = (k(xi, xj))ij



Kernel Trick
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Building kernels

Three approaches:

• build kernel from kernels (algebraic operations)

- sum of kernels ←→ concatenation of feature spaces

- product of kernels ←→ tensor product of feature spaces

k1(x, y) + k2(x, y) =
〈(

Φ1(x)
Φ2(x)

)
,
(

Φ1(y)
Φ2(y)

)〉

k1(x, y)k2(x, y) =
〈
Φ1(x)Φ2(x)

T ,Φ1(y)Φ2(y)
T
〉
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Building kernels

Three approaches:

• define explicit feature map Φ : X → H (vectorization)

X

H

Φ

k(·, ·) := ⟨Φ(·),Φ(·)⟩H

• build kernel from kernels (algebraic operations)

7



Building kernels

Thm: [Kimeldorf, Wahba 1971]

If d : X ×X → R+ symmetric is conditionally negative semidefinite, i.e.:

∀n ∈ N, ∀x1, · · · , xn ∈ X,

n∑
i=1

αi = 0 =⇒
n∑
i=1

n∑
j=1

αiαj d(xi, xj) ≤ 0,

then k(x, y) = exp
(
− d(x,y)

2σ2

)
is positive definite for all σ > 0.

Three approaches:

• define explicit feature map Φ : X → H (vectorization)

• define kernel from metric via radial basis function

• build kernel from kernels (algebraic operations)

7



Building kernels

Thm: [Kimeldorf, Wahba 1971]

If d : X ×X → R+ symmetric is conditionally negative semidefinite, i.e.:

∀n ∈ N, ∀x1, · · · , xn ∈ X,

n∑
i=1

αi = 0 =⇒
n∑
i=1

n∑
j=1

αiαj d(xi, xj) ≤ 0,

then k(x, y) = exp
(
− d(x,y)

2σ2

)
is positive definite for all σ > 0.

Q: does this apply to persistence diagrams?

Three approaches:

• define explicit feature map Φ : X → H (vectorization)

• define kernel from metric via radial basis function

• build kernel from kernels (algebraic operations)

7
A: no, dp is not cnsd



• landscapes [Bubenik ’12] [Bubenik, D lotko ’15]

• images [Adams et al. ’15]

• discrete measures:

→ histograms [Bendich et al. ’14]

→ convolutions [Chepushtanova et al. ’15] [Kusano et al. ’16-’17]

→ heat diffusion [Reininghaus et al. ’15] [Kwit et al. ’15]

Vectorizations for persistence diagrams

8

• finite metric spaces [Carrière et al. ’15]

5
4

3

a

b

c

 0 4 5
4 0 3
5 3 0


a b c

a
b
c

• test functions

→ sliced Wasserstein distances [Carrière et al. ’17]
θ

→ polynomials [Di Fabio, Ferri ’15] [Kalǐsnik ’16]

→ deep sets [Carrière et al. ’20]



Attention: L2 is not an RKHS, just an ambient Hilbert space in which the RKHS is embedded

note: injective kernels can be made universal by post-composition with a Gaussian kernel

L2(N× R) is defined by taking the product of the counting measure on N and the Lebesgue measure on R, that is:
∫
N×R λ(k, t)dµ =

∑∞
k=1

∫
R λ(k, t)dt

Theoretical guarantees

9

positive (semi-)definiteness

ambient Hilbert space

∥ϕ(·)− ϕ(·)∥H ≤ C(dp)

∥ϕ(·)− ϕ(·)∥H ≥ c(dp)

universality

algorithmic cost

injectivity

landscapes
discretemetric

spaces

L2(N× R) L2(R2)(Rd, ∥.∥2)

O(n2) O(n2)
f. map: O(n2)

kernel: O(d)

measurespolynomials

ℓ2(R)

f. map: O(nd)

kernel: O(d)

images

(Rd, ∥.∥2)

f. map: O(n2)

kernel: O(d)
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• landscapes [Bubenik ’12] [Bubenik, D lotko ’15]

• images [Adams et al. ’15]

• discrete measures:

→ histograms [Bendich et al. ’14]

→ convolutions [Chepushtanova et al. ’15] [Kusano et al. ’16-’17]

→ heat diffusion [Reininghaus et al. ’15] [Kwit et al. ’15]

Vectorizations for persistence diagrams
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• finite metric spaces [Carrière et al. ’15]

5
4

3

a

b

c

 0 4 5
4 0 3
5 3 0


a b c

a
b
c

• test functions

→ sliced Wasserstein distances [Carrière et al. ’17]
θ

→ polynomials [Di Fabio, Ferri ’15] [Kalǐsnik ’16]

→ deep sets [Carrière et al. ’20]



Persistence Images [Adams et al. 2017]

Compute PD Rotate PD DiscretizationPixelate
+ concatenate into vector



Persistence Images [Adams et al. 2017]

Compute PD Rotate PD DiscretizationDiscretization

Discretize plane into one or several grid(s):

For each pixel P , compute I(P ) = # Dgm∩P

Concatenate all I(P ) into a single vector PI(Dgm)

Pixelate
+ concatenate into vector



Persistence Images [Adams et al. 2017]

Compute PD Rotate PD Discretization

Stability → weigh points: wt(x, y) = 1

t
y

Pixelate
+ concatenate into vector

→ blur image

(convolve with Gaussian)



Persistence Images [Adams et al. 2017]

Compute PD Rotate PD Discretization

Prop: [Adams et al. 2017]

