Introduction to persistence theory
through an application in clustering

[F. Chazal, L. Guibas, S. Oudot, P. Skraba: Persistence-Based Clustering in Riemannian Manifolds, Journal of the ACM, 60(6):1-38, 2013]



Clustering

Input: a finite set P of data in some metric space

Task: partition the data set P into homogeneous subsets (clusters)



Mode-Seeking Paradigm

e Hyp: data are sampled iid from a probability measure p with density f (both unknown)
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Hill-Climbing Schemes

e Numerical, e.g. D. Comaniciu and P. Meer. Mean shift: A robust

approach toward feature space analysis. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 24(5):603-619, May 2002.

e Combinatorial, e.g. W. L. Koontz, P. M. Narendra, and K. Fuku-

naga. A graph-theoretic approach to nonparametric cluster analysis.
IEEE Trans. on Computers, 24:936—944, September 1976.
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density estimate

- >
f: P —>RT

approximate gradient
-

by a graph edge
at each data point




Pseudo-code:

Input: neighborhood graph G with n vertices, n-dimensional vector f (density estimator)

Sort the vertex indices {1,2,--- ,n} so that f(l) > f(2) > . > f(n)

Initialize a union-find data structure (disjoint-set forest) U and two vectors g, r of size n;

for : =1 ton do )

Let N be the set of neighbors of 7 in G that have indices lower than i;
if N' =0 // vertex i is a peak of f within G

Create a new entry e in U and attach vertex 7 to it;

r(e) — 1 // r(e) stores the root vertex associated with the entry e
else // vertex i is not a peak of f within G

g(z) <— argmaxj ENf(J) // g(1) stores the approximate gradient at vertex i

e; < U.find(g(7));

Attach vertex 1 to the entry e;; i

Output: the collection of entries e in U

graph-based
hill-climbing
(1976)



Why things go ill

Noisy estimator estimated

density




Why things go ill

Noisy estimator estimated

density

Solution:

- merge clusters in
post-processing step

- use persistence as a guide:
e which clusters to merge
e where to merge them




Persistence of the estimated density in the graph

e Extend f: P — R toamap G — R by f((u,v)) := min< f(u), f(v)

f extended to GG
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Persistence of the estimated density in the graph

A

e Extend f: P — R toamap G — R by f((u,v)) :=min < f(u), f(v)

o D(f) encodes the lifespans of the peaks of f as independent components in GG
e from D(f) the user can infer a persistence threshold 7

e inductively merge clusters of peaks of prominence < 7 into their parent’s cluster




Pseudo-code:

Input: simple graph GG with n vertices, n-dimensional vector f real parameter 7 > 0.

Sort the vertex indices {1,2,--- ,n} so that f(l) > f(2) >0 > f(n)
Initialize a union-find data structure 4 and two vectors g, r of size n;

for: =1 ton do

Let A be the set of neighbors of i in G that have indices lower than i: |
if N =0 // vertex i is a peak of f within G
Create a new entry e in U and attach vertex 1 to it;
r (6) — 1 // r(e) stores the root vertex associated with the entry e ﬁ:ﬁ_‘jﬁ::d
else // vertex i is not a peak of f within G (1976) ¢
g(z) — argmax; ENf(]) // g(i) stores the approximate gradient at vertex 1
e; < U.find(g(2));
... Attach vertex i totheentry e;; i
for j €¢ N do )
e <~ U.find(j); ) ) uster meres
if e # e; and min{f(r(e)), f(r(e:))} < f(@) +7 with persistence
U.union(e, e;); (2013)
7“(6 U ei) — argmax{r(e)’ r(ei)}f;
e; < el e;; _

Output: the collection of entries e of U such that f(r(e)) > 7.



Complexity of the Algorithm

Given a neighborhood graph with n vertices (with density estimates) and m edges:

1. the algorithm sorts the vertices by decreasing density estimates,

2. the algorithm makes a single pass through the vertex set, creating the span-
ning forest and merging clusters on the fly using a union-find data structure.

— Running time: O(nlogn + (n +m)a(n))
— Space complexity: O(n + m)

— Main memory usage: O(n)



Experimental Results

Synthetic Data
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Experimental Results
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xperimental Results

Image Segmentation
Density is estimated in 3D color space (Luv)

Neighborhood graph is built in image domain

Distribution of prominences does not usually
show a clear unique gap

Still, relationship between choice of 7 and
number of obtained clusters remains explicit




Estimating the Correct Number of Clusters

Hypotheses:

e f: X — R a c-Lipschitz probability density function,

e P a finite set of n points of X sampled i.i.d. according to f,

e f: P — R a density estimator such that n := max,e p \f(p) — f(p)| < 11/5,

o G = (P, F) the é-neighborhood graph for some positive § < Hgf”.

Note: II is the prominence of the least prominent peak of f
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o G = (P, F) the é-neighborhood graph for some positive § < Hgf”.

Note: II is the prominence of the least prominent peak of f

Conclusion:

For any choice of 7 such that 2(c¢d +1n) < 7 < II — 3(cd + 1),
the number of clusters computed by the algorithm is equal to the num-
ber of peaks of f with probability at least 1 — e~*}(").

(the Q2 notation hides factors depending on c, §)
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Estimating the Correct Number of Clusters

P 2(65 + 77)
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Proof's main ingredient: stability theorem for persistence diagrams

Note: f,f are not defined over the same domain
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