
Foundations of Computer Science
Logic, models, and computations

Chapter: Recurrence and induction

Course CSC_41012_EP

of l’Ecole Polytechnique

Olivier Bournez

bournez@lix.polytechnique.fr

Version of August 20, 2024

2

Recurrence and induction

1 Motivation

The recursive definitions are ubiquitous in computer science. There are present both
in programming languages, but also in many concepts what we consider in com-
puter science.

Example 1 (Lists in JAVA) In JAVA, with

c l a s s L i s t {
int content ;
L i s t next ;
}

L i s t l s t ;

the class List is defined in a recursive (inductive) manner: by using in the defini-
tion of the class, the field “next’ whose type is the class List itself.

Example 2 (Ranked trees) We have defined the ranked trees in the previous chap-
ter by using the notion of graph. A natural alternative would be to describe the
ranked trees through a recursive definition: A ranked tree is either empty, or re-
duced to a vertex (a root), or made of a vertex (a root) and a (ranked) list of
ranked trees (its sons).

In this chapter, we spent some time on the recursive definitions of sets and func-
tions. This will be used to give some clean meaning to recursive definitions in next
chapters.

We will furthermore define in this chapter how it is possible to do some proofs on
structures defined inductively, by introducing the proofs by (structural) induction.

2 Reasoning by recurrence overN

The structural induction is a generalization of the proof by recurrence: Let’s come
back first to this later to have clear ideas.

When reasoning on the integers, the first principle of induction, also called prin-
ciple of mathematical recurrence is a reasoning mode particular useful.

3

4

Theorem 1 Let P (n) be predicate (a property) depending on the integer n. If the
the two following conditions are satisfied:

(B) P (0) is true;

(I) P (n) implies P (n +1) for all n;

then for all integer n, P (n) is true.

Proof: The reasoning is done by contradiction. Consider

X = {k ∈N|P (k) is false}.

If X is non-empty, it admits some least element n. From condition, (B), n ̸= 0, and
hence n − 1 is some integer, and P (n − 1) is true by definition of X . We then get a
contradiction with the property (I) applied for integer n −1. □

To do a proof by recurrence, we prove a property for 0 (basis case), and we prove
that the property is hereditary, or inductive: P (n) implies P (n +1) for all n.

The concept of inductive proof generalises this idea to other sets than the inte-
gers, namely to sets that are defined inductively.

Exercise 1 Consider Sn = 13 +33 +·· ·+ (2n −1)3. Prove by recurrence that
Sn = 2n4 −n2.

Exercise 2 Prove by recurrence that
∑n

k=1
1

4k2−1
= n

2n+1 .

Exercise 3 (solution on page 203) The theorem above is sometimes called
the “first principle of induction”. Prove the “second principle of induction”:
Let P (n) be a property depending on integer n. If the following property is
satisfied: For all n ∈N, if assuming that for all k < n the property P (k), one
can deduce P (n), then for all n ∈N, the property P (n) is true.

3. INDUCTIVE DEFINITIONS 5

Exercise 4 (solution on page 204) An alphabet Σ is fixed. Recall that a lan-
guage over Σ is a subset of Σ∗. If L1 and L2 are two languages of Σ∗, their
concatenation is defined by L1.L2 = {u.v |u ∈ L1, v ∈ L2}. The concatenation
is an associative operation that admits {ϵ} as neutral element. One can then
define the powers of a language L in the following way: L0 = {ϵ}, and for all
integer n > 0, Ln+1 = Ln .L = L.Ln . The star of a language L is defined by
L∗ =⋃

n∈NLn .
Let L and M two languages over Σ, with ϵ ̸∈ L. Prove that in P (Σ∗) (the

languages over alphabet Σ), the equation X = L.X ∪ M admits for unique
solution the language L∗.M.

3 Inductive definitions

The inductive definitions aims at defining some subsets of a set E .

Remark 1 This remark is for purists. It can be avoided in a first reading of this
document.

