Introduction to persistence theory through an application in clustering

Clustering

Input: a finite set *P* of data in some metric space

Task: partition the data set P into *homogeneous* subsets (clusters)

• Hyp: data are sampled iid from a probability measure μ with density f (both **unknown**)

- Hyp: data are sampled iid from a probability measure μ with density f (both unknown)
- \bullet Partition the data according to the stable manifolds of the peaks of f

- Hyp: data are sampled iid from a probability measure μ with density f (both unknown)
- \bullet Partition the data according to the stable manifolds of the peaks of f

- Hyp: data are sampled iid from a probability measure μ with density f (both unknown)
- \bullet Partition the data according to the stable manifolds of the peaks of f

Hill-Climbing Schemes

• **Numerical**, e.g. D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis. *IEEE Trans. on Pattern Analysis and Machine Intelligence*, 24(5):603–619, May 2002.

• **Combinatorial**, e.g. W. L. Koontz, P. M. Narendra, and K. Fukunaga. A graph-theoretic approach to nonparametric cluster analysis. *IEEE Trans. on Computers*, 24:936–944, September 1976.

neighborhood graph G = (P, E)

neighborhood graph G = (P, E)

approximate gradient

by a graph edge at each data point

Pseudo-code:

Input: neighborhood graph G with n vertices, n-dimensional vector \hat{f} (density estimator)

Sort the vertex indices $\{1, 2, \dots, n\}$ so that $\hat{f}(1) \ge \hat{f}(2) \ge \dots \ge \hat{f}(n)$; Initialize a union-find data structure (disjoint-set forest) \mathcal{U} and two vectors g, r of size n;

for i = 1 to n do Let \mathcal{N} be the set of neighbors of i in G that have indices lower than i; if $\mathcal{N} = \emptyset$ // vertex i is a peak of \hat{f} within GCreate a new entry e in \mathcal{U} and attach vertex i to it; $r(e) \leftarrow i$ // r(e) stores the root vertex associated with the entry eelse // vertex i is not a peak of \hat{f} within G $g(i) \leftarrow \operatorname{argmax}_{j \in \mathcal{N}} \hat{f}(j)$ // g(i) stores the approximate gradient at vertex i $e_i \leftarrow \mathcal{U}.find(g(i))$; Attach vertex i to the entry e_i ;

graph-based hill-climbing (1976)

Why things go ill

Noisy estimator

Why things go ill

Noisy estimator

Solution:

- merge clusters in post-processing step
- use persistence as a guide:
 - which clusters to merge
 - where to merge them

• Extend $\hat{f}: P \to \mathbb{R}$ to a map $G \to \mathbb{R}$ by $\hat{f}((u, v)) := \min\left\{\hat{f}(u), \hat{f}(v)\right\}$

 \hat{f} extended to G

- Extend $\hat{f}: P \to \mathbb{R}$ to a map $G \to \mathbb{R}$ by $\hat{f}((u, v)) := \min\left\{\hat{f}(u), \hat{f}(v)\right\}$
- $D(\hat{f})$ encodes the lifespans of the peaks of \hat{f} as independent components in G

- Extend $\hat{f}: P \to \mathbb{R}$ to a map $G \to \mathbb{R}$ by $\hat{f}((u, v)) := \min\left\{\hat{f}(u), \hat{f}(v)\right\}$
- $\bullet~D(\widehat{f})$ encodes the lifespans of the peaks of \widehat{f} as independent components in G
- \bullet from $D(\hat{f}),$ the user can infer a persistence threshold τ

- Extend $\hat{f}: P \to \mathbb{R}$ to a map $G \to \mathbb{R}$ by $\hat{f}((u, v)) := \min\left\{\hat{f}(u), \hat{f}(v)\right\}$
- $\bullet~D(\widehat{f})$ encodes the lifespans of the peaks of \widehat{f} as independent components in G
- \bullet from $D(\hat{f}),$ the user can infer a persistence threshold τ
- inductively merge clusters of peaks of prominence $\leq \tau$ into their parent's cluster

Pseudo-code:

Input: simple graph G with n vertices, n-dimensional vector \hat{f} , real parameter $\tau \geq 0$.

