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Predicate calculus

Propositional calculus remains very limited, and permits essentially only to talk about
Boolean operations on propositions.

If we want to reason about mathematical assertions, we need some richer con-
structions. For example, one may want to talk about statements like

∀x((Pr i me(x)∧x > 1+1) ⇒Odd(x)). (1)

Such a statement is not captured by propositional logic. First of all, since it uses
some predicates, such as Pr i me(x), whose truth value is depending on some vari-
able x, which is not possible in propositional logic. Furthermore, we use here some
quantifiers, such as ∃, ∀ which are not present in propositional logic.

The previous statement is an example of a formula from predicate calculus of
first order. In this course, we will only talk about first order logic. The terminology
first order makes reference to the fact that the existential and universal quantifiers
are authorized only on variables.

A statement of second order (and one talks more generally of higher order logic)
would be a statement where quantifications over functions or relations would be

authorized. For example, we may want to write ¬∃ f (∀x( f (x) > f (x +1))) to mean
that there does not exist some infinitely decreasing sequence. We will not attempt
to understand the theory under this type of statements in this document, as we will
see, the problems and difficulties with first order are already sufficiently numerous.

The objective of this chapter is then to define first order logic. As for proposi-
tional logic, we will do it by talking of the syntax, that is to say the way formulas are
written, and then of their semantic, that is to say, their meanings.

The predicate calculus, remains the most usual formalism to express mathemat-
ical properties. This is also a formalism very often used in computer science to
describe objects. For example, the request languages in data bases are essentially
based on this formalism, applied to some finite objects, representing data.

1 Syntax

To write a formula of a first order language, we will use certain symbols that are
common to all the languages, and certain symbols that change from a language to
the other. The symbols that are common to all the languages are:
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• the connectors ¬, ∨, ∧, ⇒, ⇔;

• the parentheses ( and ) and the comma ,;

• the universal quantifier ∀ and the existential quantifier ∃;

• an infinite denumerable set of symbols V , called variables.

The symbols that may vary from a language to the other are captured by the
notion of signature. A signature fixes the symbols of constants, the symbols of func-
tions and the symbols of relations that are authorized.

Formally:

Definition 1 (Signature of a first order language) The signature

Σ= (C ,F ,R)

of a first order language is given by:

• a first set C of symbols, called constant symbols;

• a second set F of symbols, called function symbols; To each symbol of this
set is associated a strictly positive integer, that is called its arity.

• a third set R of symbols, called relation symbols. To each symbol of this
set is associated a strictly positive integer, that is called its arity.

We suppose that V , C , F , R are pairwise disjoint sets.

A formula of first order will then be some particular word on the alphabet

A (Σ) = V ∪C ∪F ∪R∪ {¬,∨,∧,⇒,⇔, (, ), ,,∀,∃}.

Remark 2 In what follows, we will use the following conventions: We consider
that x, y, z,u and v denotes some variables, that is to say some elements of V .
a,b,c,d will denote some constants, that is to say some elements of C .

The intuition is that the constant, functions and relation symbols will be inter-
preted (in what we will call structures). The arity of a function symbol or relation
symbol will correspond to its number of arguments.

Example 3 For example, we can consider the signature

Σ= ({0,1}, {s,+}, {Odd ,Pr i me,=,<})

that has the constant symbols 0 and 1, the function symbol + of arity 2, the func-
tion symbol s of arity 1, the relation symbols Odd and Pr i me of arity 1, the
relation symbols = and < of arity 2.
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Example 4 We can also consider the signature L2 = ({c,d}, { f , g ,h}, {R}) with
c,d two constant symbols, f a function symbol of arity 1, g and h two function
symbols of arity 2, R a relation symbol of arity 2.

We will define by successive steps, first the terms, that intend to represent ob-
jects, then the atomic formulas that intend to represent some relations between ob-
jects, and then the formulas.

1.1 Terms

We have already defined the terms in Chapter 2: What we call here terms over a
signature Σ, is a term built on the union of function and constant symbols of the
signature, and of the variables.

To be more clear, let’s express again our definition:

Definition 5 (Termes sur une signature) Let Σ= (C ,F ,R) be a signature.
The set T of terms on the signature Σ is the language over alphabet A (Σ)

inductively defined by:

(B) every variable is a term: V ⊂ T ;

(B) every constant is a term: C ⊂ T ;

(I ) if f is a function symbol of arity n and if t1, t2, · · · , tn are terms, then f (t1, · · · , tn)
is a term

Definition 6 A closed term is a term without any variable.

