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Clustering
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Input: a finite set P of data in some metric space

Task: partition the data set P into homogeneous subsets (clusters)
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Mode-Seeking Paradigm

• Hyp: data are sampled iid from a probability measure µ with density f (both unknown)
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Mode-Seeking Paradigm

• Hyp: data are sampled iid from a probability measure µ with density f (both unknown)

• Partition the data according to the stable manifolds of the peaks of f



Hill-Climbing Schemes

• Numerical, e.g. D. Comaniciu and P. Meer. Mean shift: A robust
approach toward feature space analysis. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 24(5):603–619, May 2002.

• Combinatorial, e.g. W. L. Koontz, P. M. Narendra, and K. Fuku-
naga. A graph-theoretic approach to nonparametric cluster analysis.
IEEE Trans. on Computers, 24:936–944, September 1976.

3



[Koontz, Narendra, Fukunaga’76] in a Nutshell
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typically, one uses a Gaussian kernel estimator in practice
density estimate

f̂ : P → R+

[Koontz, Narendra, Fukunaga’76] in a Nutshell
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typically, one builds a Rips or k-NN graph in practice, since these only require to use distance computations

typically, one uses a Gaussian kernel estimator in practice
density estimate

f̂ : P → R+

[Koontz, Narendra, Fukunaga’76] in a Nutshell

neighborhood graph G = (P,E)
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typically, one connects each vertex to its graph neighbor with highest density value. This neighbor is called the parent of the current vertex. If no neighbor is higher than the current vertex, then the latter is declared a peak. Note that [KNF’76] normalizes the difference in height by the edge length.

the set of pseudo-gradient edges forms a spanning forest of the graph, where each tree represents a cluster and its root is a (estimated) density peak within the graph and acts as cluster center

typically, one builds a Rips or k-NN graph in practice, since these only require to use distance computations

typically, one uses a Gaussian kernel estimator in practice
density estimate

f̂ : P → R+

approximate gradient

by a graph edge

[Koontz, Narendra, Fukunaga’76] in a Nutshell

at each data point

neighborhood graph G = (P,E)
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for i = 1 to n do
Let N be the set of neighbors of i in G that have indices lower than i;
if N = ∅ // vertex i is a peak of f̂ within G

Create a new entry e in U and attach vertex i to it;
r(e)← i // r(e) stores the root vertex associated with the entry e

else // vertex i is not a peak of f̂ within G

g(i)← argmaxj∈N f̂(j) // g(i) stores the approximate gradient at vertex i

ei ← U .find(g(i));
Attach vertex i to the entry ei;

Sort the vertex indices {1, 2, · · · , n} so that f̂(1) ≥ f̂(2) ≥ · · · ≥ f̂(n);
Initialize a union-find data structure (disjoint-set forest) U and two vectors g, r of size n;

Pseudo-code:
Input: neighborhood graph G with n vertices, n-dimensional vector f̂ (density estimator)

Output: the collection of entries e in U
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graph-based

hill-climbing

(1976)



The main reason why we got a wrong result here is that our estimator is very noisy, with many local peaks in the plane that create local peaks within the graph. Generally speaking, differential quantities like peaks and gradients are very unstable under C0 perturbations of the function, which is what happens when a density estimator is used.

transition: the result obtained depends on your choice of estimator, neighborhood graph and gradient approximation strategy.Why things go ill

estimated
density

Noisy estimator

6



The main reason why we got a wrong result here is that our estimator is very noisy, with many local peaks in the plane that create local peaks within the graph. Generally speaking, differential quantities like peaks and gradients are very unstable under C0 perturbations of the function, which is what happens when a density estimator is used.

transition: the result obtained depends on your choice of estimator, neighborhood graph and gradient approximation strategy.Why things go ill

estimated
density

Noisy estimator

6

Solution:

- merge clusters in
post-processing step

- use persistence as a guide:
• which clusters to merge
• where to merge them
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Persistence of the estimated density in the graph

• Extend f̂ : P → R to a map G → R by f̂((u, v)) := min
{
f̂(u), f̂(v)

}

f̂ f̂ extended to G
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Persistence of the estimated density in the graph

• Extend f̂ : P → R to a map G → R by f̂((u, v)) := min
{
f̂(u), f̂(v)

}
• D(f̂) encodes the lifespans of the peaks of f̂ as independent components in G

• from D(f̂), the user can infer a persistence threshold τ

• inductively merge clusters of peaks of prominence ≤ τ into their parent’s cluster



Note: the upper-star filtration is used, so that the edges are treated on the fly with the vertices

for i = 1 to n do
Let N be the set of neighbors of i in G that have indices lower than i;
if N = ∅ // vertex i is a peak of f̂ within G

Create a new entry e in U and attach vertex i to it;
r(e)← i // r(e) stores the root vertex associated with the entry e

else // vertex i is not a peak of f̂ within G

g(i)← argmaxj∈N f̂(j) // g(i) stores the approximate gradient at vertex i

ei ← U .find(g(i));
Attach vertex i to the entry ei;
for j ∈ N do

e← U .find(j);
if e ̸= ei and min{f̂(r(e)), f̂(r(ei))} < f̂(i) + τ
U .union(e, ei);

r(e ∪ ei)← argmax{r(e), r(ei)}f̂ ;
ei ← e ∪ ei;

Sort the vertex indices {1, 2, · · · , n} so that f̂(1) ≥ f̂(2) ≥ · · · ≥ f̂(n);
Initialize a union-find data structure U and two vectors g, r of size n;

Pseudo-code:
Input: simple graph G with n vertices, n-dimensional vector f̂ , real parameter τ ≥ 0.