• ∥PI(Dgm)− PI(Dgm′)∥∞ ≤ C(w, ϕp) d1(Dgm,Dgm′)

• ∥PI(Dgm)− PI(Dgm′)∥2 ≤
√
dC(w, ϕp) d1(Dgm,Dgm′)

Pixelate
+ concatenate into vector
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the idea here is to treat diagrams as measures and to take their densities as feature vectors (to build the feature map, from which the kernel itself is then derived)

δx

x

birth birth

de
at
h

de
at
h

∆

12

discreteD µD

µD :=
∑
x∈D δx

measure

∆

Convolution-based vectorization
Persistence diagrams as discrete measures:



the idea here is to treat diagrams as measures and to take their densities as feature vectors (to build the feature map, from which the kernel itself is then derived)

δx

x

birth birth birth

de
at
h

de
at
h

de
at
h

∆

12

discrete weighting
D µD

µwD :=
∑
x∈D w(x)δx̄µD :=

∑
x∈D δx

Pb: µD is unstable (points on diagonal disappear)

measure

w(x) := arctan (c d(x,∆)r), c, r > 0

∆
∆

Convolution-based vectorization
Persistence diagrams as discrete measures:



the idea here is to treat diagrams as measures and to take their densities as feature vectors (to build the feature map, from which the kernel itself is then derived)

δx

x

birth birth birth

de
at
h

de
at
h

de
at
h

∆

12

discrete weighting
D µD

µwD :=
∑
x∈D w(x)δx̄µD :=

∑
x∈D δx

Pb: µD is unstable (points on diagonal disappear)

measure convolution

w(x) := arctan (c d(x,∆)r), c, r > 0

Def: ϕ(D) is the density function of µwD ∗ N (0, σ) w.r.t. Lebesgue measure:

µ̃wD := µwD ∗ N (0, σ)

∆
∆

ϕ(D) :=
1√
2πσ

∑
x∈D

arctan(cd(x,∆)r) exp

(
−∥ · −x∥2

2σ2

)
k(D,D′) := ⟨ϕ(D), ϕ(D′)⟩L2(∆×R+)

Convolution-based vectorization
Persistence diagrams as discrete measures:



the idea here is to treat diagrams as measures and to take their densities as feature vectors (to build the feature map, from which the kernel itself is then derived)

δx

x

birth birth birth
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de
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h

∆
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discrete weighting

Prop.: [Kusano, Fukumisu, Hiraoka 2016-17]

• ∥ϕ(D)− ϕ(D′)∥H ≤ cst dp(D,D
′).

• ϕ is injective and exp(k) is universal

D µD

µwD :=
∑
x∈D w(x)δx̄µD :=

∑
x∈D δx

measure convolution

µ̃wD := µwD ∗ N (0, σ)

∆
∆

ϕ(D) :=
1√
2πσ

∑
x∈D

arctan(cd(x,∆)r) exp

(
−∥ · −x∥2

2σ2

)
k(D,D′) := ⟨ϕ(D), ϕ(D′)⟩L2(∆×R+)

Convolution-based vectorization
Persistence diagrams as discrete measures:



... because points/modes start mixing up together. Weighting also reduces discriminativity to some extent, but motivated by stability constraint and not a pure choice of design. In the following we will try to use the discrete measure itself, to avoid convolutions. Moreover, we will bypass the weighting.

the idea here is to treat diagrams as measures and to take their densities as feature vectors (to build the feature map, from which the kernel itself is then derived)
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h

de
at
h

∆

12

discrete weighting

Prop.: [Kusano, Fukumisu, Hiraoka 2016-17]

• ∥ϕ(D)− ϕ(D′)∥H ≤ cst dp(D,D
′).

• ϕ is injective and exp(k) is universal

D µD

µwD :=
∑
x∈D w(x)δx̄µD :=

∑
x∈D δx

measure convolution

µ̃wD := µwD ∗ N (0, σ)

∆
∆

ϕ(D) :=
1√
2πσ

∑
x∈D

arctan(cd(x,∆)r) exp

(
−∥ · −x∥2

2σ2

)
k(D,D′) := ⟨ϕ(D), ϕ(D′)⟩L2(∆×R+)

Pb: convolution reduces discriminativity → use discrete measure instead

Convolution-based vectorization
Persistence diagrams as discrete measures:



Attention: L2 is not an RKHS, just an ambient Hilbert space in which the RKHS is embedded

note: injective kernels can be made universal by post-composition with a Gaussian kernel

L2(N× R) is defined by taking the product of the counting measure on N and the Lebesgue measure on R, that is:
∫
N×R λ(k, t)dµ =

∑∞
k=1

∫
R λ(k, t)dt

Theoretical guarantees

13

positive (semi-)definiteness

ambient Hilbert space

∥ϕ(·)− ϕ(·)∥H ≤ C(dp)

∥ϕ(·)− ϕ(·)∥H ≥ c(dp)

universality

algorithmic cost

injectivity

landscapes
discretemetric

spaces

L2(N× R) L2(R2)(Rd, ∥.∥2)

O(n2) O(n2)
f. map: O(n2)

kernel: O(d)

measurespolynomials

ℓ2(R)

f. map: O(nd)

kernel: O(d)

images

(Rd, ∥.∥2)

f. map: O(n2)

kernel: O(d)



One kernel to rule them all...

