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Turing machines

We have used many times up to know the notion of algorithm but without having
provided a formal definition. Intuitively, one can say that an algorithm is an auto-
matic method, that can be implemented on some computer, to solve a given prob-
lem. For example, the familiar techniques to perform an addition, or multiplication
or a division on numbers learned at elementary school are algorithms. The tech-
niques discussed to evaluate the truth value of a propositional formula from the
value of its variables are also algorithms. More generally, we have discussed some
proof methods for propositional calculus or for predicate calculus that can be seen
as algorithms.

Example 1 The following example taken from the manual of package TikZ-PGF
version 2.0, inspired in turn from the Elements of Euclid, can be considered as
an algorithm. It provides a method to draw an equilateral triangle with edge AB.

A
B

D
E

C

Algorithm to construct a equilateral
triangle with edge AB: draw a circle of

center A and radius AB; draw the cir-

cle of center B of radius AB. Name C

one of the intersection of the two cir-

cles. The triangle ABC is the desired so-

lution.

We will see in the following chapters that not all the problems can be solved by
algorithms, and even for problems very easy to formulate: For example,

• there is no algorithm to determine if a given closed formula of predicate cal-
culus is valid in the general case;

• there is no algorithm to determine if a multivariate polynomial (i.e. with sev-
eral variables) with integer coefficients has an integer root (Hilbert 10th prob-
lem).
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. . . B B B B B a b a a b B B B B B B B B B B . . .

q0

Figure 1: Turing machine. The machine is on the initial state of a computation on
word abaab.

Historically, it was actually the formalization of the notion of proofs in mathe-
matics and the question of limits of formal proof systems that led to the models that
we will discuss. It was later understood that the notion captured by these models
was more than simply the formalization of the notion of proof and that it was actu-
ally also a formalization of everything that can be computed by a digital machine.
This remains true today since today’s computers are digital.

Furthermore, several formalizations have been proposed, in an independent
way, using at first sight very different notions: In particular, Alonzo Church in 1936,
using the formalism of λ-calculus,, Alan Turing in 1936, using what is now called the
Turing machines, or Emil Post in 1936, using systems based on very simple rules,
called Post systems. Later, it was shown that these formalisms are all equivalent.

The objective of this chapter is to describe the Turing machine model. In the
next chapter, we will define a few other models of computation and will show that
they are equivalent to the Turing machine model.

We will then by talk about the Church-Turing thesis.

The models that we are going to describe can all be considered as very abstract,
and might at first sight give the impression to be very limited, and far from being
able to cover everything that can be programmed using today’s languages such as
Python, CAML or JAVA. The main objective of this chapter and of the next one is to
convince the reader that this is NOT the case: Everything that can be programmed
can actually be programmed using these “basic” models.

1 Turing machines

1.1 Ingredients

A (deterministic) Turing machine (See Figure 1) is composed of the following ele-
ments:

1. An infinite memory of the form of a tape. The tape is divided in cells. Each cell
can contain an element of a set Σ (i.e. of some alphabet). We assume that the
alphabet Σ is some finite set.

2. a (reading/writing) head that can move along the tape.



1. TURING MACHINES 5

3. A program given as a transition function that, for every internal state q of the
machine, among a finite number possible internal states Q, gives according to
the symbol under the reading head:

(a) the next internal state q ′ ∈Q;

(b) the new element of Σ to write in place of the element of M currently in
front of the head;

(c) a moving direction for the reading head.

The execution of a Turing machine on some word w ∈Σ∗ can then be described
as follows: initially, the input w is on the tape, and the head is positioned in front
of the first letter of the word. The cells not corresponding to the input all contain
the element B (blank symbol), that is a special letter. The machine is in its initial
internal state q0: See Figure 1.

At every execution step, the machine, reads the symbol in front of the head, and,
according to its internal state and this symbol, following its program, it:

• replaces the symbol in front of the head by the one given by the transition
function;

• (possibly) moves its head to the left or to the right, according to the direction
given by the transition function;

• changes the internal state to the internal state given by the transition function.

The word w is said to be accepted when the execution of the Turing machine
eventually reaches the accepting internal state, in which case the execution of the
machine stops.

In the next section, we will give a formal definition of Turing machines and their
execution.