Example 7 +(x, s(+(1,1))) is a term built over the signature of Example 3 that is
not closed. +(+(s(1),+(1,1)), s(s(0))) is a closed term.

Example 8 h(c, x), h(y, z), g (d ,h(y, z)) and f (g (d ,h(y, z))) are terms over the
signature L2 of Example 4.

1.2 Atomic formulas

Definition 9 (Atomic formulas) Let Σ= (C ,F ,R) be a signature.
An atomic formula on the signature Σ is a word on the alphabet A (Σ) of

the form R(t1, t2, · · · , tn), where R ∈ R is a relation symbol of arity n, and where
t1, t2, · · · , tn are terms over Σ.
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Example 10 > (x,+(1,0)) is some atomic formula on the signature of Example
3. So is = (x, s(y)).

Example 11 R( f (x), g (c, f (d))) is some atomic formula over L2.

Remark 12 We will agree to write sometimes t1Rt2 for some binary symbols,
such as =, <, + to avoid too heavy notations: For example, we will write x > 1+1
for > (x,+(1,1)).

1.3 Formulas

Definition 13 (Formules) Let Σ= (C ,F ,R) be a signature.
The set of (of first order) formulas on the signature Σ is the language over

alphabet A (Σ) inductively defined by:

(B) every atomic formula is a formula;

(I ) if F is a formula, then ¬F is a formula;

(I ) if F and G are two formulas, then (F ∧G), (F ∨G), (F ⇒ G), and (F ⇔ G)
are formulas;

(I ) if F is a formula, and if x ∈ V is a variable, then ∀xF is a formula, and
∃xF is a formula.

Example 14 The statement ∀x((Pr i me(x)∧ x > 1+1) ⇒ Odd(x)) is a formula
on the signature of Example 3.

Example 15 So does ∃x(s(x) = 1+0∨∀y x + y > s(x))

Example 16 Examples of formulas over the signature L2:

• ∀x∀y∀z((R(x, y)∧R(y, z) ⇒ R(x, z))

• ∀x∃y(g (x, y) = c ∧ g (y, x) = c);

• ∀x¬ f (x) = c;

• ∀x∃y¬ f (x) = c.
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2 First properties and definitions

2.1 Decomposition / Uniqueness reading

As for the propositional formulas, one can always decompose a formula, and in a
unique way.

Proposition 17 (Decomposition / Unique reading) Let F be a formula. Then F
is of one, and exactly one of the following forms:

1. an atomic formula;

2. ¬G, where G is a formula;

3. (G ∧H) where G and H are formulas;

4. (G ∨H) where G and H are formulas ;

5. (G ⇒ H) where G and H are formulas;

6. (G ⇔ H) where G and H are formulas;

7. ∀xG where G is a formula and x is a variable;

8. ∃xG where G is a formula and x is a variable.

Furthermore, in the first case there is a unique way to “read”’ the atomic formula.
In all the other cases, there is unicity of the formula G and of the formula H with
this property.

One can then represent each formula by a tree (its decomposition tree), that is in
immediate correspondence with its derivation tree in the sense of Chapter 2): Each
vertex is labeled by some constant, function or relation symbol, or by the symbols
¬,∧,∨,⇒,⇔ or a quantifier or universal quantifier.

Example 18 For example, the formula

(∀x∃yR(x, y) ⇒∃xR ′(x, y, a)) (2)

is represented by the following tree
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⇒

∀x

∃y

R

x y

∃x

R ′

x y a

Each subtree of such a tree represents a subformula of F . If one prefers:

Definition 19 (Subformula) A formula G is a subformula of a formula F if it
appears in the decomposition of F .

Exercise 1 (solution on page 231) Let us fix a signature containing the rela-
tion symbols R1, R2 or respective arity 1 and 2. Let us fix the set of variables
V = {x1, x2, x3}. Which of the following words are formulas?

• (R1(x1)∧R2(x1, x2, x3))

• ∀x1(R1(x1)∧R2(x1, x2, x3))

• ∀x1∃R(R(x1)∧R2(x1, x1))

• ∀x1∃x3(R1(x1)∧R3(x1, x2, x3))

2.2 Free variables

The intuition of what follows is to distinguish the free variables from the other: All
of this is about the “∀x” and “∃x” which are binders binders: When we write ∀xF or
∃xF , then x become some bound variable. In other words, when we will talk about
the semantic of formulas, the truth value of ∀xF or ∃xF will intend not to depend
on x: We could well write ∀yF (y/x) (respectively: ∃yF (y/x)) where F (y/x) denotes
intuitively the formula that is obtained by replacing x by y in formula F .