Sliced Wasserstein Kernel [Carrière, Cuturi, O. 2017]

No feature map

Provably stable

Provably discriminative

Mimicks the Gaussian kernel

View diagrams as discrete measures w/o density functions



observation: taking densities might be the reason for the lack of discriminativity, since this requires to make some compromises. instead, now we deal with the discrete measures directly. The question is to be able to embed the metric space of diagrams into some metric space of measures, so that tools for these measures can then be used to define kernels for the diagrams. This may help us preserve the metric better.

this is because the two discrete measures have different masses. One could renormalize them and take the empirical measures, but then the optimal transport plan between them would be mass-splitting and therefore not equal to the metric between the diagrams

14

Persistence diagrams as discrete measures (II)
δx

x

birth birth

de
at
h

de
at
h

∆

µD :=
∑
x∈D δx

Pb: dp(D,D
′) ̸∝ Wp(µD, µD′) (Wp does not even make sense here)

∆



this is a quasi-isometric embedding

observation: taking densities might be the reason for the lack of discriminativity, since this requires to make some compromises. instead, now we deal with the discrete measures directly. The question is to be able to embed the metric space of diagrams into some metric space of measures, so that tools for these measures can then be used to define kernels for the diagrams. This may help us preserve the metric better.

this is because the two discrete measures have different masses. One could renormalize them and take the empirical measures, but then the optimal transport plan between them would be mass-splitting and therefore not equal to the metric between the diagrams
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Persistence diagrams as discrete measures (II)
δx

x

birth birth

de
at
h

de
at
h

∆

µD :=
∑
x∈D δx

→ given D,D′, let µ̄D :=
∑
x∈D

δx+
∑
y∈D′

δπ∆(y)

µ̄D′ :=
∑
y∈D′

δy+
∑
x∈D

δπ∆(x)

Then, dp(D,D
′) ≤Wp(µ̄D, µ̄D′) ≤ 2 dp(D,D

′)

Pb: dp(D,D
′) ̸∝ Wp(µD, µD′) (Wp does not even make sense here)

π∆(x)

∆



this is a quasi-isometric embedding

observation: taking densities might be the reason for the lack of discriminativity, since this requires to make some compromises. instead, now we deal with the discrete measures directly. The question is to be able to embed the metric space of diagrams into some metric space of measures, so that tools for these measures can then be used to define kernels for the diagrams. This may help us preserve the metric better.

this is because the two discrete measures have different masses. One could renormalize them and take the empirical measures, but then the optimal transport plan between them would be mass-splitting and therefore not equal to the metric between the diagrams

This is bad in practice because, basically, you need to make µD depend on all other diagrams at once, including the ones from the testing set (which you don’t know in advance) But this contradiction is only apparent, since, as we will see, it can be resolved using signed measures.
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Persistence diagrams as discrete measures (II)
δx

x

birth birth

de
at
h

de
at
h

∆

µD :=
∑
x∈D δx

→ given D,D′, let µ̄D :=
∑
x∈D

δx+
∑
y∈D′

δπ∆(y)

µ̄D′ :=
∑
y∈D′

δy+
∑
x∈D

δπ∆(x)

Then, dp(D,D
′) ≤Wp(µ̄D, µ̄D′) ≤ 2 dp(D,D

′)

Pb: dp(D,D
′) ̸∝ Wp(µD, µD′) (Wp does not even make sense here)

Pb: µ̄D depends on D′

π∆(x)

∆



observation: taking densities might be the reason for the lack of discriminativity, since this requires to make some compromises. instead, now we deal with the discrete measures directly. The question is to be able to embed the metric space of diagrams into some metric space of measures, so that tools for these measures can then be used to define kernels for the diagrams. This may help us preserve the metric better.

this is because the two discrete measures have different masses. One could renormalize them and take the empirical measures, but then the optimal transport plan between them would be mass-splitting and therefore not equal to the metric between the diagrams

this is the space of measures with total mass zero over R2 note: we redefine µ̃D here
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Persistence diagrams as discrete measures (II)
δx

x

birth birth

de
at
h

de
at
h

∆

µD :=
∑
x∈D δx

Pb: dp(D,D
′) ̸∝ Wp(µD, µD′) (Wp does not even make sense here)

∆

Solution: transfer mass negatively to µD:

µ̃D :=
∑
x∈D

δx −
∑
x∈D

δπ∆(x) ∈ M0(R2)

π∆(x)

→ signed discrete measure of total mass zero



Indeed, the Kantorovich norm offers a lot of flexibility compared to other metrics between measures. In particular, it is compatible with signed measures. Note that it is a true norm only for W1

observation: taking densities might be the reason for the lack of discriminativity, since this requires to make some compromises. instead, now we deal with the discrete measures directly. The question is to be able to embed the metric space of diagrams into some metric space of measures, so that tools for these measures can then be used to define kernels for the diagrams. This may help us preserve the metric better.

this is because the two discrete measures have different masses. One could renormalize them and take the empirical measures, but then the optimal transport plan between them would be mass-splitting and therefore not equal to the metric between the diagrams

this is the space of measures with total mass zero over R2 note: we redefine µ̃D here
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Persistence diagrams as discrete measures (II)
δx

x

birth birth

de
at
h

de
at
h

∆

µD :=
∑
x∈D δx

Pb: dp(D,D
′) ̸∝ Wp(µD, µD′) (Wp does not even make sense here)

∆

Solution: transfer mass negatively to µD:

µ̃D :=
∑
x∈D

δx −
∑
x∈D

δπ∆(x) ∈ M0(R2)

π∆(x)

→ signed discrete measure of total mass zero

metric: Kantorovich norm ∥ · ∥K



unique in the sense that for any other such decomposition P ′, N ′, one has µ(P∆P ′) = 0 = µ(N∆N ′)

P is a positive set for µ

N is a negative set for µ

observation: taking densities might be the reason for the lack of discriminativity, since this requires to make some compromises. instead, now we deal with the discrete measures directly. The question is to be able to embed the metric space of diagrams into some metric space of measures, so that tools for these measures can then be used to define kernels for the diagrams. This may help us preserve the metric better.

