INF556 Topological Data Analysis
Final Exam — 3 hours

December 19, 2024

Important:
e The exercises are independent of one another.

e The text of the exam is written in English. Your answers can be written indifferently in
French or in English.

e Please keep in mind that the quality of your answers (completeness of the arguments and
clarity of their exposition) will be key for the grading.

e All printed documents are allowed. By contrast, computers, cellphones, tablets, pocket
calculators, etc., are forbidden.

1 Monsters Inc.

Figure 1: Meet Mike Wazowski (Bob Razowski in French).



Question 1. Draw the Reeb graph of the height function defined on the union of the green
regions and their incident black curves in Figure 1.

Question 2. Draw the persistence diagram of the relative part of the extended persistent
homology of the height function (for all homology degrees).

Question 3. Draw the Mapper of the height function, for the interval cover of the image of
the function displayed in colors on the left of Figure 1.

2 FEuler characteristic

Given a topological space X and a field k, the Fuler characteristic is the quantity:

+o0
X(X5k) = (=1)" dim Hy(X; k).
=0

Question 4. Show that y is a topological invariant, that is: for any spaces X,Y that are
homotopy equivalent, x(X; k) = x(Y; k).
Hint: look at what happens to each individual homology group.

Now we want to prove the Euler-Poincaré theorem:

Theorem 1. For any simplicial complex X and any field k:

+oo

X(X;k) = (=1)'ni(X),

i=0
where n;(X) denotes the number of simplices of X of dimension i.

For this we will use topological persistence. Consider an arbitrary filtration of X:
P=XoCX;C--CXp, =X.
Assume without loss of generality that a single simplex o is inserted at each step j:
Vi=1,---,m, X;\X;_1={o;}.

Note that m is then equal to the number of simplices of X, that is:

m = an(X)

1=0

Let us apply the persistence algorithm to this simplicial filtration. Recall from the course
that we have the following property:

Lemma 2. At each step j, the insertion of simplex o; either creates an independent d;-
dimensional cycle (i.e. increases the dimension of Hg,(X;_1;k) by 1) or kills a (d;j — 1)-
dimensional cycle (i.e. decreases the dimension of Hy,_1(X;-1;k) by 1), where d; is the di-
mension of ;.

Question 5. Using Lemma 2, prove Theorem 1.
Hint: you may proceed by induction on 7, although this is not the only way to prove the result.

Question 6. Deduce that the Euler characteristic of a triangulable space is independent of the
choice of field k.



3 The Dunce Hat

Recall that the Dunce Hat is obtained by indentifying the three edges of a triangle as shown in
Figure 2.
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Figure 2: The Dunce Hat.

Question 7. Build a triangulation of the Dunce Hat (you may draw a picture to represent it).
Beware that your triangulation must be a simplicial complex, not a general cell complex.

Question 8. Use your simplicial complex to compute the homology of the Dunce Hat over the
field Z/27.

Hint: to avoid tedious calculations, you can proceed as in exercise 2: pick a filtration of your
complex then apply the persistence algorithm; for each simplex o; inserted, use Lemma 2 to
predict its effect on the homology (identify the created dj-cycle or the killed (d; — 1)-cycle).

4 Mayer-Vietoris sequences and the Jordan curve theorem

It is a well-known fact that any simple closed curve in the plane splits the plane into two
connected components. The same holds for simple closed curves on the 2-sphere S%. This is
the result we want to prove, modulo some mild regularity condition on the curve. For this we
will use Mayer-Vietoris sequences: given two open sets A, B C S?, there exist morphisms in
homology that make the following sequence exact (i.e. such that the image of each map is
equal to the kernel of the next map in the sequence):

Hi(ANB) X H(A) & Hi(B) 2> Hi(AUB) 2% Ho(An B) “% Hy(A) @ Ho(B) 2% Ho(AUB) 20

This sequence is called the Mayer-Vietoris long exact sequence of A, B. The precise definition
of the morphisms i, ji, 0, is unimportant for the exercise. The notation H,(X) stands for the
degree-r singular homology group of space X over some fixed field of coefficients (omitted in the
notations). Note that the exactness of the sequence implies in particular that the morphism jy
is surjective. Indeed, exact sequences of the following forms:

0 x—t.oy
x-—t.oy 0
0 x-1.oy 0

imply respectively that the morphism f is injective (Ker f = Im0 = 0), surjective (Im f =
Ker0 =Y'), and bijective.
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Figure 3: Embedding h of the circle S into the sphere S?. The circle is split into 2 arcs, namely:
[0, 7] (in blue) and [, 27] (in red).