Sort the vertex indices $\{1, 2, \dots, n\}$ so that $\hat{f}(1) \ge \hat{f}(2) \ge \dots \ge \hat{f}(n)$; Initialize a union-find data structure \mathcal{U} and two vectors g, r of size n;

for i = 1 to n do Let \mathcal{N} be the set of neighbors of i in G that have indices lower than i; **if** $\mathcal{N} = \emptyset$ // vertex *i* is a peak of \hat{f} within *G* Create a new entry e in \mathcal{U} and attach vertex i to it; graph-based $r(e) \leftarrow i$ // r(e) stores the root vertex associated with the entry ehill-climbing **else** // vertex i is not a peak of \hat{f} within G (1976) $g(i) \leftarrow rgmax_{j \in \mathcal{N}} f(j)$ // g(i) stores the approximate gradient at vertex i $e_i \leftarrow \mathcal{U}.\mathtt{find}(q(i));$ Attach vertex i to the entry e_i ; for $j \in \mathcal{N}$ do $e \leftarrow \mathcal{U}.\mathtt{find}(j);$ cluster merges if $e \neq e_i$ and $\min\{\hat{f}(r(e)), \hat{f}(r(e_i))\} < \hat{f}(i) + \tau$ with persistence $\mathcal{U}.union(e, e_i);$ (2013) $r(e \cup e_i) \leftarrow \operatorname{argmax}_{\{r(e), r(e_i)\}} \hat{f};$ $e_i \leftarrow e \cup e_i;$

Output: the collection of entries e of \mathcal{U} such that $\hat{f}(r(e)) \geq \tau$.

Complexity of the Algorithm

Given a neighborhood graph with n vertices (with density estimates) and m edges:

1. the algorithm sorts the vertices by decreasing density estimates,

2. the algorithm makes a single pass through the vertex set, creating the spanning forest and merging clusters on the fly using a union-find data structure.

- \rightarrow Running time: $O(n \log n + (n + m)\alpha(n))$
- \rightarrow Space complexity: O(n+m)
- \rightarrow Main memory usage: O(n)

Experimental Results

Image Segmentation

Density is estimated in 3D color space (Luv) Neighborhood graph is built in image domain

Distribution of prominences does not usually show a clear unique gap

Still, relationship between choice of τ and number of obtained clusters remains explicit

Hypotheses:

- $f: \mathbb{X} \to \mathbb{R}$ a c-Lipschitz probability density function,
- $\bullet~P$ a finite set of n points of $\mathbb X$ sampled i.i.d. according to f,
- $\hat{f}: P \to \mathbb{R}$ a density estimator such that $\eta := \max_{p \in P} |\hat{f}(p) f(p)| < \Pi/5$,
- G = (P, E) the δ -neighborhood graph for some positive $\delta < \frac{\Pi 5\eta}{5c}$.

Note: Π is the prominence of the least prominent peak of f

Hypotheses:

- $f: \mathbb{X} \to \mathbb{R}$ a c-Lipschitz probability density function,
- $\bullet \ P$ a finite set of n points of $\mathbb X$ sampled i.i.d. according to f,
- $\hat{f}: P \to \mathbb{R}$ a density estimator such that $\eta := \max_{p \in P} |\hat{f}(p) f(p)| < \Pi/5$,
- G = (P, E) the δ -neighborhood graph for some positive $\delta < \frac{\Pi 5\eta}{5c}$.

Note: Π is the prominence of the least prominent peak of f

Conclusion:

For any choice of τ such that $2(c\delta + \eta) < \tau < \Pi - 3(c\delta + \eta)$, the number of clusters computed by the algorithm is equal to the number of peaks of f with probability at least $1 - e^{-\Omega(n)}$.

(the Ω notation hides factors depending on c, δ)

Conclusion:

For any choice of τ such that $2(c\delta + \eta) < \tau < \Pi - 3(c\delta + \eta)$, the number of clusters computed by the algorithm is equal to the number of peaks of f with probability at least $1 - e^{-\Omega(n)}$.

(the Ω notation hides factors depending on c, δ)

Proof's main ingredient: stability theorem for persistence diagrams Note: f, \hat{f} are not defined over the same domain