We restrict in this document to the framework where one wants to define by
induction some objects that correspond to subsets to an already known set E. We
avoid this to avoid the subtleties and the paradoxes of the set theory.

The very attentive reader will observe that we will often consider the syntac-
tic writing of some objects more than the objects themselves. Indeed, by doing so,
we guarantee that we are living in a set E = Σ∗ for a certain alphabet Σ, and we
avoid to have to worry about the existence of the set E in the following reason-
ing’s.

For example, to formalise completely the Example 1 above, we would try to
define some syntactic representation of lists instead of lists.

When one wants to define a set, or a subset of a set, one way to do it is by giving
some explicit definition, that is by describing precisely which are its elements.

Example 3 The even integers can be defined by P = {n|∃k ∈N n = 2∗k}.

Unfortunately, this is not always as easy. It is often easier to define a set by some
inductive definition: A typical example of inductive definition is a definition like this
one:

Example 4 The even integers also correspond to the least set that contains 0 and
such that if n is even, then n +2 is even.

Remark 2 Observe that the set of integers N satisfies that 0 is some integer, and
that if n is some integer, then so is n +2. It is hence necessary to say that this is

6

the least set with this property.

3.1 General principle of an inductive definition

Intuitively, a subset X is defined inductively if it can be defined from some explic-
itly given elements of X , and a mean to construct some new elements of X from
elements of X .

More generally, in an inductive definition,

• some elements of the set X are explicitly given (that is to say, a set B of ele-
ments b of X). They correspond to the base set of the inductive definition;

• The other elements of the set X are defined, as a function of elements that
already belong to the set X , according to some rules: that is to say we are
given a set of rules R for the formation of new elements. This constitutes the
inductive steps of the inductive definition.

One considers then the least set that contains B and that is stable (one says also
closed) by the rules of R.

3.2 Formalisation: First fix point theorem

Formally, all of this is justified by the following theorem.

Definition 1 (Inductive definition) Let E be a set. An inductive definition of a
subset X of E consists of:

• a non-empty subset B of E (called the base set)

• and a set of rules R: each rule ri ∈ R is a function (possibly partial) ri from
E ni → E, for some integer ni ≥ 1.

Theorem 2 (Fix point theorem) To a inductive definition corresponds a least
set that satisfies the following properties:

(B) it contains B: B ⊂ X ;

(I) it is stable by the rules rules of R: for every rule ri ∈ R, for every x1, · · · , xni ∈
X , we have ri (x1, · · · , xni) ∈ X .

One says that this set is inductively defined.

Proof: Let F be the set of subsets of E satisfying (B) and (I). The set F is non
empty as it contains at least one element: Indeed, the set E satisfies the conditions
(B) and (I) and hence E ∈F .

We can then consider X defined as the intersection of all the elements of F .
Formally:

X = ⋂
Y ∈F

Y . (1)

3. INDUCTIVE DEFINITIONS 7

Since B is included in each Y ∈F , B is included in X . So X satisfies the condition
(B).

The obtained set satisfies also (I). Indeed, consider a rule ri ∈ R, and some
x1, · · · , xni ∈ X . We have x1, · · · , xni ∈ Y for every Y ∈ F . For every such Y , since
Y is stable by the rule ri , we must hat r (x1, · · · , xni) ∈ Y . Since this is true for every
Y ∈F , we also have r (x1, · · · , xni) ∈ X , which proves that X is stable by the rule ri .

X is the least set that satisfies the conditions (B) and (I), since it is by definition
included in every other set that satisfies the conditions (B) and (I).

□

3.3 Various notations of an inductive definition

Notation 1 We often denote some inductive definition using the notation

(B) x ∈ X

with a line like this one for every x ∈ B

(possibly one writes B ⊂ X);

(I) x1, · · ·xni ∈ X⇒ri (x1, · · · , xni) ∈ X

with such a rule for every rule ri ∈ R.