µ+ = positive part of µ, and µ− = negative part of µ

14

Persistence diagrams as discrete measures (II)

Hahn decomposition thm.: For any µ ∈ M0(X,Σ)
there exist measurable sets P,N such that:

(i) P ∪N = X and P ∩N = ∅
(ii) µ(B) ≥ 0 for every measureable set B ⊆ P

(iii) µ(B) ≤ 0 for every measureable set B ⊆ N

Moreover, the decomposition is essentially unique.

∆P

N

∀B ∈ Σ, let µ+(B) := µ(B ∩ P ) and µ−(B) := −µ(B ∩N) ∈ M+(X)

∥µ∥K := W1(µ
+, µ−)Def.:

Prop.: ∀µ, ν ∈ M0(X), W1(µ
+ + ν−, ν+ + µ−) = ∥µ− ν∥K



unique in the sense that for any other such decomposition P ′, N ′, one has µ(P∆P ′) = 0 = µ(N∆N ′)

P is a positive set for µ

N is a negative set for µ

observation: taking densities might be the reason for the lack of discriminativity, since this requires to make some compromises. instead, now we deal with the discrete measures directly. The question is to be able to embed the metric space of diagrams into some metric space of measures, so that tools for these measures can then be used to define kernels for the diagrams. This may help us preserve the metric better.

now we can identify the space of PDs to a space of measures, and so we can adopt solutions from Optimal Transport theory

µ+ = positive part of µ, and µ− = negative part of µ
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Persistence diagrams as discrete measures (II)

Hahn decomposition thm.: For any µ ∈ M0(X,Σ)
there exist measurable sets P,N such that:

(i) P ∪N = X and P ∩N = ∅
(ii) µ(B) ≥ 0 for every measureable set B ⊆ P

(iii) µ(B) ≤ 0 for every measureable set B ⊆ N

Moreover, the decomposition is essentially unique.

∆P

N

∀B ∈ Σ, let µ+(B) := µ(B ∩ P ) and µ−(B) := −µ(B ∩N) ∈ M+(X)

∥µ∥K := W1(µ
+, µ−)Def.:

Prop.: ∀µ, ν ∈ M0(X), W1(µ
+ + ν−, ν+ + µ−) = ∥µ− ν∥K
µ̄D µ̄D′

µ̃D µ̃D′
for persistence diagrams:

W1(µ̄D, µ̄D′) = ∥µ̃D − µ̃D′∥K



this is the path taken by [Aguey, Carlier] and [Ohta] for measures, by [Reiningshaus et al.] for PDs

it is indeed easy to generate counterexamples by randomly sampling the space of persistence diagrams.
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A Wasserstein Gaussian kernel for PDs?

Pb: W1 is not cnsd, neither is d1

Solutions:

• relax the measures (e.g. convolution)

• relax the metric (e.g. regularization, slicing)

Thm.: [Kimeldorf, Wahba 1971]

If d : X ×X → R+ symmetric is conditionally negative semidefinite, i.e.:

∀n ∈ N, ∀x1, · · · , xn ∈ X,

n∑
i=1

αi = 0 =⇒
n∑
i=1

n∑
j=1

αiαj d(xi, xj) ≤ 0,

then k(x, y) := exp
(
− d(x,y)

2σ2

)
is positive semidefinite.



16

Sliced Wasserstein metric

one can then see P and Q as n-dimensional vectors

Special case: X = R, µ, ν discrete measures of mass n

µ :=
∑n
i=1 δxi , ν :=

∑n
i=1 δyi

Sort the atoms of µ, ν along the real line: xi ≤ xi+1 and yi ≤ yi+1 for all i

Then: W1(µ, ν) =
∑n
i=1 |xi − yi| = ∥(x1, · · · , xn)− (y1, · · · , yn)∥1

µ

ν
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Sliced Wasserstein metric

one can then see P and Q as n-dimensional vectors

Special case: X = R, µ, ν discrete measures of mass n

µ :=
∑n
i=1 δxi , ν :=

∑n
i=1 δyi

Sort the atoms of µ, ν along the real line: xi ≤ xi+1 and yi ≤ yi+1 for all i

Then: W1(µ, ν) =
∑n
i=1 |xi − yi| = ∥(x1, · · · , xn)− (y1, · · · , yn)∥1

µ

ν

→ W1 is cnsd and easy to compute (same with ∥ · ∥K for signed measures)



Note : une idee naturelle serait d’integrer sur toutes les droites du plan, soit RP 1 × R, mais en fait : - la distance entre les mesures projetees orthogonalement sur la droite est invariante par translation de la droite, donc il suffit d’integrer sur RP 1 ; - pour simplifier on integre sur S1, ce qui ne fait que doubler la valeur de la distance.

This is very much like a (inverse) Radon transform

Def (sliced Wasserstein distance): for µ, ν ∈ M+(R2),

SW1(µ, ν) :=
1

2π

∫
θ∈S1

W1(πθ#µ, πθ#ν) dθ

where πθ = orthogonal projection onto line passing through origin with angle θ.