Output: the collection of entries e of U such that f̂(r(e)) ≥ τ .
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graph-based

hill-climbing

(1976)

with persistence

cluster merges

(2013)



We purposefully omit the density estimation and neighborhood graph computation from our complexity analysis, to stress how fast the clustering per se is. In practice, density estimation and neighborhood graph computation are clearly the pacing steps.

This is mainly interesting for sparse graphs, e.g. k-NNs graphs

Nevertheless, even for dense graphs, it is interesting to note that only a linear amount of main memory is used, since only the graph neighborhood of the current vertex is inspected at each iteration. The size of this neighborhood is at most linear in n, and in many cases it remains in fact constant.

The first term corresponds to sorting the data points according to their density values. Assigning values to edges and sorting them then takes linear time. The second term corresponds to the 0-dimensional persistence algorithm, which performs one find per data point and per graph edge to determine the cluster memberships, then possibly one union per edge to perform the merges.

Complexity of the Algorithm
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→ Running time: O(n log n+ (n+m)α(n))

Given a neighborhood graph with n vertices (with density estimates) and m edges:

→ Space complexity: O(n+m)

→ Main memory usage: O(n)

1. the algorithm sorts the vertices by decreasing density estimates,

2. the algorithm makes a single pass through the vertex set, creating the span-
ning forest and merging clusters on the fly using a union-find data structure.



By contrast, the spectrum of the graph Laplacian does not show any significant gap, and in fact the result of spectral clustering is ruined due to the presence of background noise, which dooms the k-means step in eigenspace.

Experimental Results
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Synthetic Data
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We first run the algorithm with an arbitrary value for τ = 0, and we look at the output PD.

Experimental Results
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Then we re-run the algorithm with this choice of parameter τ , to obtain 2 clusters

Experimental Results
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The trend of having two prominent peaks and topological noise is amplified when the number of data increases from 20k to 100k. We used the Delaunay graph as neighborhood graph, to reduce the size and speed up the computation.

Experimental Results
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The segments are shown in fake colors, for a clearer visualization. Note the presence of black points: these are not a cluster per se, but were discarded from the point cloud as outliers during the density estimation step: this improved the result quite a bit. → advice: for image segmentation, perform a preliminary outliers detection and removal for better results down the road.

This operation is very fast. The output clusters are sensitive to the location in the image, thus the different colors on the two eyes and two cheeks.

This observation suggests that the correct number of segments in the image is usually not readily available, which follows the general idea that image segmentation is an ill-posed problem.

Experimental Results
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Image Segmentation

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Density is estimated in 3D color space (Luv)
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Distribution of prominences does not usually
show a clear unique gap

Still, relationship between choice of τ and
number of obtained clusters remains explicit



Estimating the Correct Number of Clusters

Hypotheses:

• f : X → R a c-Lipschitz probability density function,

• P a finite set of n points of X sampled i.i.d. according to f ,

Note: Π is the prominence of the least prominent peak of f

• f̂ : P → R a density estimator such that η := maxp∈P |f̂(p)− f(p)| < Π/5,

• G = (P,E) the δ-neighborhood graph for some positive δ < Π−5η
5c

.
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the sectional curvature of X arise when the Bishop-Gunther inequality is invoked to lower-bound the volumes of geodesic balls

Estimating the Correct Number of Clusters

For any choice of τ such that 2(cδ + η) < τ < Π− 3(cδ + η),
the number of clusters computed by the algorithm is equal to the num-
ber of peaks of f with probability at least 1− e−Ω(n).

Hypotheses:

• f : X → R a c-Lipschitz probability density function,

• P a finite set of n points of X sampled i.i.d. according to f ,

Note: Π is the prominence of the least prominent peak of f

• f̂ : P → R a density estimator such that η := maxp∈P |f̂(p)− f(p)| < Π/5,

• G = (P,E) the δ-neighborhood graph for some positive δ < Π−5η
5c

.

Conclusion:

(the Ω notation hides factors depending on c, δ)
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In pictures: - the leftmost diagram is the one of the underlying density f in X, - the
rightmost diagram is the one of the estimator f̃ in the δ-Rips graph - the peaks of f
have prominence at least Π and so their corresponding points in Dg f lie in the dark
grey region - the stability of persistence diagrams enables us to control the way the
points in the diagram are moved when going from f to f̃ : their images lie in the union
of the dark grey region and of the lower pink region - the upper pink region represents
topological noise and background noise that may appear when we go from f to f̃ -
their exist suitable values of the prominence threshod τ when the two pink regions are
disjoint, i.e. when 2(cδ + η) < Π − 3(cδ + η) - note that there is a twist here: the
diagonals are not merely shifted vertically by the change from f to f̃ , as is classically
the case. This is because the regions of low density may not be well-sampled by the
input point cloud P , therefore the interleavings between the various filtrations involved
in the analysis may not go all the way down to 0. Thus, the weird shapes of the pink
regions. Moreover, the probabilistic nature of the conclusion comes from the fact that
the superlevel-set F cδ+η is densely sampled by P with a certain probability only.
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Proof’s main ingredient: stability theorem for persistence diagrams

Note: f, f̂ are not defined over the same domain