Example 5 According to this convention, the inductive definition of even inte-
gers (of the Example 4) is denoted by:

(B) 0 ∈ P ;

(I) n ∈ P ⇒ n +2 ∈ P.

Example 6 Let Σ= {(,)} be the alphabet made of the open parenthesis and of the
closing parenthesis. The set D ⊂ Σ∗ of well founded parenthesising, called the
Dyck language, is defined inductively by

(B) ϵ ∈ D ;

(I) x ∈ D ⇒ (x) ∈ D ;

(I) x, y ∈ D ⇒ x y ∈ D.

Notation 2 One sometimes prefers to write some inductive definition as deduction
rules:

B ⊂ X

x1 ∈ X . . . xni ∈ X

ri (x1, . . . , xni) ∈ X

The principle of such a notation is that an horizontal line means some deduc-
tion rule. What is written above the line is some hypothesis. What is written under
the line is some conclusion. If what is above is empty this means that the conclusion
is true without any hypothesis.

8

Notation 3 We sometimes write also directly:

b

x1 . . . xni

ri (x1, . . . , xni)

for every b ∈ B,
or

b ∈ B

x1 . . . xni

ri (x1, . . . , xni)

or even:

B

x1 . . . xni

ri (x1, . . . , xni)

4 Applications

4.1 A few examples

Example 7 (N) The subset X ofN defined inductively by

0
n

n +1

is nothing but the whole setN of the integers.

Example 8 (Σ∗) The subset X of Σ∗, where Σ is an alphabet, defined inductively
by

(B) ϵ ∈ X ;

(I) w ∈ X ⇒ w a ∈ X , for every a ∈Σ;

is nothing but the whole set Σ∗.

Example 9 (Language {anbcn}) The language L on the alphabet Σ = {a,b,c} of
words of the form anbcn , n ∈N, is defined inductively by

(B) b ∈ L;

(I) w ∈ L ⇒ awc ∈ L.

Exercise 5 (solution on page 204) Define inductively the set of well paren-
thesised expressions formed from identifiers taken in a set A and using op-
erators + and ×.

4. APPLICATIONS 9

4.2 Labeled binary trees

Let’s recall here the text of the course INF421 (version 2010-2011): “the notion of
binary tree is rather different from the notion of free tree and ranked tree. A binary
tree on a finite set of vertices is either empty, or the disjoint union of a vertex, called
its root„ of a binary tree, called its left sub-tree, and of a binary tree, called its right
sub-tree. It is useful to represent such a binary tree on the form of a triplet A =
(Ag ,r, Ad).”

We obtain immediately an inductive definition of labeled binary trees from this
text.

Example 10 (Labeled binary trees) The set AB of labeled binary trees on the set
A is the subset ofΣ∗, whereΣ is the alphabetΣ= A∪{;, (,), ,}, defined inductively
by

(B) ;∈ AB;

(I) g ,d ∈ AB ⇒ (g , a,d) ∈ AB, for every a ∈ A.

Remark 3 In the expression above, (g , a,d) denotes the concatenation of the word
of length 1 (, of word g , of word , of length 1, of word a, of word , of length 1, of
word d and of mot) of length 1. All these words are indeed words over the alpha-
bet Σ that contains all the required symbols.

Remark 4 g ,d ∈ AB ⇒ (g , a,d) ∈ AB, for every a ∈ A denotes the fact that one
repeats, for every a ∈ A, the rule g ,d ∈ AB ⇒ (g , a,d) ∈ AB. This is actually not a
rule, but a family of rules: one for each element a of A.

Remark 5 Be careful: a binary tree is not a ranked tree such that all the nodes
are of arity at most 2.

Example 11 For example, the labeled binary tree

1

2

3

and the labeled binary tree

10

1

2

3

are not the same, since the first corresponds to the word (((;,3,;),2,;),1,;)
and the second to the word (;,1, ((;,3,;),2,;)). However, if these trees are con-
sidered as ranked trees, they are the same.