16

Sliced Wasserstein metric

θ

→ from integral geometry:

∫
Gr(1,2)

· · ·



Note : une idee naturelle serait d’integrer sur toutes les droites du plan, soit RP 1 × R, mais en fait : - la distance entre les mesures projetees orthogonalement sur la droite est invariante par translation de la droite, donc il suffit d’integrer sur RP 1 ; - pour simplifier on integre sur S1, ce qui ne fait que doubler la valeur de la distance.

Def (sliced Wasserstein distance): for µ, ν ∈ M+(R2),

SW1(µ, ν) :=
1

2π

∫
θ∈S1

W1(πθ#µ, πθ#ν) dθ

where πθ = orthogonal projection onto line passing through origin with angle θ.

16

Sliced Wasserstein metric

Props: (inherited from W1 over R) [Rabin, Peyré, Delon, Bernot 2011]

- satisfies the axioms of a metric

- conditionally negative semidefinite

- well-defined barycenters, fast to compute via stochastic gradient descent, etc.



17

Sliced Wasserstein kernel

Def: Given σ > 0, for any µ, ν ∈ M+(R2):

kSW (µ, ν) := exp

(
−SW1(µ, ν)

2σ2

)

Corollary: [Kolouri, Zou, Rohde]
kSW is positive semidefinite.

(from SW cnsd)



this is the same as SW1(µD + π∆#µD′ , µD′ + π∆#µD)
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Sliced Wasserstein kernel

Def: Given σ > 0, for any µ, ν ∈ M+(R2):

kSW (µ, ν) := exp

(
−SW1(µ, ν)

2σ2

)

Corollary: [Kolouri, Zou, Rohde]
kSW is positive semidefinite.

(from SW cnsd)

→ application to persistence diagrams:

D 7→ µD :=
∑
x∈D δx

δx

x

birth

de
at
h

∆

π∆(x)

7→ µ̃D := µD − π∆#µD

kSW (D,D′) := exp

(
−SW1(D,D

′)

2σ2

)
SW1(D,D

′) :=

∫
θ∈S1

∥πθ#µ̃D − πθ#µ̃D′∥K dθ



(vector norm + discrete set of directions, either full arrangement or fixed subset for approximation)

this is the same as SW1(µD + π∆#µD′ , µD′ + π∆#µD)
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Sliced Wasserstein kernel

Def: Given σ > 0, for any µ, ν ∈ M+(R2):

kSW (µ, ν) := exp

(
−SW1(µ, ν)

2σ2

)

Corollary: [Kolouri, Zou, Rohde]
kSW is positive semidefinite.

(from SW cnsd)

→ application to persistence diagrams:

D 7→ µD :=
∑
x∈D δx

δx

x

birth

de
at
h

∆

π∆(x)

7→ µ̃D := µD − π∆#µD

kSW (D,D′) := exp

(
−SW1(D,D

′)

2σ2

)
SW1(D,D

′) :=

∫
θ∈S1

∥πθ#µ̃D − πθ#µ̃D′∥K dθ

- positive semidefinite

- simple and fast to compute



this is the same as SW1(µD + π∆#µD′ , µD′ + π∆#µD)

17

Sliced Wasserstein kernel

→ application to persistence diagrams:

D 7→ µD :=
∑
x∈D δx

δx

x

birth

de
at
h

∆

π∆(x)

7→ µ̃D := µD − π∆#µD

kSW (D,D′) := exp

(
−SW1(D,D

′)

2σ2

)
SW1(D,D

′) :=

∫
θ∈S1

∥πθ#µ̃D − πθ#µ̃D′∥K dθ

Thm.: [Carrière, Cuturi, O. 2017]
The metrics d1 and SW1 on the space DN of persistence diagrams of size
bounded by N are strongly equivalent, namely: for D,D′ ∈ DN ,

1

2 + 4N(2N − 1)
d1(D,D

′) ≤ SW1(D,D
′) ≤ 2

√
2 d1(D,D

′)
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Sliced Wasserstein kernel

Thm.: [Carrière, Cuturi, O. 2017]
The metrics d1 and SW1 on the space DN of persistence diagrams of size
bounded by N are strongly equivalent, namely: for D,D′ ∈ DN ,

1

2 + 4N(2N − 1)
d1(D,D

′) ≤ SW1(D,D
′) ≤ 2

√
2 d1(D,D

′)

Corollary: the feature map ϕ associated with kSW is weakly metric-preserving:
∃g, h nonzero except at 0 such that g ◦ d1 ≤ ∥ϕ(·)− ϕ(·)∥H ≤ h ◦ d1.