1.2 Description

Definition 1 (Turing machine) A Turing machine is an 8-uple

M = (Q,Σ,Γ,B,δ, q0, qa , qr )

where:

1. Q is the finite set of internal states;

2. Σ is a finite alphabet;

3. Γ is the finite tape alphabet with Σ⊂ Γ;

4. B ∈ Γ is the blank symbol;

5. q0 ∈Q is the initial state;
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6. qa ∈Q is the accepting state;

7. qr ∈Q is the rejecting state;

8. δ is the transition function: δ is a function (possibly partial) from Q ×Γ
to Q ×Γ× {←, |,→}. The symbol ← is used to mean a move to the left, | no
move, → a move to the right.

The language accepted by a Turing machine is defined using the notions of con-
figurations and of successor relation between configurations of a Turing machine. A
configuration consists of all the information required to describe the state of the ma-
chine at a given moment, and to determine the future states of the machine, namely:

• the internal state;

• the content of the tape;

• the position of the head.

We give a more formal definition.

Definition 2 (Configuration) A configuration is given by the description of the
tape, the position of the head, and the internal state.

To write a configuration, one difficulty is that the tape is infinite, and thus con-
sists of an infinite sequence of symbols of the tape alphabet Γ of the machine. How-
ever, we focus on finite executions, and consequently, at any moment of an execu-
tion, only a finite part of the tape has been visited by the machine. Indeed, initially
the tape contains an input of finite length, and at every step the machine moves its
head at most of one cell. As a consequence, after t steps, the head has moved at most
t cells to the left or to the right from its initial position. Consequently, the content
of the tape can be defined at any moment by a fixed sequence of symbols, the rest
containing only the blank symbol B.

To denote the position of the head, we could use some integer n ∈ Z. We will
actually use the following trick that has the advantage of simplifying the coming
definitions: Instead of seeing the tape as a finite sequence, we will represent it by
two finite sequences: The content of what is on the right and what is on the left of
the head. We will write the right prefix as usual from left to right. In contrast, we will
write the prefix corresponding to what is on the left of the head from right to left:
The interest is that the first letter of the left prefix is the letter immediately at the left
of the head. A configuration will hence be an element of Q ×Γ∗×Γ∗.

Formally:

Definition 3 (Denoting a configuration) A configuration is denoted by C = (q,u, v),
with u, v ∈ Γ∗, q ∈Q: u and v respectively denote the content of the tape respec-
tively to the left and to the right of the head which is in front of the first letter of
v. We assume that the letters of u and of v are not containing the blank symbol
B.
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We make the convention that the word v is written from left to right (letter
number i +1 of v corresponds to the cell at the right of the letter/cell number i )
while the word u is written from right to left (the letter number i +1 of u corre-
sponds to the content of tape at the left of letter/cell number i , the first letter of u
being the cell immediately at the left of the head).

Example 2 The configuration of the machine represented on Figure 1 is (q0,ϵ, abaab).

We will sometimes write configurations in an other way.

Definition 4 (Alternative notation) The configuration (q,u, v) will also been seen/-
denoted in some sections or chapters by uqv, keeping u and v written from left
to right.

Example 3 A configuration such as

. . . B B B c o m p u t e r B B B B B B B B B . . .

q

is encoded by configuration (q,moc, puter ), or sometimes by comqputer .

A configuration is said to be accepting if q = qa , rejecting if q = qr .
For w ∈ Σ∗, the initial configuration corresponding to w is the configuration

C [w] = (q0,ϵ, w).
We write: C⊢C ′ if the configuration C ′ is the immediate successor of configura-

tion C by the program (given by δ) of the Turing machine.
Formally, if C = (q,u, v) and if a denotes the first letter 1 of v , and if δ(q, a) =

(q ′, a′,m′) then C ⊢C ′ if C ′ = (q ′,u′, v ′), and

• if m′ = |, then u′ = u, and v ′ is obtained by replacing the first letter a of v by a′;

• if m′ =←, u′ is obtained by deleting the first letter a′′ of u, v ′ is obtained by
concatenating a′′ and the result of replacing the first letter a of v by a′;

• if m′ =→, u′ = a′u, and v ′ is obtained by deleting the first letter a of v .

1With the convention that the first letter of the empty word is the blank symbol B.
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Remark 1 The above rules are formalizing the changing of the cell in front of the
head from a to a′ and the corresponding potential shift of the tape to the right or
to the left.

