Geometric Data

Input: point cloud equipped with a metric or (dis-)similarity measure

data point = image/patch, geometric shape, protein conformation, patient, Linkedln user...
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Mathematical framework

e geometric data set / underlying space = compact metric space

ambient / extrinsic distance

Intrinsic distance




Mathematical framework

e geometric data set / underlying space = compact metric space

e distance between compact metric spaces = Gromov-Hausdorff (GH) distance




Mathematical framework

e geometric data set / underlying space = compact metric space

e distance between compact metric spaces = Gromov-Hausdorff (GH) distance

Euclidean distance

dgH =



Mathematical framework

e geometric data set / underlying space = compact metric space

e distance between compact metric spaces = Gromov-Hausdorff (GH) distance

Euclidean distance

dey > 0




Mathematical framework

e geometric data set / underlying space = compact metric space

e distance between compact metric spaces = Gromov-Hausdorff (GH) distance

geodesic distance

dgH =




Mathematical framework

e geometric data set / underlying space = compact metric space
e distance between compact metric spaces = Gromov-Hausdorff (GH) distance

e descriptor = persistence diagram (choose the filtration)

- multi-scale = reflects the structure of the shape across scales
- global/local = attached to the whole shape / to a base point(s)

- stable = variations with GH-distance and base point location are controlled



Why use descriptors

shape space

descriptors space
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[Bronstein2, Kimmel 2006]
[Mémoli 2007]

[Agarwal et al. 2015]
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Why use descriptors

shape space

descriptors space

—

|deally, descriptors distance
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Why use descriptors

Some descriptors for images / 3d shapes / metric spaces:

e diameter

e curvature (mean, Gaussian, sectional)

e shape context (distribution of distances)

e heat kernel signature (heat diffusion)

e wave kernel signature (Maxwell’s equations)

e spin image (local neighborhood parametrization)

e SIFT features (local distribution of gradient orientations)

® ctcC.



Why use descriptors

Some descriptors for images / 3d shapes / metric spaces:

e diameter

e curvature (mean, Gaussian, sectional) - N
geometry

e shape context (distribution of distances) statistics

e heat kernel signature (heat diffusion)
e wave kernel signature (Maxwell’s equations)
e spin image (local neighborhood parametrization)

e SIFT features (local distribution of gradient orientations)
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Menu

1. Global topological descriptors

2. Local topological descriptors



Global topological descriptors

Input: a compact metric space (X, dx)

Descriptor: dgm F(X,dx), where F(X,dx) is some simplicial filtration over
X derived from dx (proxy for union of balls)

O-dimensional homology generators

1-dimensional homology generators

6




Global topological descriptors

Input: a compact metric space (X, dx)

Descriptor: dgm F(X,dx), where F(X,dx) is some simplicial filtration over
X derived from dx (proxy for union of balls)

Ct(X7 dX)

. ¥ L Ra: (X, dx)
— popular choices: | - Cech/Nerve filtration C(X,dx)

- (Vietoris)-Rips filtration R(X,dx)



Global topological descriptors

Input: a compact metric space (X, dx)

Descriptor: dgm F(X,dx), where F(X,dx) is some simplicial filtration over
X derived from dx (proxy for union of balls)

° Ci(X,dx) = Rai (X, dx)

— popular choices: | - Cech/Nerve filtration C(X,dx)

- (Vietoris)-Rips filtration R(X,dx)



Some examples

Descriptors of some elementary shapes (approximated from finite samples):

O &3

geodesic

/
0 0 0] 0
0 0 0] 0
OO e oC e o0 e o0 e
1 1 1} 1
c °
(q))
()
-
—_— °
O
= °
LL] °
/
0 0 0 0]




Some examples

Descriptors of some elementary shapes (approximated from finite samples):

—@ O e O e O e
1ie lie 1t 1
° °
O
7))
v
-
@)
)
o]
Ol 0 0} 0
0 0 _J 0 0
OO e oC e o0 e o0 e
1} 1 1} 1
S e :
()
-
—_— °
O
= oo °
LL] °
0 0 0 0]




Some examples

Descriptors of some elementary shapes (approximated from finite samples):
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Stabilit

Theorem: [Chazal, de Silva, O. 2013]
For any compact metric spaces (X,dx) and (Y,dy),
d]%o(dng(X, dx), dng(Y, dy)) S QdGH(X, Y)

The bound is worst-case tight...