Remark 20 We have exactly the same phenomenon in symbols such as the inte-

gral symbol in mathematics: In the expression
∫ b

a f (t )d t, the variable t is some
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bound (dummy) variable. In particular
∫ b

a f (u)du is exactly the same integral.

Let’s do this very properly. A same variable can appear several times in a given
formula, and we need to be able to locate every occurrence, taking care to ∃ and ∀.

Definition 21 (Occurrence) An occurrence of a variable x in some formula F is
an integer n such that the nth symbol of word F is x and such that the (n −1)th
symbol is not ∀ nor ∃.

Example 22 8 and 17 are occurrences of x in the formula (2). 7 and 14 are not:
7 because the 7th symbol of F is not an x (this is an open parenthesis) and 14
because the 14th symbol of F that is indeed a x is quantified by a ∃.

Definition 23 (Free, bounded Variable) • An occurrence of a variable x in
a formula F is a bounded occurrence if this occurrence appears in some
subformula of F that is not starting by some quantifier ∀x or ∃x. Other-
wise the occurrence is said to be free.

• A variable is free in a formula if it has at least one free occurrence in the
formula.

• A formula F is closed if it does not have any free variable.

Example 24 In the formula (2), the occurrences 8, 17 and 10 of x and y are
bounded. The occurrence 19 of y is free.

Example 25 In the formula (R(x, z) ⇒∀z(R(y, z)∨ y = z)), the only occurrence
of x is free, the two other occurrences of y are free. The first (least) occurrence of z
is free, and the others are bounded. The formula ∀x∀z(R(x, z) ⇒∃y(R(y, z)∨y =
z)) is closed.

The notation F (x1, · · · , xk ) means that the free variables of the formula F are
among x1, · · · , xk .

Exercise 2 (solution on page 231) Find all the free and the bounded occur-
rences in the following formulas:

• ∃x(l (x)∧m(x))

• (∃xl (x))∧m(x)
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Exercise 3 Prove that the free!variable ℓ(F ) of a formula F can be obtained
by the following inductive definition:

• ℓ(R(t1, · · · , tn)) = {xi |xi ∈ V and xi appears in R(t1, · · · , tn)};

• ℓ(¬G) = ℓ(G);

• ℓ(G ∨H) = l (G ∧H) = ℓ(G ⇒ H) = ℓ(G ⇔ H) = ℓ(G)∪ℓ(H);

• ℓ(∀xF ) = ℓ(∃xF ) = ℓ(F )\{x}.

3 Semantic

We can now talk about the meaning that we give to formulas. Actually, to provide a
meaning to formulas, we need to fix some meaning of the symbols of the signature,
and this is the purpose of the notion of structure.

Definition 26 (Structure) Let Σ= (C ,F ,R) be a signature.
A structure M of signature Σ is given by:

• a non-empty set M, called its base set, or domain of the structure;

• an element, denoted by cM, for each constant symbol c ∈C ;

• a function, denoted by f M, of M n → M for each function symbol f ∈F of
arity n ;

• a subset, denoted by RM, of M n for each relation symbol R ∈F of arity n.

We say that the constant c (respectively the function f , the relation R) is inter-
preted by cM (resp. f M, RM). A structure is sometimes also called a realisation of
the signature.

Example 27 A realisation of the signature Σ = ({0,1}, {+,−}, {=,>}) corresponds
to the domain N of natural integers, with 0 interpreted by the integer 0, 1 inter-
preted by 1, + interpreted by addition, − interpreted by subtraction, and = by
equality on the integers: That is to say by the subset {(x, x)|x ∈ N}, and > by the
order on the integers, that is to say by the subset {(x, y)|x > y}. It can be denoted
by (N,=,<,+,−,0,1).

Example 28 Another realisation of this signature corresponds to the domain R
of the reals, where 0 is interpreted by the real 0, 1 by the real 1, + by addition, −
by subtraction, and = by equality on the reals, and > by the order on the reals. It
can be denoted by (R,=,<,+,−,0,1).
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Example 29 We can obtain a realisation of the signature L2 by considering the
base set R of the reals, by interpreting R as the order relation ≤ on the reals, the
function f as the function that to x associates x + 1, the functions g and h as
respectively the addition and the multiplication on the reals, the constants c and
d as the reals 0 and 1. It can be denoted by (R,≤, s,+,×,0,1).

We will then use the notion of structure to interpret the terms, the atomic for-
mulas, and then inductively the formulas as one may expect.

3.1 Interpretation of terms

Definition 30 (Valuation) Fix a structure M. A valuation v is a distribution of
values to the variables, that is to say a function from V to the domain M of the
structure M.