Definition 5 (Accepted word) A word w ∈ Σ∗ is said to be accepted (in time
t) by the Turing machine, if there exists a sequence of configurations C1, · · · ,Ct

with:

1. C0 =C [w];

2. Ci ⊢Ci+1 for all i < t ;

3. none of the configurations Ci for i < t is accepting or rejecting

4. Ct is accepting.

Definition 6 (Rejected word) A word w ∈Σ∗ is said to be rejected (in time t) by
the Turing machine, if there exists a sequence of configurations C1, · · · ,Ct with:

1. C0 =C [w];

2. Ci ⊢Ci+1 for all i < t ;

3. none of the configurations Ci for i < t is accepting or rejecting.

4. Ct is rejecting.

Definition 7 (Machine that loops on a word) We say that a Turing machine loops
on a word w, if w is neither accepted nor rejected.

Remark 2 For every word w we thus have exactly one of the following three ex-
clusive cases:

1. it is accepted by the Turing machine;

2. it is rejected by the Turing machine;

3. the machine loops on this word.

Remark 3 The terminology loops means simply that the machine is not halt-
ing on this word: This does not necessarily mean that one repeats for ever the
same instructions. The machine can loop for several reasons. For example, since
it reaches a configuration that has no successor configuration that is defined,
or because it enters a complex behaviours that produces an infinite sequence of



1. TURING MACHINES 9

configurations not accepting nor rejecting.

More generally, one calls computation of M on a word w ∈Σ∗, a (finite or infinite)
sequence of configurations (Ci )i∈N such that C0 =C [w] and for all i , Ci ⊢Ci+1, with
the convention that an accepting or rejecting configuration has no successor.

Definition 8 (Language accepted by a machine) The language L ⊂Σ∗ accepted
by Turing machine M is the set of words w that are accepted by the machine. It
is denoted by L(M). We also call L(M) as the language recognized by M.

A machine that does not halt is usually undesirable. Thus, we generally try to
guarantee a stronger property:

Definition 9 (Langage decided by a machine) One says that a language L ⊂Σ∗
is decided by the machine M if:

• for every w ∈ L, w is accepted by M;

• for every w ̸∈ L (=otherwise), w is rejected by M.

In other words, the machine accepts L and terminates on every input (i.e. it never
loops).

One says in that case that the machine M decides L.

1.3 Programming with Turing machines

Programming with Turing machines is extremely low level. We will however see that
one can really program many things with this model. The first step is to get con-
vinced that we can program solutions to many problems with Turing machines. To
say the truth, the only way to get convinced is to try to program by oneself with Tur-
ing machines, for example by trying to solve the following exercises.

Exercise 1 Construct a Turing machine that accepts exactly the words w on
alphabet Σ= {0,1} of the form 0n1n , n ∈N.

Here is a solution. Consider a machine Q = {q0, q1, q2, q3, q4}, Γ= {0,1, X ,Y ,B},
the accepting state q4 and the transition function δ such that:

• δ(q0,0) = (q1, X ,→);

• δ(q0,Y ) = (q3,Y ,→);

• δ(q1,0) = (q1,0,→);

• δ(q1,1) = (q2,Y ,←);

• δ(q1,Y ) = (q1,Y ,→);
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• δ(q2,0) = (q2,0,←);

• δ(q2, X ) = (q0, X ,→);

• δ(q2,Y ) = (q2,Y ,←);

• δ(q3,Y ) = (q3,Y ,→);

• δ(q3,B) = (q4,B ,→).

As one can see, a description of a Turing machine in this way is essentially un-
readable. We thus prefer a representation of the program of a machine (the function
δ) in the form of a graph: The vertices of the graph represent the states of the ma-
chine. Every transition δ(q, a) = (q ′, a′,m) is represented with an arc from the state
q to the state q ′ labeled by a/a′ m. The initial state is marked with an incoming arc.
The accepting state is marked with a double circle.

Example 4 For example, the transitionδ(q0,0) = (q1, X ,→) is represented graph-
ically by:

q0 q1
0/X →

With these conventions, the previous program can be represented by:

q0start q1 q2

q3 q4

0/X →

Y/Y →

0/0 →
Y/Y →

1/Y ←

0/0 ←

X/X → Y/Y ←

Y/Y →

B/B →

How does this program work? During a computation, the part of the tape that
the machine has visited will be of the form X ∗0∗Y ∗1∗. Every time that a 0 is read, it
is replaced by X and one goes to state q1 which starts the following sub-procedure:
One moves right as long as a 00 or a Y is read. As soon as a 1 is reached, it is trans-
formed into a Y , and one goes back to the left until one reaches a X (the X that has
been written) and then one does a one cell right shift.

