2179 - Magic Sticks Again

Source : http://acm.tju.edu.cn/toj/showp2179.html

Someone gives you some magic sticks. Each magic stick has two different numbers carved on it, one on each end. If one stick (a) has $\mathrm{a}_{1}, \mathrm{a}_{2}\left(\mathrm{a}_{1}<\mathrm{a}_{2}\right)$, and another stick (b) has $\mathrm{b}_{1}, \mathrm{~b}_{2}\left(\mathrm{~b}_{1}<\mathrm{b}_{2}\right), \mathrm{a}_{2} \leq \mathrm{b}_{1}$, then the two sticks can be connected into a new stick, with $\mathrm{a}_{1}, \mathrm{~b}_{2}$ carved on its two ends.

3	8
13	21

What is the minimum number of sticks after the connection?

Input

The first line contains the number of test cases, T .
Each test cases starts with an integer $\mathrm{N}(\mathrm{N} \leq 20000)$ on a line, indicating the number of given sticks. Each of the following N lines contains two integers p and $\mathrm{q}\left(0 \leq \mathrm{p}<\mathrm{q} \leq 10^{8}\right)$, denoting the two number carved on a stick.

Output

A line for each of the T test cases, containing the minimum number of sticks after the connections.

Example

Input:

3
4
15
38
521
1334
3
15
18
12
5
12
23
35
56
78

Output:

2
3
1