Definition 31 (Interprétation des termes) LetM be a structure of signatureΣ=
(C ,F ,R).

Let t be a term of the form t (x1, · · · , xk ) overΣwhose free variables are x1, · · · , xk .
Let v be a valuation.
The interpretation tM of term t for the valuation v, also denoted by tM[v],

or tM is defined inductively as follows:

(B) every variable is interpreted as its value by the valuation: if t is the variable
xi ∈ v, then tM is v(xi ) ;

(B) every constant is interpreted as its interpretation in the structure: if t is the
constant c ∈C , then tM is cM ;

(I ) each function symbol is interpreted as its interpretation int the structure: if
t is the term f (t1, · · · , tn), then tM est f M(tM1 , · · · , tMn ), where tM1 , · · · , tMn
are the respective interpretations of the terms t1, · · · , tn .

Remark 32 The interpretation of a term is an element of M, where M is the base
set of the structure M. In other words, the terms denote some elements of the
structure.

Example 33 Let N be the structure (N,≤, s,+,×,0,1) of signature

L2 = ({c,d}, { f , g ,h}, {R}) :

• the interpretation of h(d , x) for a valuation such that v(x) = 2 is 2.

• the interpretation of term f (g (d ,h(y, z))) for a valuation such that v(y) =
2, v(z) = 3 is 8.
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3.2 Interpretation of atomic formulas

An atomic formula F = F (x1, · · · , xk ) is an object that is interpreted either by true or
by false in some valuation v . When F is interpreted by true, we say that the valuation
v satisfies F , and this fact is denoted by v |=F . We denote v ̸|=F in the contrary case.

There only remain to define formally this notion:

Definition 34 (Interpretation of some atomic formula) Let M be a structure
of signature Σ= (C ,F ,R).

The valuation v satisfies the atomic formula R(t1, t2, · · · , tn) of free variables
x1, · · · , xk if (tM1 [v], tM2 [v], · · · , tMn [v]) ∈ RM, where RM is the interpretation of
relation symbol R in the structure.

Example 35 For example, on the structure of Example 27, x > 1+1 is interpreted
by 1 (true) in the valuation v(x) = 5, and by 0 (false) in the valuation v(x) = 0.
The atomic formula 0 = 1 is interpreted by 0 (false).

Example 36 On the structure N of Example 33, the atomic formula R( f (c),
h(c, f (d))) is interpreted by false.

3.3 Interpretation of formulas

More generally, a formula F = F (x1, · · · , xk ) is an object that is interpreted either by
true or by false in some valuation v . When F interprets to true, we say that the valu-
ation v satisfies F , and we write this fact by v |=F , and v ̸|= F for the contrary case.

Definition 37 (Interpretation of some formula) Let M be a structure of signa-
ture Σ= (C ,F ,R).

The expression “the valuation v satisfies the formula F = F (x1, · · · , xk )”, de-
noted by v |=F , is defined inductively in the following way:

(B) it has already been defined for some atomic formula;

¬,∨,∧,⇒,⇔ are interpreted exactly as in the propositional calculus:

(I ) the negation is interpreted by the logical negation:
if F is of the form ¬G, then v |= F if and only if v ̸|=G;

(I ) ∧ is interpreted as the logical conjunction:
if F is of the form (G ∧H), then v |= F if and only if v |=G and v |= H;

(I ) ∨ is interpreted as the logical or
if F is of the form (G ∨H), then v |= F if and only if v |=G or v |= H;

(I ) ⇒ is interpreted as the logical implication:
if F is of the form (G ⇒ H), then v |= F if and only if v |= H or v ̸|=G;
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(I ) ⇔ is interpreted as the logical equivalence:
if F is of the form (G ⇔ H), then v |= F if and only if (v |=G and v |= H) or
(v ̸|=G and v ̸|= H).

∃x and ∀x are interpreted as existential and universal quantifications:

(I ) if F is of the form ∀x0G(x0, x1, · · · , xk ), then v |= F if and only if for all a0 ∈
M v ′ |=G, where v ′ is the valuation such that v ′(x0) = a0, and v ′(x) = v(x)
for all x ̸= x0;

(I ) if F is of the form ∃x0G(x0, x1, · · · , xk ), then v |= F if and only for a cer-
tain element a0 ∈ M, we have v ′ |= G, where v ′ is the valuation such that
v ′(x0) = a0, and v ′(x) = v(x) for every x ̸= x0.

Example 38 • The formula F (x) defined by ∀yR(x, y) is true in the structure
N for 0 (i.e. for a valuation such that v(x) = 0), but false for all the other
integers.