Doing so, for each 0 that is erased (i.e. marked by a X ), we will have erased a 1
(i.e. marked a Y ). If all the 0 are marked and one reaches a Y , one goes to state q3,
which has the effect of checking that what is on the right is indeed only consists of
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Y ’s. Once everything has been read, i.e. a B is reached, one accepts, i.e. one goes to
state q4.

Of course, a true proof of the correctness of this algorithm would consist in prov-
ing that if a word is accepted, it is necessarily of type 0n1n . We leave to the reader to
get convinced of this.

Example 5 Here is an example of accepting computation for M: q00011⊢ X q1011⊢
X 0q111⊢ X q20Y 1⊢ q2X 0Y 1⊢ X q00Y 1⊢ X X q1Y 1⊢ X X Y q11⊢ X X q2Y Y ⊢ X q2X Y Y ⊢
X X q0Y Y ⊢ X X Y q3Y ⊢ X X Y Y q3B⊢ X X Y Y Bq4B.

Definition 10 (Space-time diagram) One often represents a sequence of config-
urations line by line: The line number i represents the i th configuration of the
computation, using the encoding of Definition 4. This representation is called a
space-time diagram of a machine.

Example 6 Here is the space-time diagram corresponding to the previous com-
putation on 0011.

. . . B B B B q0 0 0 1 1 B B B B B B B B B B B . . .

. . . B B B B X q1 0 1 1 B B B B B B B B B B B . . .

. . . B B B B X 0 q1 1 1 B B B B B B B B B B B . . .

. . . B B B B X q2 0 Y 1 B B B B B B B B B B B . . .

. . . B B B B q2 X 0 Y 1 B B B B B B B B B B B . . .

. . . B B B B X q0 0 Y 1 B B B B B B B B B B B . . .

. . . B B B B X X q1 Y 1 B B B B B B B B B B B . . .

. . . B B B B X X Y q1 1 B B B B B B B B B B B . . .

. . . B B B B X X q2 Y Y B B B B B B B B B B B . . .

. . . B B B B X q2 X Y Y B B B B B B B B B B B . . .

. . . B B B B X X q0 Y Y B B B B B B B B B B B . . .

. . . B B B B X X Y q3 Y B B B B B B B B B B B . . .

. . . B B B B X X Y Y q3 B B B B B B B B B B B . . .

. . . B B B B X X Y Y B q4 B B B B B B B B B B . . .

Example 7 Here is the space-time diagram of the computation of the machine
on 0010:
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. . . B B B B q0 0 0 1 0 B B B B B B B B B B B . . .

. . . B B B B X q1 0 1 0 B B B B B B B B B B B . . .

. . . B B B B X 0 q1 1 0 B B B B B B B B B B B . . .

. . . B B B B X q2 0 Y 0 B B B B B B B B B B B . . .

. . . B B B B q2 X 0 Y 0 B B B B B B B B B B B . . .

. . . B B B B X q0 0 Y 0 B B B B B B B B B B B . . .

. . . B B B B X X q1 Y 0 B B B B B B B B B B B . . .

. . . B B B B X X Y q1 0 B B B B B B B B B B B . . .

. . . B B B B X X Y 0 q1 B B B B B B B B B B B . . .

Observe that in the last configuration no continuation is possible, and hence that
there is no accepting computation starting from 0010.

Exercise 2 (solution on page 210) [Subtraction in unary] Construct a Tur-
ing machine program that realizes a subtraction in unary: Starting from
a word of the form 0m10n , the machine stops with 0m⊖n on its tape sur-
rounded by blanks (where m⊖n is max(0,m −n)).

1.4 Some programming techniques

Here are a few programming techniques that are used for programming Turing ma-
chines.

The first consists in encoding some finite information in the internal state of the
machine. We will illustrate this on an example, where we will store the first read
character in the internal state. As long as the information to store is finite, this is
possible.

Exercise 3 Construct a Turing machine that reads the symbol in front of the
head and checks that this character letter is also the last letter of the input
word but does not appear anywhere else in the input.