18

Metric distortion in practice

0 0.5 1 1.5

d1 in diagram space

0

0.5

1

1.5

2

2.5

D
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e
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H
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PSS kernel

PWG kernel

SW kernel

exp(-d1)



Application to supervised shape segmentation

19

Goal: segment 3d shapes based on examples

Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes

- apply classifier to PDs extracted from query shape

(train data)

(test data)
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Goal: segment 3d shapes based on examples

Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes

- apply classifier to PDs extracted from query shape
(training data)



Application to supervised shape segmentation

19

Goal: segment 3d shapes based on examples

Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes

- apply classifier to PDs extracted from query shape

Error rates (%):

TDA geometry/stats TDA + geometry/stats

Human 26.0 21.3 11.3
Airplane 27.4 18.7 9.3
Ant 7.7 9.7 1.5
FourLeg 27.0 25.6 15.8
Octopus 14.8 5.5 3.4
Bird 28.0 24.8 13.5
Fish 20.4 20.9 7.7



the behavior of the orbit is highly dependent on the value of r, as illustrated below (where the labels correspond to certain ranges of values of r)

20

Application to supervised orbits classification

Goal: classify orbits of linked twisted map, modelling fluid flow dynamics

Orbits described by (depending on parameter r):

{
xn+1 = xn + r yn(1− yn) mod 1

yn+1 = yn + r xn+1(1− xn+1) mod 1

Label = 2

Label = 1 Label = 5

Label = 4
Label = 3



20

Application to supervised orbits classification

Goal: classify orbits of linked twisted map, modelling fluid flow dynamics

Orbits described by (depending on parameter r):

{
xn+1 = xn + r yn(1− yn) mod 1

yn+1 = yn + r xn+1(1− xn+1) mod 1

kPSS kPWG kSW
Orbit 64.0± 0.0 78.7± 0.0 83.7± 1.1

kPSS kPWG kSW
Orbit N × 9183.4± 65.6 N × 69.2± 0.9 385.8± 0.2 +NC

Accuracies (%) using only TDA descriptors (kernels on barcodes):

Running times (in seconds on N-sized parameter space from 100 orbits):

(PDs as discrete measures)



whatever that means... this is a descriptor for patterns that takes the form of a real-valued function on the domain of the image, whose persistence can then be computed

21

Application to supervised texture classification

Label = Canvas Label = TileLabel = Carpet

Goal: classify textures from the OUTEX00000 database [Ojala et al. 2002]

Textures described by CLBP (Compound Local Binary Pattern) [Guo et al. 2010]

→ apply degree-0 persistence on 1st sign component



whatever that means... this is a descriptor for patterns that takes the form of a real-valued function on the domain of the image, whose persistence can then be computed

21

Application to supervised texture classification

Goal: classify textures from the OUTEX00000 database [Ojala et al. 2002]

Textures described by CLBP (Compound Local Binary Pattern) [Guo et al. 2010]

→ apply degree-0 persistence on 1st sign component

kPSS kPWG kSW
Orbit 98.7± 0.06 96.7± 0.4 96.1± 0.1

kPSS kPWG kSW
Orbit N × 10337.4± 140.5 N × 45.9± 0.6 126.4± 0.2 +NC

Accuracies (%) using only TDA descriptors (kernels on barcodes):

Running times (in seconds on N-sized parameter space from 100 orbits):

(PDs as discrete measures)



Back to the TDA pipeline

Invariants
Data

· · ·

Vectors

LipschitzLipschitz

22

VectorizationTopo. Persistence

Thm (Rademacher): pipeline is differentiable almost everywhere



Back to the TDA pipeline

Invariants
Data

· · ·

Vectors

Questions:

LipschitzLipschitz

22

VectorizationTopo. Persistence

Thm (Rademacher): pipeline is differentiable almost everywhere

• class of differentiability?
• derivatives? chain rule?

• non-differentiablity set?
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The persistence algorithm
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1 1 2 1 2

3

1 2

3

4 1 2

3

4

5

1 2

3

4

56

1 2

3

4

56
7

Barcode

and f(τ) ≤ f(σ) for all faces τ ⊆ σ ∈ X
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The persistence algorithm
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and f(τ) ≤ f(σ) for all faces τ ⊆ σ ∈ X
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The persistence algorithm

23

1

3

4

56
7

f : X → R where X finite simplicial complexInput:

Output: boundary matrix

1 2 3 4 5 6 7
1 ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗
5 ∗
6 ∗
7

1 2 3 4 5 6 7
1 ∗
2 1 ∗
3 1
4 ∗
5 ∗
6 1
7

in column-echelon form

pivots pair up simplices → finite intervals:

unpaired simplices → infinite intervals: [1,+∞)

[2, 4), [3, 5), [6, 7)

and f(τ) ≤ f(σ) for all faces τ ⊆ σ ∈ X



caveat: when the preorder is not a total order (i.e. some simplices get the same value), it is important to break ties consistently, e.g. by taking the total lexicographic order (f -value, lexico. order on sorted vertex lists) on simplices, which indeed does not change as long as the preorder remains the same.
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The persistence algorithm

23

1

3

4

56
7

f : X → R where X finite simplicial complexInput:

Output: boundary matrix

1 2 3 4 5 6 7
1 ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗
5 ∗
6 ∗
7

1 2 3 4 5 6 7
1 ∗
2 1 ∗
3 1
4 ∗
5 ∗
6 1
7

in column-echelon form

pivots pair up simplices → finite intervals:

unpaired simplices → infinite intervals: [1,+∞)

[2, 4), [3, 5), [6, 7)
Key observations:

• pairing depends only on simplex (pre-)order induced by f

• under fixed pairing, barcode endpoints depend linearly on
f -values

and f(τ) ≤ f(σ) for all faces τ ⊆ σ ∈ X
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and f(τ) ≤ f(σ) for all faces τ ⊆ σ ∈ X



The persistence algorithm

23

1

3

4

56
7

f : X → R where X finite simplicial complexInput:

Output: boundary matrix

1 1 1

3

1

3

4 1

3

4

5

1

3

4

56

1

3

4

56
7

Barcode

in column-echelon form

2.5

2.5 2.5

2.5 2.5 2.5 2.5

and f(τ) ≤ f(σ) for all faces τ ⊆ σ ∈ X



q is defined like this only over the image of p. Elsewhere, pairing x2i−1 with x2i < x2i−1 does not give a valid bar, so q(x) is defined arbitrarily, e.g. as the constant zero map (giving an empty barcode). Thus, q is a left inverse to p.