• The formula G(x) defined by ∃y x = f (y) is true in the structure N for the
integers distinct from 0 and false for 0.

• The closed formula∀x∀z∃y(x = c∨g (h(x, y), z) = c) of language L2 is true
in (R≤, s,+,×,0,1) and false in N = (N,≤, s,+,×,0,1).

In the case where the valuation v satisfies the formula F , one also says that F is
true in v . In the contrary, we say that F is false in v .

Definition 39 (Model of a formula) For a closed formula F ,the satisfaction of
F in a structure M is not depending on the valuation v. In the case where the
formula F is true, we say that the structure M is a model of F , and we write
M|=F .

Exercise 4 (solution on page 231) LetΣ be a signature made of some binary
relation R and of the predicate =. Write some formula that is valid if and
only if R is some order (we can suppose that = is interpreted by equality).

3.4 Substitutions

Definition 40 (Substitution in a term) Given some term t and some variable x
appearing in this term, we can replace all the occurrences of x by some other
term t ′. The new term is said to be obtained by substitution of t ′ to x in t , and is
denoted by t (t ′/x).
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Example 41 The result of the substitution of f (h(u, y)) to x in g (y,h(c, x)) is
g (y,h(c, f (h(u, y)))). The result of the substitution of g (x, z) to y in this new term
is

g (g (x, z),h(c, f (h(u, g (x, z))))).

To do a substitution of a term to some free variable in some formula, it is neces-
sary to does it carefully: Otherwise the meaning of the formula can be completely
modified by the phenomenon of capture of variables.

Example 42 Let F (x) be the formula ∃y(g (y, y) = x). In the structure N where
g is interpreted by addition the meaning of F (x) is clear: F (x) is true in x if and
only if x is even.

If we replace the variable x by z, the obtained formula has the same meaning
that the formula F (x) (up to the renaming of the free variable). F (z) is true in z
if and only if z is even.

But if we replace x by y, the obtained formula ∃y(g (y, y) = y) is a closed for-
mula that is true in the structure N . The variable x have been replaced by a
variable that is quantified in the formula F .

Definition 43 (Substitution) The Substitution of a term t to a free variable x in
some formula F is obtained by replacing all the free occurrences of this variable
by the term t,under the reserve that the following condition is satisfied: For every
variable y appearing in t , y has no free occurrence appearing in a subformula of
F starting by a ∀ or ∃ quantifier. The result of this substitution, if it is possible, is
denoted by F (t/x).

Example 44 The result of the substitution of the term f (z) to the variable x in
the formula F (x) given by

(R(c, x)∧¬x = c)∧ (∃y g (y, y) = x))

is the formula

(R(c, f (z))∧¬ f (z) = c)∧ (∃y g (y, y) = f (z))).

Proposition 45 If F is a formula, x is some free variable in F , and t is a term such
that the substitution of t in x in F is defined, then the formulas (∀xF ⇒ F (t/x))
and (F (t/x) ⇒∃xF ) are valid.

Proof: We prove by induction on the formula F that the satisfaction of the for-
mula F (t/x) by the valuation v is equivalent to the one of formula F (x) by the val-
uation v1 where v1 is obtained from v by giving to x the interpretation of t for the
valuation v .
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The only cases requiring a justification are those where the formula F is of the
form ∀G and ∃xG . From the hypothesis for the substitution of t to x, the considered
quantification is about some variable y distinct both from x and from all the vari-
ables from t . It suffices then to examine the satisfaction of the formula G(t/x) by a
valuation v ′ equals to v but on y . By induction hypothesis on G , the formula G(t/x)
is satisfied by v ′ if and only if G is satisfied by the valuation v ′

1 where v ′
1 is obtained

from v ′ by giving to x the interpretation of t for the valuation v ′: Indeed, v and v ′
are equal on all the variables appearing in the term t . □

4 Equivalence, Normal forms

4.1 Equivalent formulas

Definition 46 Let Σ= (C ,F ,R) be as signature.

• A structureM satisfies the formula F (x1, · · · , xk ) if it satisfies the closed for-
mula ∀x1 · · ·∀xk F (x1, · · · , xk ). This latter formula is called the universal
closure.

• A closed formula F is said valid if it is satisfied by any structure M.

• A formula F is said valid if its universal closure is valid.

• Two formulas F and G are equivalent if for any structure, and for any val-
uation v, the formulas F and G take the same truth value. We write F≡G
in this case.

Exercise 5 Prove that the relation ≡ is an equivalence relation.