If one fixes the symbol a0 ∈Σ of alphabet Σ, it is easy to construct a program that
checks that the symbol a0 is appearing nowhere but as the last letter on the right.
Indeed, consider:

q0start q2q1

∀a ̸= a0, a/a →

B/B ←a0/a0 →
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where ∀a ̸= a0 means that one repeats the transition a/a,→ for all symbols a ̸=
a0.

Now, to solve our problem, it is sufficient to read the first letter a0 and to copy
this program as many times as the number of letters in alphabet Σ. If Σ= {0,1,2} for
example:

qstart q0/0

q0/1

q0/2

q f

0/0 →

1/1 →

2/2 →

q1/0

∀a ̸= 0, a/a →

B/B ←

0/0 →

q1/1

∀a ̸= 1, a/a →

B/B ←1/1 →

q1/2

∀a ̸= 2, a/a → B/B ←

2/2 →

We are hence using the fact that this program is working on some states that can
be ordered pairs: here we use ordered pair qi / j with i ∈ {1,2}, and j ∈Σ.

A second technique is using subprocedures. Once again, we will illustrate this
with an example.

Exercise 4 [Multiplication in unary] Construct a Turing machine that per-
forms multiplication in unary: Starting from a word of the form 0m10n , the
machine stops with 0m·n on its tape.

A possible strategy is the following:

1. the tape will contain a word of the form 0i 10n10kn for an integer k;

2. at every step, one will change a 0 of the first group into a blank, and one will
add n 0’s to the first group, to obtain the word 0i−110n10(k+1)n ;

3. by doing so, we will copy the group of n 0’s m times, once for every symbol of
the first group set to blank. When there is no blank left in the first group of 0’s,
there will consequently be m ·n 0’s in the last group;

4. the last step is to overwrite the prefix 10n1 with blanks.

The heart of the method is hence the subprocedure, that we will call Copy that
implements step 2: It transforms a configuration 0m−k 1q10n1(k−1)n into 0m−k 1q50n1kn .
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Here is a way to program this: If one starts in state q1 with such an input, we will
eventually go to state q5 with the correct result.

q1start q2

q3

q4

q5

0/X →
1/1 →

0/0 →

B/0 ←
1/1 ←

0/0 ←

X/X →1/1 ←

X/0 ←
1/1 →

Once we have this subprocedure, one can construct the global algorithm.

q0start

q6 q1 q5 q7 q8

q9

q10q11q12

0/B →

0/0 →

1/1 → 0/0 ← 1/1 ←

0/0 ←

0/0 ←

B/B →

B/B →

1/B →

0/B →

1/B →

where the dashed rectangle means “paste the program just describe for the sub-
procedure here”.

In this example we see that it is possible to program with Turing machines in
a modular way, by using subprocedures. In practise, this means pasting pieces of
program inside a program of a machine as in the example.

1.5 Applications

As we said before, the only way to understand all what can be programmed with a
Turing machine is trying to program them.

So here are a few exercises.
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Exercise 5 Construct a Turing machine that adds 1 to the number written
in binary (hence with 0 and 1’s) on its tape.

Exercise 6 Construct a Turing machine that subtracts 1 to the number writ-
ten in binary (hence with 0 and 1’s) on its tape.

Exercise 7 Construct a Turing machine that accepts the words with the same
number of 0’s and 1’s.

1.6 Variants of the notion of Turing machine

The Turing machine model is extremely robust.

Indeed, there are many possible variations of the model, but they do not change
what can be computed with these machines.

In this section, we will illustrate this by discussing several of these modifications.

Restriction to a binary alphabet

Proposition 1 Every Turing machine working over some arbitrary alphabet Σ
can be simulated by a Turing machine working over alphabet Σ = Γ with only
two letters (without counting the blank symbol).

Sketch of proof: The idea is that one can always encode the letters of the alpha-
bet by using a binary encoding. For example, if the alphabet Σ has 3 letters a, b, and
c, one can decide to encode a by 00, b by 01 and c by 10: See Figure 2. In the general
case, one just needs to use possibly more than 2 letters.

Of course, this may require first to initially transform the input in order to rewrite
it using this encoding.

One can then transform the program of a Turing machine M that works over
alphabet Σ into a program M ′ that works over this encoding.