The situation is best described by the following diagram
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Again, this is because L ◦ V ◦ Pers ◦F = L ◦ V ◦ q ◦ p ◦ Pers ◦F , on which we can apply the chain rule from usual differential calculus. Here, gradients are seen a row vectors / matrices with a single row, J denotes the Jacobian matrix, and concatenation stands for matrix multiplication.
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Application to inverse problems [Gameiro et al. ’16]

Goal: given a labeled point cloud P = {p1, · · · , pn} ⊂ Rd and its corresponding
barcode/diagram D, describe changes in P under small perturbations of D.

Point cloud continuation

X = 2P \ {∅}

∀∅ ̸= σ ⊆ P , f(σ) = max
pi,pj∈σ

∥pi − pj∥( )M = Rn×d

F Pers

Bar

∈
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▶ [from 2016] order on X induced by f is stable when P is generic (all distances differ)



F itself is semialgebraic because f depends piecewise affinely on the pairwise distances between the points, and the map ∥x− y∥ over Rd × Rd is semialgebraic, its graph in Rd × Rd × R being the zero-level set of (x, y, d) 7→ d− ∥x− y∥, which is the same as the solution set of the semialgebraic system d2 − (x− y)2 = 0 and d ≥ 0.
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F itself is semialgebraic because f depends piecewise affinely on the pairwise distances between the points, and the map ∥x− y∥ over Rd × Rd is semialgebraic, its graph in Rd × Rd × R being the zero-level set of (x, y, d) 7→ d− ∥x− y∥, which is the same as the solution set of the semialgebraic system d2 − (x− y)2 = 0 and d ≥ 0.

As the Jacobian matrix ofp ◦ Pers ◦F may not be invertible, a pseudo-inverse is used instead. Note that P belongs to a top-dimensional stratum of p ◦ Pers ◦F , but that F (P ) usually does not belong to a top-dimensional stratum of p ◦ Pers because the Rips filtration assigns the same value to many different simplices. The catch is that the filtration preorder remains the same in the top-dimensional strata of p ◦ Pers ◦F .
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Application to inverse problems [Gameiro et al. ’16]

Goal: given a labeled point cloud P = {p1, · · · , pn} ⊂ Rd and its corresponding
barcode/diagram D, describe changes in P under small perturbations of D.

Point cloud continuation

X = 2P \ {∅}

∀∅ ̸= σ ⊆ P , f(σ) = max
pi,pj∈σ

∥pi − pj∥( )M = Rn×d

F Pers

Bar

∈

▶ [from 2016] order on X induced by f is stable when P is generic (all distances differ)

▶ [from 2021] p◦Pers ◦F is semialgebraic, and genericity⇒ P ∈ top-dimensional stratum

▶ apply inverse function theorem to p ◦ Pers ◦F



Glass as we know it is not a true solid, it is silica in an amorphous state. At the atomic level, this means that it does not have a large-scale regular structure, but only some small-to-medium scale structure, including rings and cavities. Each type of small-to-medium structure, such as ring or cavity, has a certain signature in the degree-1 PD of the Rips filtration. The goal is to study the robustness of these geometric structures, for this one studies how they resist to normal (as opposed to tangential) changes in the PD, as indicated by the arrows. This work appeared in PNAS, vol. 113, num. 26, 2016.
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Application to inverse problems [Gameiro et al. ’16]

liquid silica crystalline silica

Goal: given a labeled point cloud P = {p1, · · · , pn} ⊂ Rd and its corresponding
barcode/diagram D, describe changes in P under small perturbations of D.

Point cloud continuation

amorphous silica

▶ application to the study of the rigidity of glass [Hiraoka et al. ’16]



In the definition, we take the limits whenever they exist. The vectors in this subdifferential are called Clarke subgradients.

Prop: When Φ = L ◦ V ◦ Pers ◦F : M → R is definable (e.g. semialgebraic
or subanalytic), it has a well-defined Clarke subdifferential:

∂Φ(x) := Conv{ lim
x′→x

∇Φ(x′) | Φ differentiable at x′}.

Towards nonsmooth optimization

Φ(x) = |x|

∂Φ(0)

26



In the definition, we take the limits whenever they exist. The vectors in this subdifferential are called Clarke subgradients.

Another way to phrase this step is to say that the usual gradient is replaced by a noisy subgradient, seen as a random variable centered inside the subdifferential of Φ.
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or subanalytic), it has a well-defined Clarke subdifferential:

∂Φ(x) := Conv{ lim
x′→x

∇Φ(x′) | Φ differentiable at x′}.

Stochastic subgradient descent step:

xk+1 := xk − αk(gk + ζk),

where gk ∈ ∂Φ(xk) (subgradient).

Towards nonsmooth optimization

learning rate
centered noise

iterates
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In the definition, we take the limits whenever they exist. The vectors in this subdifferential are called Clarke subgradients.

The standard conditions are: 1. The sequence {αk}k of learning rates is non-negative and square-summable but no summable. 2. Almost surely the iterates xk are globally bounded in M. 3. The noise ξk is centered and its variance may depend on xk but is bounded by some function that is bounded on bounded sets (which basically means that the variance is globally bounded a.s. since the iterates themselves are globally bounded a.s.).