Proposition 47 Let F be a formula. We have the following equivalences

¬∀xF ≡∃x¬F

¬∃xF ≡∀x¬F

∀x∀yF ≡∀y∀xF

∃x∃yF ≡∃y∃xF

Proposition 48 Suppose that the variable x is not free in the formula G. Let F
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be a formula. We have then the following equivalences:

∀xG ≡ ∃xG ≡G (3)

(∀xF ∨G) ≡ ∀x(F ∨G) (4)

(∀xF ∧G) ≡ ∀x(F ∧G) (5)

(∃xF ∨G) ≡ ∃x(F ∨G) (6)

(∃xF ∧G) ≡ ∃x(F ∧G) (7)

(G ∧∀xF ) ≡ ∀x(G ∧F ) (8)

(G ∨∀xF ) ≡ ∀x(G ∨F ) (9)

(G ∧∃xF ) ≡ ∃x(G ∧F ) (10)

(G ∨∃xF ) ≡ ∃x(G ∨F ) (11)

(∀xF ⇒G) ≡ ∃x(F ⇒G) (12)

(∃xF ⇒G) ≡ ∀x(F ⇒G) (13)

(G ⇒∀xF ) ≡ ∀x(G ⇒ F ) (14)

(G ⇒∃xF ) ≡ ∃x(G ⇒ F ) (15)

Each of the equivalence is rather simple to be established, but tedious, and we
leave the proofs a exercises.

Exercise 6 Prove Proposition 48.

Exercise 7 (solution on page 231) Are the following propositions equiva-
lent ? If not, does the proposition on the left implies the one one the right?

1. ¬(∃xP (x)) and (∀x¬P (x))

2. (∀xP (x)∧Q(x)) and ((∀xP (x))∧ (∀xQ(x)))

3. ((∀xP (x))∨ (∀xQ(x))) and (∀xP (x)∨Q(x))

4. (∃xP (x)∨Q(x)) and ((∃xP (x))∨ (∃xQ(x)))

5. (∃xP (x)∧Q(x)) and ((∃xP (x))∧ (∃xQ(x)))

6. (∃x∀yP (x, y)) and (∀y∃xP (x, y))

4.2 Prenex normal form

Definition 49 (Prenex form) A formula F is said to be in prenex form if it is of
the form

Q1x1Q2x2 · · ·Qn xnF ′
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where each of the Qi is either a ∀ quantifier or a ∃ quantifier, and F ′ is a formula
not containing any quantifier.

Proposition 50 Every formula F is equivalent to some formula in prenex nor-
mal form G.

Proof: By structural induction on F .
Base case. If F is of the form R(t1, · · · , tn), for some relation symbol R, then F is

in prenex normal form.
Inductive case:

• If F is of the form ∀xG where ∃xG , by induction hypothesis G is equivalent
to G ′ in prenex normal form, and so F is equivalent to ∀xG ′ or ∃xG ′ that is in
prenex normal form.

• If F is of the form ¬G , by induction hypothesis G is equivalent to G ′ in prenex
normal form Q1x1Q2x2 · · ·Qn xnG ′′. By using the equivalences of the Proposi-
tion 47, F is equivalent to Q ′

1x1Q ′
2x2 · · ·Q ′

n xn¬G ′′, by taking Q ′
i = ∀ if Qi = ∃

and Q ′
i =∃ if Qi =∀.

• If F is of the form (G ∧ H), by induction hypothesis G and H are equivalent
to formulas G ′ and H ′ in prenex normal form. By applying the equivalences
(4) à (11), we can “bring up” the quantifiers in front of the formula: We need
to proceed with care, since for example F = (F1 ∧F2) = ((∀xF ′

1)∧F ′
2) with x

free in F ′
2, we need first to rename the variable x in F1 by replacing x by some

new variable z not appearing nor in F1 nor in F ′
2, in order to be able to use the

required equivalence among the equivalences (4) à (11).

• The other cases are treated in a similar way, by using the equations of the two
previous propositions.

□
By using the idea of the conjunctive and disjunctive normal form of proposi-

tional calculus, we can even go further:

Definition 51 • A literal is some atomic formula or the negation of some
atomic formula.

• A clause is a disjunction of literals.

• A prenex formula Q1x1Q2x2 · · ·Qn xnG is in conjunctive normal form if
the quantifier free formula G is a clause or a conjunction of clauses.

The notion of disjunctive normal form can be defined in a dual way by consid-
ering disjunctions of conjunctions of atomic formulas instead of conjunctions of
disjunctions of atomic formulas.
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Proposition 52 Every formula F is equivalent to some prenex formula

Q1x1Q2x2 · · ·Qn xnG ,

where G is in conjunctive normal form.