For example, if the program of M contains an instruction that says that if M is
in state q and that the head reads a one must write c and move to the right, the
program of M ′ will consist in stating that if one is in state q and one reads 0 in front
of the head, and 0 on its right (and so what is on the right of the head starts by 00,
the encoding of a), then one must replace these two 0’s by 10 (i.e. the encoding of
c) and go to state q ′. By doing so, every time that a computation of M produces
a tape corresponding to some word w , then the machine M ′ will produce a tape
corresponding to the encoding of w in binary letter by letter. □
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Machine M on alphabet {a,b,c}

. . . B B B B B a b a a c b B B B B B B B B B . . .

q7

Machine M ′ simulating M on alphabet {0,1}.

. . . B B B B B 0 0 0 1 0 0 0 0 1 0 0 1 B B B . . .

q7

a b a a c b

Figure 2: Illustration of the proof of Proposition 1.

Turing machines with several tapes

One can also consider some Turing machines with several tapes, say k, where k is
some integer. Each of these k tapes has its own reading head. The machine still have
a finite number of internal states Q. Simply, now the transition function δ is not any
more a function of Q ×Γ to Q ×Γ× {←, |,→}. but from Q ×Γk to Q ×Γk × {←, |,→}k :
Depending of the the internal state of the machine and the symbols read by each of
the k heads, the transition function gives the new symbols to be written on each of
the tapes, and the movements for each of the heads.

It is possible to formalize this model, but we will not do so as this does not really
bring a new difficulty.

We will sketch the following result.

Proposition 2 Every Turing machine with k tapes can be simulated by a Turing
machine with a unique tape.

Sketch of proof: The idea is that if a machine M works with k tapes on the al-
phabet Γ, one can simulate M by a machine M ′ with a unique tape that works on
alphabet (Γ× {0,1}∪ {#}) (which is still a finite alphabet).

The tape of M ′ contains the concatenation of the contents of all the tapes of M ,
separated by some marker #. We use (Γ× {0,1}∪ {#}) instead of (Γ∪ {#}) in order to
use 1 more bit of information for every cell to store the information "the read is in
front this cell".

M ′ will simulate step by step the transitions of M : To simulate a transition of
M , M ′ will scan from left to right its tape to determine the position of each of the
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tape 1

. . . B B B B B a b a a b B B B B B B B B B B . . .

tape 2

. . . B B B B B b c a a B B B B B B B B B B B . . .

tape 3

. . . B B B B B a a b a B B B B B B B B B B B . . .

q5

Figure 3: A Turing machine with 3 tapes

. . . B B B a b’ a a b # b c a a’ # a a b’ a B B . . .

q0

tape 1 tape 2 tape 3

Figure 4: Illustration of the proof of Proposition 2: Graphical representation of a
Turing machine with 1 tape simulating the machine with 3 tapes of Figure 3. On this
graphical representation, we write a primed letter when the bit “the head is in front
of this cell” is set to 1.
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reading heads, and the symbol in front of each of the heads (by memorizing these
symbols in its internal state). Once all the symbols in front of all the head known,
M ’ knows the symbols to be written and the movements to be done for each of the
heads: M ′ will scan again its tape from left to right to update its encoding of the of
the configuration of M . By doing so systematically transition after transition, M ′ will
perfectly simulate the evolution of M with unique tape: See Figure 1.6 □

Non-deterministic Turing machines

We can also introduce non-determinism in Turing machines: The definition of a
Turing machine is exactly as the notion of (deterministic) Turing machine except for
one point. δ is not a function from Q ×Γ to Q ×Γ× {←, |,→} anymore, but a relation
of the form

δ⊆ (Q ×Γ)× (Q ×Γ× {←, |,→}).

In other words, to a given internal state and a letter read in front of the head, δ is
not defining a unique triple of Q×Γ×{←, |,→}, but possibly a set of triples. Intuitively,
during an execution, the machine has the possibility to choose any triple.

Formally, this is expressed by the fact that one can go from configuration C to
successor configuration C ′ if and only one can go from C to C ′ (we will write this C ⊢
C ′) with previous definitions, but replacingδ(q, a) = (q ′, a′,m′) by ((q, a), (q ′, a′,m′)) ∈
δ. The other definitions are unchanged, and the same as for the deterministic Turing
machines.

The difference is that a non-deterministic Turing machine does not have a unique
execution on some input w but possibly several: Actually, the executions of the ma-
chine on a word w give rise to a tree of possibilities, and the idea is that one accepts
a word if one of the branches contains an accepting configuration.

The notion of word w accepted is (still) given by Definition 5.
The language L ⊂Σ∗ accepted by M is (still) the set of words w that are accepted

by the machine. We (still) denote it by L(M). We (still) also call L(M) the language
recognized by M .

