2780 - Homework

Source : http://acm.tju.edu.cn/toj/showp2780.html

Doing homework often makes students understand knowledge deeply. As a student of UESTC, WCM usually has much homework to do. Every day he gets a set of problems from teachers. Problem i will take t_{i} time to complete. Given a schedule (i.e., an ordering of the problems), let C_{i} denote the finishing time of problem i. For example, if problem j is the first to be done, we would have $C_{j}=t_{j}$. Each problem i also has a given weight w_{i} that represents its importance to the student's mastering of the correlative knowledge. He wants to order the problems to minimize the weighted sum of the completion times, namely $w_{1} C_{1}+w_{2} C_{2}+w_{3} C_{3}+\ldots+w_{n} C_{n}$.

You should design an efficient algorithm to solve this problem. That is, you are given a set of n problems with a processing time t_{i} and a weight w_{i} for each problem. You want to order the problems so as to minimize the weighted sum of the completion times, $\Sigma_{(i=1 . . n)} w_{i} C_{i}$.

Example: Suppose there are two problems: the first takes time $t_{1}=2$ and has weight $w_{1}=12$, while the second problem takes time $t_{2}=3$ and has weight $w_{2}=4$. Then doing problem 1 first would yield a weighted completion time of $12 * 2+4 * 5=44$, while doing the second problem first would yield a larger weighted completion time of $4 * 3+12 * 5=72$.Apparently, 44 is the minimum of the weighted sum of completion times, $\Sigma_{(i=1 . . n)} w_{i} C_{i}$.

Input

The input contains an integer T on the first line, which indicates the number of test cases. Each test case consists of three lines. The first line contains one integer $n,(0<n \leq 1000)$, which is the number of problems. The second line contains n numbers, $t_{1}, t_{2}, \ldots, t_{n},\left(0<t_{i} \leq 20\right), t_{i}$ being the time problem i takes. The third line contains n numbers, $w_{1}, w_{2}, \ldots w_{n},\left(0<w_{i} \leq 20\right), w_{i}$ being the weight of problem i.

Output

For each test case output one line containing a single integer, which represents the minimum of the weighted sum of the completion times, $\Sigma_{(i=1 . . n)} w_{i} C_{i}$.

Example

Input:

1
2
23
124

Output:

44