Exercise 6 (solution on page 204) Let A be an alphabet. One defines recur-
sively the sequence of sets (ABn)n∈N by

• AB0 = {;}.

• ABn+1 = ABn ∪ {(a, g ,d)|a ∈ A, g ,d ∈ ABn}

Prove that X = ⋃
n∈N ABn corresponds also to the set AB of labeled binary

trees for the set A.

4.3 Arithmetic expressions

One can define the well formed arithmetic expression on the alphabet Σexp of ex-
ample 1.1. Recall that we have defined the alphabet

Σexp = {0,1,2, · · · ,9,+,−,∗,/, (,)}.

Let’s start by defining what is a number in radix 10. Usually, one doesn’t write
an integer in radix 10 by starting by a 0 (except for 0). For example, 000192 is not
authorized. By opposition, 192 is a valid expression.

We obtain the following inductive definition.

Example 12 The set N of non-null integers written in radix 10 is the subset of
Σexp

∗, defined inductively by

(B) a ∈N for each a ∈ {1,2, . . . ,9};

(I) g ∈N ⇒ g a ∈N , for each a ∈ {0,1,2, . . . ,9}.

One can then defined the arithmetic expression in the following way:

4. APPLICATIONS 11

Example 13 The set Ar i th of arithmetic!expressions is the subset of Σexp
∗, de-

fined inductively by

(B) 0 ∈ Ar i th;

(B) N ⊂ Ar i th;

(I) g ,d ∈ Ar i th ⇒ g +d ∈ Ar i th;

(I) g ,d ∈ Ar i th ⇒ g ∗d ∈ Ar i th;

(I) g ,d ∈ Ar i th ⇒ g /d ∈ Ar i th;

(I) g ,d ∈ Ar i th ⇒ g −d ∈ Ar i th;

(I) g ∈ Ar i th ⇒ (g) ∈ Ar i th;

For example, we have (1+ 2∗ 4+ 4∗ (3+ 2)) ∈ Ar i th that corresponds to some
valid expression. By opposition, +1−/2(is not in Ar i th.

4.4 Terms

Les terms are particular labeled ranked trees. They play an essential role in many
structures in computer science.

Let F = { f0, f1, · · · , fn , · · · } be a set of symbols, called function symbols. To each
such symbol f is associated some integer a(f) ∈ F , that is called its arity, and this
represents the number of arguments of function symbol f . one writes Fi for the
subset of symbols of functions of arity i . The function symbols of arity 0 are called
constants.

LetΣ the alphabetΣ= F ∪{(,), , } constituted of F , of the opening parenthesis, the
closing parenthesis, and of comma.

Definition 2 (Terms over F) The set T of terms built over F is the subset of Σ∗
defined inductively by:

(B) F0 ⊂ T
(that is to say: the constants are some terms)

(I) t1, t2, · · · , tn ∈ T ⇒ f (t1, t2, · · · , tn) ∈ T
for every integer n, for every symbol f ∈ Fn of arity n.

Remark 6 In the definition above, we are indeed talking about words over the
alphabet Σ: f (t1, t2, · · · , tn) denotes the word whose first letter is f , the second (,
the following the ones of t1, etc.

12

Example 14 For example, we can fix F = {0,1, f , g }, with 0 and 1 of arity 0 (these
are constants), f of arity 2 and g of arity 1. Then f (0, g (1)) is a term over F .
f (g (g (0)), f (1,0)) is a term over F . f (1) is not a term over F .

The terms over F correspond to particular ranked labeled trees: The nodes are
labeled by symbols of functions from F , and a node labeled by a symbol of arity k
has exactly k sons.

5 Proofs by induction

We will need regularly to prove some properties on a the elements of a set X de-
fined inductively. This turns out to be possible by using what is called a proof!by
(structural) induction, sometimes also called proof!by (structural) induction, which
generalises the principle of the proof by recurrence.