Another way to phrase this step is to say that the usual gradient is replaced by a noisy subgradient, seen as a random variable centered inside the subdifferential of Φ.

Prop: When Φ = L ◦ V ◦ Pers ◦F : M → R is definable (e.g. semialgebraic
or subanalytic), it has a well-defined Clarke subdifferential:

∂Φ(x) := Conv{ lim
x′→x

∇Φ(x′) | Φ differentiable at x′}.

Stochastic subgradient descent step:

xk+1 := xk − αk(gk + ζk),

where gk ∈ ∂Φ(xk) (subgradient).

Towards nonsmooth optimization

learning rate
centered noise

iterates

Thm: [Davis et al. ’20]

Suppose Φ is definable (e.g. semiagebraic or subanalytic) and locally Lipschitz.
Then, under standard conditions on the parameters, almost surely the limit points
of the iterates of stochastic subgradient descent are critical for Φ and the se-
quence {Φ(xk)}k converges.
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Here we assume the image to be square for simplicity.Input: greyscaled image I : {1, · · · , n}2 → [0, 1].

Example: image binarization [Carrière et al. ’21]
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Output: image J : {1, · · · , n}2 → {0, 1}
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▶ minimize ∥J − I∥22 +
∑

1≤i,j≤n

min{|J(i, j)|, |1− J(i, j)|}
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Output: image J : {1, · · · , n}2 → {0, 1}

▶ X = grid {1, · · · , n}2 triangulated

▶ F (I) = upper-star filtration of I

F (I)(v) = I(v)

F (I)({u, v}) = min{I(u), I(v)}

X

▶ minimize ∥J − I∥22 +
∑

1≤i,j≤n

min{|J(i, j)|, |1− J(i, j)|}



Here we assume the image to be square for simplicity.Input: greyscaled image I : {1, · · · , n}2 → [0, 1].

▶ L ◦ V (D) =
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(x,y)∈D

(y − x)2
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Here we assume the image to be square for simplicity.Input: greyscaled image I : {1, · · · , n}2 → [0, 1].

▶ L ◦ V (D) =
∑

(x,y)∈D

(y − x)2

Example: image binarization [Carrière et al. ’21]
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Output: image J : {1, · · · , n}2 → {0, 1}

▶ X = grid {1, · · · , n}2 triangulated

▶ F (I) = upper-star filtration of I

F (I)(v) = I(v)

F (I)({u, v}) = min{I(u), I(v)}

▶ minimize ∥J − I∥22 + L ◦ V ◦ Pers0 ◦F



Example: orientation selection [Carrière et al. ’21]

Input: MNIST dataset

Goal: given two classes 0 ≤ i ̸= j ≤ 9, optimize orientation θi,j so that RF
performs best at distinguishing between the two classes from the barcodes of
the projections along θi,j .

28



Note that we reduce the dimensionality quite a bit by projecting down to 1d and by keeping only the persistence information. In every situation, this dimensionality reduction does not reduce the accuracy by too much once the direction has been properly adjusted. In some cases, the adjustment has little effect (sometimes even a negative effect) because the initial projection already gives decent results.

”before” means ”before optimization” ”after” means ”after optimization”

Example: orientation selection [Carrière et al. ’21]

Input: MNIST dataset

Goal: given two classes 0 ≤ i ̸= j ≤ 9, optimize orientation θi,j so that RF
performs best at distinguishing between the two classes from the barcodes of
the projections along θi,j .

Results:

vsij: class i vs. class j

baseline: RF applied to raw images

28
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Example: point cloud optimization
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epoch: 100

X = 2J1,rK, m = 2r
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Example: dimensionality reduction

autoencoder

A sampled from 2 interlaced circles + clutter in R9

A A′

R9 R2

R9

autoencoder +

topo. reg. w/ dA

autoencoder +

topo. reg. w/ (dA, -kdeA)



GIN means Graph Isomorphism Network

Example: graph classification

Model ENZYMES IMDB-B IMDB-M MUTAG

GCN 30.3±8.1 73.2±6.4 44.9±7.6 87.2±5.6
GCN+1pTOP 28.8±7.5 75.2±5.6 51.2±4.4 84.1±8.9
GCN+npTOP 39.0±10.1 78.4±5.1 51.1±3.5 85.1±7.7

GIN 47.0±12.9 71.2±5.4 47.1±2.9 87.2±8.0
GIN+1pTOP 45.3±11.8 75.0±2.7 47.5±5.0 88.3±8.9
GIN+npTOP 46.5±11.2 71.3±5.1 48.5±4.2 87.2±6.1

GraphResNet 42.8±11.0 75.3±5.3 49.4±4.3 88.8±5.2
GraphResNet+1pTOP 39.5±12.2 68.1±8.2 40.7±3.5 87.8±4.3
GraphResNet+npTOP 44.3±9.8 69.4±5.8 50.1±4.4 89.3±6.1
GraphDenseNet 43.2±10.4 50.3±5.9 33.1±2.7 88.8±5.2
GraphDenseNet+1pTOP 47.3±12.3 50.0±7.1 32.7±4.2 86.2±8.3
GraphDenseNet+npTOP 48.0±11.4 52.2±7.7 34.1±3.1 92.6±5.1

Topological layer inserted after GNN layer produces barcodes

GNN produces n attributes for nodes or edges in the input graph

Barcodes are combined with attributes for an enriched graph representation

Representation is learnt in an end-to-end fashion in graph classification tasks