Proposition 53 Every formula F is equivalent to some prenex formula

Q1x1Q2x2 · · ·Qn xnG ,

where G is in disjunctive normal form.

Proof: Let F be a formula and Q1x1Q2x2 · · ·Qn xnG a prenex equivalent formula
equivalent to F . We denote by A1, A2, . . . , Ak the atomic formulas that appear in G .
We can define a formula Hof propositional calculus that uses the variables {p1, p2, . . . , pk }
such that the formula G corresponds to the formula H(A1/p1, A2/p2, . . . , Ak /pk ). Let
H ′ be a conjunctive (respectively: disjunctive) normal form equivalent to H , ob-
tained int he propositional calculus.

The formula G is equivalent to the formula G ′ given by expression H ′(A1/p1,
A2/p2, . . . , Ak /pk ) and then F is equivalent to Q1x1Q2x2 · · ·Qn xnG ′ in conjunctive
(resp. disjunctive) normal form. □

Exercise 8 (solution on page 232) Determine an equivalent prenex normal
form equivalent to

(∃xP (x)∧∀x(∃yQ(y) ⇒ R(x))).

Exercise 9 Determine an equivalent normal form equivalent to

(∀x∃yR(x, y) ⇒∀x∃y(R(x, y)∧∀z(Rxz ⇒ (R y z ∨ y = z))))

and to
∀x∀y((R(x, y)∧¬x = y) ⇒∃z(y = g (x,h(z, z)))).

4.3 Skolem form

The previous results where about transformations on formulas preserving the equiv-
alence.

We will now focus on weaker transformations in order to eliminate the existential
quantifiers. Starting form some closed formula F , we will obtain some formula F ′
that will not be necessarily equivalent. The formula F ′ will be written on a signature
where possibly some new constant and function symbols have been added. It will
have a model if and only if the initial formula has one.
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Definition 54 Let Σ= (C ,F ,R) be a signature.

• A formula F is said to be universal it it is prenex and all the quantifiers
appearing in F are ∀ quantifiers.

• A signature Σ′ = (C ′,F ′,R′) is a Skolem extension of Σ if it is obtained
by adding toΣ some function symbols (possibly infinitely many) and some
constant symbols (possibly infinitely many).

A closed prenex formula of F of Σ′ is either universal or of the form

∀x1∀x2 . . .∀xk∃xG

where G is prenex. In the latter case, it may happen that k = 0 and F is then of the
form ∃xG .

The transformation that we will apply consists in associating to F a formula F1

given by ∀x1∀x2 . . .∀xkG( f (x1, . . . , xk )/x) where f is some function symbol not ap-
pearing in formula G . In the particular case where F is ∃xG (i.e. the case k = 0),
we will associate some formula F1 given by G(c) where c is a constant symbol not
appearing in formula G .

The formula F1 obtained in this way has one less existential quantifier than the
formula F .

Example 55 To the formula F given by

∀x∀y∃z(R( f (x), g (z, y)) ⇒ (R( f (x), z)∧R(z,h(x, y))))

on the signature Σ= ({a,b}, { f , g ,h}, {R}), we will associate the formula F1 given
by

∀x∀y(R( f (x), g (k(x, y), y)) ⇒ (R( f (x),k(x, y))∧R(k(x, y),h(x, y))))

on the signature Σ′ = ({a,b}, { f , g ,h,k}, {R}) where we have added the symbol k
or arity 2.

F has a model if and only if F ′ has a model.

Definition 56 Let F be a closed prenex formula on the signature Σ′ that has n
existential quantifiers.

• A Skolem form of F is a formula obtained by applying n times successively
the previous transformation.

• The new functions and constants introduced in these transformations are
called the Skolem functions and constants.

By construction, the Skolem form of F is some universal formula.
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Example 57 Staring from F given by

∃x∀y∀x ′∃y ′∀z(R(x, y) ⇒ (R(x ′, y ′)∧ (R(x ′, z)∧ (R(x ′, z) ⇒ (R(y ′, z)∨ y ′ = z)))))

a Skolem form of F is the formula

∀y∀x ′∀z(R(e, y) ⇒ (R(x ′,k(y, x ′))∧ (R(x ′, z) ⇒ (R(k(y, x ′), z)∨ (k(y, x ′) = z)))))

The interest of this transformation lies in the following result:

Theorem 58 Let F ′ be a Skolem form of F . Then F ′ has a model if and only if F
has a model.