Theorem 3 (Proof by induction) Let X ⊂ E be a set defined inductively from a
base set B and some rules R. Let P be a predicate expressing some property of
an element x ∈ E: That is to say a property P (x) that is either true or false in a
given element x ∈ E.

If the following conditions are satisfied:

(B) P (x) is satisfied for every element x ∈ B;

(I) P is hereditary, that is to say stable by the rules of R: Formally, for every
rue ri ∈ R, for every x1, · · · , xni ∈ E, P (x1), · · · ,P (xni) true implies P (x)
true in x = ri (x1, · · · , xni).

Then P (x) is true for every element x ∈ X .

Proof: Consider the set Y of elements x ∈ E that satisfy the property P (x). Y
contains B by the property (B). Y is stable by the rules of R by the property (I). The
set X , that corresponds to the least set that contains B and that is stable by the rules
of R, is hence included in Y . □

Remark 7 The proof by induction indeed generalises the proof by recurrence; In-
deed, N is defined inductively as in Example 7. A proof by induction on this
inductive definition of N corresponds to a proof by recurrence, that is to say to
hypotheses of Theorem 1.

Example 15 To prove by induction that all the words of the language defined
inductively in Example 9 have as many a’s as c’s, it is sufficient to observe that
this is true for the word reduced to a b: Indeed, this is 0 times the letter a and the
letter c; and that if this holds for the word w, then the word awc has as many
times the letter a than the letter c, namely exactly one more than in word w.

6. DERIVATIONS 13

Exercise 7 (solution on page 204) We consider the subset ABS of strict bi-
nary trees defined as the subset of language AB (of labeled by A binary trees)
defined inductively by:

(B) (;, a,;) ∈ ABS, for every a ∈ A.

(I) g ,d ∈ ABS ⇒ (g , a,d) ∈ ABS, for every a ∈ A.

Prove that

• an element of ABS is always non-empty and without a vertex with
only one non-empty son.

• that in a strict binary tree, the number of vertices n satisfies n = 2 f −1,
where f is the number of leaves.

Exercise 8 Prove that any word of the Dyck language has as many open
parenthesis than closing parentheses.

Exercise 9 Prove that any arithmetic expression, that is to say any word of
language Ar i th, has as many open parenthesis than closing parentheses.

Exercise 10 A binary tree is said to be balanced if for every vertex of the tree,
the difference between the height of its right subtree and the height of its left
subtree value either −1, 0 or 1 (i.e. at most one in absolute value).

• Provide an inductive definition of the set AV L of balance binary trees.

• Define the sequence (un)n∈N by u0 = 0, u1 = 1, and for all n ≥ 2,
un+2 = un+1 +un +1.

Prove that for every x ∈ AV L, n ≥ uh+1 where h and n are respectively
the height and the number of vertices of a tree.

6 Derivations

6.1 Explicit expression of the elements: Second fix point theorem

We have seen up to now several examples of sets X defined inductively. The exis-
tence of each set X follows from Theorem 2, and actually from the Equation (1) used
in its proof.

14

This is a bottom-up definition of X , as Equation (1) defines X from super-sets of
X . This has the clear advantage to show easily the existence of sets defined induc-
tively, a fact that we used abundantly up to now.

However, this has the default that it does not say what the elements of obtained
sets X exactly are.

It is actually also possible to define each set X defined inductively from a bottom-
up definition. One obtains then an explicit definition of the elements of X , with in
addition a way to describe them explicitly.

This is what states the following result:

Theorem 4 (Explicit definition of a set defined inductively) Every set X defined
inductively from the base set B and from the rules R can also be written

X = ⋃
n∈N

Xn ,

where (Xn)n∈N is the family of subsets of E defined by recurrence by

• X0 = B

• Xn+1 = Xn ∪ {ri (x1, · · · , xni)|x1, · · · , xni ∈ Xn and ri ∈ R}.