X = Il dan(X,Y) =«
dgm R(X,dx) = {(0,00), (0,1)}

dem R(Y,dy ) = {(0,00), (0,1 + 2¢)}

®

Y =
Il e = d2°(dgm R(X, dx), dgmR(Y,dy)) = 2¢
o



Stabilit

Theorem: [Chazal, de Silva, O. 2013]
For any compact metric spaces (X,dx) and (Y,dy),
d]%o(dng(X, dx), dng(Y, dy)) S QdGH(X, Y)

The bound is worst-case tight... but it is still only an upper bound

o
- 1 1
.41—>.

dgm R(X,dx) = {(0,00), (0,1), (0.1)}

dgm T‘)’(Ya dY) — {(07 00)7 (Oa 1)7 (07 1)}
Y = ewipoe<ipe
o A = d°(dgm R(X,dx), dgmR(Y,dy)) = 0



Stability

Theorem: [Chazal, de Silva, O. 2013]
For any compact metric spaces (X,dx) and (Y,dy),
d]%o(dng(X, dx), dng(Y, dy)) < QdGH(X, Y)

Variants and extensions:

- other filtrations: Cech / Nerve, witness complex, etc.

- larger classes of metric spaces: precompact, totally bounded, etc.

- (dis-)similarity measures



Stabilit
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Theoremﬁ[Chazal, de Silva, O. 2013]
For any eempast metric spaces (X,dx) and (Y,dy),
d]%o(dng(X, dx), dng(Y, dy)) < QdGH(X, Y)
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TOY application (unsupervised shape classification)
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TOY application (unsupervised shape classification)
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TOY application (unsupervised shape classification)
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Local topological descriptors

Goal: associate PD to every point

choice of filtration(s)?

stability guarantees?

Se

10



Local topological descriptors

Input: a compact intrinsic metric space (X,dx), a basepoint zg € X
Construction: filtration of the sublevel sets of d,,(-) = dx (xo, )
Descriptor: persistence diagram of the filtration, denoted dgmd,,,

In practice: compute descriptor from point cloud using a pair of Rips complexes

[Chazal et al. 2009]




Stability
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Stability

Definitions:

e convexity radius

e Gromov-Hausdorff distance between pointed spaces

11
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Prerequisite: dgu(X,Y) < 5 min{o(X), o(Y)}

dGH(X, Y) < 0

dg (dgm f,dgm g) = o
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TOY application (unsupervised shape segmentation)

Experimental results:

- input: shapes from the TOSCA database, in mesh form (triangulated)
- select a few base points by hand on each shape
- approximate geodesic distances to base points using the 1-skeleton graph

- use the PDs of the PL interpolations over the meshes as descriptors
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To application (unsupervised shape segmentation

Experimental results:
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To applicatiOn (unsupervised shape segmentation)

Experimental results:

mapping to R3 via MDS

k-means in R3
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To application (supervised shape segmentation)

Goal: segment 3d shapes based on examples

Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes

- apply classifier to PDs extracted from each test shape

¥ 0

Torso

Foot Hand

Training Test 13



TOY applicatiOn (supervised shape segmentation)

Strategy: use k-NN classifier in diagram space (equipped with d3’)

13



Recap’

persistence diagram

finite metric space / basepoint filtration
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e topological descriptors carry information of a different nature

e they enjoy stability properties, e.g. dZ°(R(X),R(Y)) < 2dgu(X,Y)

14



Recap’

persistence diagram

filtration

finite metric space / basepoint
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e O-dimensional homology generators

e 1-dimensional homology generators

Pros:
e topological descriptors carry information of a different nature

e they enjoy stability properties, e.g. dZ°(R(X),R(Y)) < 2dgu(X,Y)

Cons:

e the space of persistence diagrams is not a vector/Hilbert space
— bad for supervised learning and statistics

e descriptors can be slow to compute and (more importantly) to compare
— bad for applications
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