Proof: We only need to prove that the property is true when F ′ is obtained from
F by some of the transformation above (and repeat n times the argument in the
general case): If F is given by

∀x1∀x2 . . .∀xk∃xG

then F1 is given by ∀x1∀x2 . . .∀xkG( f (x1, . . . , xk )/x). If F1 has a model, then F has a
model: This comes from the validity of the formula

∀x1∀x2 . . .∀xkG( f (x1, . . . , xk )/x) ⇒∀x1∀x2 . . .∀xk∃xG

The case k = 0 follows from the validity of the formula

G(c) ⇒∃xG(x).

To prove the converse direction, suppose that F has a model M of base set M . It
suffices to define the interpretation of the corresponding Skolem constant or func-
tion. If F =∀x1∀x2 . . .∀xk∃xG the interpretation of the Skolem function f is given by
taking for each sequence a1, a2, . . . , ak of elements of M an element f M(a1, a2, . . . , ak )
among the a ∈ M such that

M |=G(a1, a2, . . . , ak ),

which is possible since M is a model of F .
If F is of the form ∃xG , the interpretation of the Skolem constant c is taken by

taking an element cM among the b ∈ M satisfying G in M. □

5 Bibliographic notes

Suggested readings To go further on the notions of this chapter, we suggest [Cori & Lascar, 1993],
[Dowek, 2008] or [Lassaigne & de Rougemont, 2004].

Bibliography This chapter has been written by using essentially [Cori & Lascar, 1993]
and [Lassaigne & de Rougemont, 2004].



Index

F (t/x), 14
F (x1, · · · , xk ), 9
⇔, 4, 12
⇒, 4, 12
≡, 15
∃, 4, 15–17
∀, 4, 15–17
|=, 12, 13
¬, 4, 12
∨, 4, 12
∧, 4, 12

arity, 4
of a function symbol, 4

atomic formula, 5

base set
of a structure, 10

binders, 8
bound variable, 8

C , 4
closed

term, 5
closure

universal closure of a first order for-
mula, 15

constant, 4
symbols, 4

data bases, 3
decomposition tree, 7
disjunctive normal form, 17
domain, 10

of a structure
synonym: base set, see base set of

a structure

equivalence
between formulas, 15

extension
Skolem, see Skolem extension

F , 4
false, 12, 13
first order logic, 3
formula, 3, 6

atomic, see atomic formula
closed, 9

valid, 15
in prenex normal form, 16
of predicate calculus, 6
universal, 19
valid, 15

free, see occurrence or variable
variable, 8–10, 15

function
symbols, 4

higher order logic, 3

interpretation in a structure, 12
of a formula, 12
of a term, 11
of an atomic formula, 12

interpreted, 10

literal, 17
logic

first order
synonym: predicate calculus, see

predicate calculus
higher order, 3

model
of a formula, 13

21



22 INDEX

normal form
conjunctive, 17, 18
disjunctive, 18
prenex, 17
Skolem, 19

occurrence, 9
bound, 9
free, 9

predicate, 3
calculus, 3

prenex, see formula

quantifier, 3
existential, 4, 13
universal, 4, 13

R, 4
realisation, 10

of a signature, 10
synonym: structure, see structure

relation symbols, 4

satisfaction, 12
of a formula, 15

second order, 3
semantic, 3, 10
signature, 4, 10
Skolem functions and constants., 19
structure, 4, 10
subformula, 8
substitution, 13, 14
syntax, 3

term, 5
true, 12, 13

unique reading theorem
of predicate calculus, 7

universal
closure of a first order formula, 15

V , 4
valuation, 11
variable, 4

bound, see bound variable
free, see free variable



Bibliography

[Cori & Lascar, 1993] Cori, R. & Lascar, D. (1993). Logique mathématique. Volume I.
Masson.

[Dowek, 2008] Dowek, G. (2008). Les démonstrations et les algorithmes. Polycopié
du cours de l’Ecole Polytechnique.

[Lassaigne & de Rougemont, 2004] Lassaigne, R. & de Rougemont, M. (2004). Logic
and complexity. Discrete Mathematics and Theoretical Computer Science.
Springer. https://doi.org/10.1007/978-0-85729-392-3

23

https://doi.org/10.1007/978-0-85729-392-3

	Syntax
	Terms
	Atomic formulas
	Formulas

	First properties and definitions
	Decomposition / Uniqueness reading
	Free variables

	Semantic
	Interpretation of terms
	Interpretation of atomic formulas
	Interpretation of formulas
	Substitutions

	Equivalence, Normal forms
	Equivalent formulas 
	Prenex normal form
	Skolem form

	Bibliographic notes