One avoids in general in this context to talk of rejected word.
We will however say that a language L ⊂ Σ∗ is decided by M if it is accepted by a

machine that halts on every input: That is to say, for every w ∈ L, the machine has
(at least) ONE accepting computation that leads to some accepting configuration as
in Definition 5, and for every w ̸∈ L, ALL the computations of the machine lead to
some rejecting configuration.

One can prove the following result (we will do so in a following chapter).

Proposition 3 Any non-deterministic Turing machine can be simulated by a de-
terministic Turing machine: A language L is accepted by a non-deterministic
Turing machine if and only if it is accepted by some (deterministic) Turing ma-
chine.

Obviously, one can consider a Turing machine as a particular non-deterministic
Turing machine. The non-trivial direction of the proposition is that one can always
simulate a non-deterministic machine by some deterministic one.



2. BIBLIOGRAPHIC NOTES 19

In other words, allowing non-determinism does not extend the power of the
model, as long as one talks about computability, that is to say about the problems
that one can solve. We will see that this is not so direct when talking about efficiency,
i.e. complexity.

1.7 Locality of the notion of computation

We now give a fundamental property of the notion of computation that we will use
at several occasions, and that we invite the reader to meditate on:

Proposition 4 (Locality of the notion of computation) Consider the space-time
diagram of a machine M. We consider the possible contents of a subrectangle of
width 3 and height 2 in this diagram. For every machine M there is a finite num-
ber of possible contents that one can find in these rectangles. We call the possible
contents for the machine M the legal window : See Figure 6 for an illustration.

This even provides a characterization of the space-time diagrams of a given
machine: An array is a space-time diagram of M for some initial configuration
C0 if and only if its first line corresponds to C0, and furthermore in this array,
the content of all the subrectangles of width 3 and height 2 are among the legal
windows.

Proof: It is sufficient to look at all possible cases. This is very tedious, but not
difficult. □

We will come back to this. Forget this for now, and let us come back for now to
other models in next chapter.

Remark 4 Similar results can also be shown for other models. However, they are
often harder to formulate for them.

2 Bibliographic notes

Suggested readings To go further with all the mentioned notions in this chapter,
we suggest to read [Sipser, 1997], [Hopcroft & Ullman, 2000].

Bibliography This chapter has been written using the presentation of Turing ma-
chines in [Wolper, 2001], and discussions in [Hopcroft & Ullman, 2000] for the part
about their programming. The part on the (S)RAM is inspired by [Papadimitriou, 1994]
and [Jones, 1997].
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(a) . . . B B B B q0 0 0 1 0 B B B B B B B B B B B . . .

. . . B B B B X q1 0 1 0 B B B B B B B B B B B . . .

. . . B B B B X 0 q1 1 0 B B B B B B B B B B B . . .

. . . B B B B X q2 0 Y 0 B B B B B B B B B B B . . .

. . . B B B B q2 X 0 Y 0 B B B B B B B B B B B . . .

. . . B B B B X q0 0 Y 0 B B B B B B B B B B B . . .

. . . B B B B X X q1 Y 0 B B B B B B B B B B B . . .

. . . B B B B X X Y q1 0 B B B B B B B B B B B . . .

. . . B B B B X X Y 0 q1 B B B B B B B B B B B . . .

1 0 B

Y 0 B
(b)

Figure 5: (a). The space-time diagram of Example 7. We show one 3×2 subrectangle
with gray background. (b) The corresponding (legal) window.

a q1 b

q2 a c
(a)

a q1 b

a a q2
(b)

a a q1

a a b
(c)

# b a

# b a
(d)

a b a

a b q2
(e)

b b b

c b b
(f)

Figure 6: Some legal windows for a Turing machine M : each of them can be observed
on a 3×2 subrectangle of the space-time diagram of M .

a b a

a a a
(a)

a q1 b

q1 a a
(b)

b q1 b

q2 b q2
(c)

Figure 7: Some illegal windows for a certain Turing machine M with δ(q1,b) =
(q1,c,←). One cannot observe these contents in a 3×2 subrectangle of the space-
time diagram of M : Indeed, in (a), the middle symbol cannot be changed without
the head being next to it. In (b), the symbol at the bottom right should be c but not a,
according to the transition function. In (c), there cannot be two heads on the tape.
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