Question 9. Given two open sets A, B C S? such that AN B = (), use their Mayer-Vietoris
sequence to prove that H,(AU B) ~ H,(A) @ H,(B) for each x € {0,1}.

Question 10. Given two open sets A, B C S? that are both homotopy equivalent to the disk
D? = {z € R%: ||z|]2 < 1}, prove that

dim Hy(A N B) + dim Hy(A U B) = 2 + dim Hy (A U B).

Deduce the relation between the number of holes in A U B and the number of path-connected
components in AN B.

We will now prove the Jordan curve theorem. Let h : S' — S? be a homeomorphism onto
its image. We split the curve h(S!) into 2 (non-disjoint) arcs, namely h([0,7]) and h([r,27]),
as illustrated in Figure 3. To simplify the analysis we assume the following regularity condition
on the curve:

(H) For every closed interval I C S!, the space S? \ h(I) is homotopy equivalent to the punc-
tured sphere S? \ {pt} (where pt denotes an arbitrary point of S?).

This condition holds for instance when h is a diffeomorphism, i.e. when the curve is smooth.
Question 11. Show that dim Hy(S? \ h(S!)) = 2.

Note that the conclusion of the theorem still holds without hypothesis (H). However, the
proof contains more technicalities to handle the potentially erratic local behavior of the curve.

5 Decomposition of persistence modules

Let us fix a finite index set T' C R of cardinality #1" < 400, and an arbitrary field of coefficients,
and let us consider pointwise finite-dimensional persistence modules over T, i.e. persistence
modules V such that dim V; < +oo for all ¢t € T'.

A submodule W of a persistence module V is composed of subspaces W; C V; for all t € T,
and of maps w! = v |, for all t <t € T. In particular, v/ (W;) C Wy for all t <t € T. A
simple example of submodule is the null module W = 0 (defined by W; = 0 for all ¢t € T" and
wf =0 for all t <t € T), which is a submodule of any module V over T.

Direct sums in the category are defined pointwise, that is: for any persistence modules V
and W over T, the direct sum V & W is composed of the spaces V; & W, for all t € T', and of
the maps vf @ u)f for all t <t € T. We say that V and W are summands of the direct sum
V& W. In particular, we have V=064V =V & 0 for any persistence module V, so V is always
a summand of itself. A persistence module V is called indecomposable if its only summands are



itself or the null module. The decomposition theorem that we saw in class asserts that the only
indecomposable persistence modules are the so-called interval modules over T, and that (under
some conditions on 7" or on the dimensions of the spaces) any module decomposes as a direct
sum of interval modules.

Question 12. In the case where #1" = 1, show that every submodule is a summand. Deduce
the decomposition theorem in the case #1" = 1.

In the general case, the result is more complicated to prove as submodules may not always
be summands:

Question 13. In the case where #1" > 2, exhibit a counterexample showing that a submodule
of a persistence module V over T" may not always be a summand of V.

The case #1 = 2 is somewhat simpler to handle though, as only one linear map is involved.
Question 14. Prove the decomposition theorem in the case where #1" = 2.

The general (finite) case involves more technicalities. First, you must show that your module
actually decomposes into indecomposables:

Question 15. Show that every (pointwise finite-dimensional) module over T' (finite) decom-
poses into indecomposable modules. You may proceed for instance by induction on the total
dimension of V, defined as the quantity ), ., dim V;.

Then, the structure of each indecomposable must be studied:

Question 16 (difficult). Show that every indecomposable (pointwise finite-dimensional) mod-
ule over T (finite) is an interval module.

The decomposition theorem follows. Note that we have not considered the uniqueness of
the decomposition here.