In other words, every element of X is obtained by starting from elements of B
and by applying a finite number of times the rules of R to obtain new elements.

Proof: It is sufficient to prove that this set is the least set that contains B and that
is stable by the rules of R.

First since X0 = B , B is indeed in the union of the Xn . Second, if one takes some
rule ri ∈ R, and some elements x1, · · · , xni in the union of the Xn , by definition each
x j is in Xk j for some integer k j . Since the sets Xi are increasing (i.e. Xi ⊂ Xi+k for all
k, which can be proved easily by recurrence over k), all the x1, · · · , xni are in Xn0 for
n0 = max(k1, · · · ,kni). We obtain immediately that r (x1, · · · , xni) is in Xn0+1, which
proves that it in the union of the Xn .

Finally, this is the least set, since every set that contains B and that is stable by
the rules of R must contain each of the Xn . This is proved by recurrence over n. This
is true at the rank n = 0, as such a set must contain X0 since it contains B . Suppose
the hypothesis at rank n, that is to say X contains Xn . Since the elements of Xn+1 are
obtained from elements of Xn ⊂ X by applying some rule ri ∈ R, X contains each of
these elements. □

6.2 Derivation trees

The bottom-up definition of X from the previous theorem invite to attempt to keep
the trace on how each element is obtained, starting from X and by applying the rules
of R.

Example 16 The word 1+2+3 corresponds to some arithmetic expression. Here
is a proof.

6. DERIVATIONS 15

1 ∈N 2 ∈N
1+2 ∈ Ar i th 3 ∈ Ar i th

1+2+3 ∈ Ar i th

This is not the only one possible. Indeed, we can also write:

1 ∈ Ar i th
2 ∈N 3 ∈N

2+3 ∈ Ar i th
1+2+3 ∈ Ar i th

To encode each trace, the notion of term, on a set F of well-chosen symbols ap-
pears naturally: One considers that each element b of the base set B is symbol of
arity 0. To each rule ri ∈ R is associated some symbol of arity ni . A term t on this set
of symbols is called a derivation. derivation

To each derivation t is associated some element h(t) as expected: To t of ar-
ity 0, is associated the corresponding element b of B . Otherwise t is of the form
ri (t1, · · · , tni), for some rule ri ∈ R end for some terms t1, · · · , tni . To such a t is asso-
ciated the result of the application of the rule ri to elements h(t1), · · · ,h(tni).

Example 17 For arithmetic expressions denote by the symbol + of arity 2 the rule
g ,d ∈ Ar i th ⇒ g +d ∈ Ar i th;

The first proof of Example 16 corresponds to derivation +(+(1,2),3). The sec-
ond to derivation +(1,+(2,3)). The image by the function h of these derivations
is the word 1+2+3.

We can then reformulate the previous theorem in the following way.

Proposition 1 Let X be a set defined inductively from the base set B and from
the rules of R. Let D be the set of the derivations corresponding to B and to R.
Then

X = {h(t)|t ∈ D}.

In other words, X is precisely the set of the elements of E that have a derivation.
We see in the previous example, that an element of X may have several deriva-

tions.

Definition 3 An inductive definition of X is said non ambiguous if the previous
function h is injective.

Intuitively, this means that there exists a unique way to build every element of
X .

Example 18 The following definition ofN2 is ambiguous:

(B) (0,0) ∈N2;

(I) (n,m) ∈N2 ⇒ (n +1,m) ∈N2;

16

(I) (n,m) ∈N2 ⇒ (n,m +1) ∈N2.

Indeed, one can obtain for example (1,1) by starting from (0,0) and by applying
the second rule, and then the third, but also by applying the third rule, and then
the second.

Example 19 The definition of Ar i th of example 13 is ambiguous since 1+2+3
has several derivations.

Example 20 This problem is intrinsic to arithmetic expressions, since when we
write 1+2+3, we do not precise if we are talking about the result of the addition
of 1 to 2+3 or of 3 to 1+2, the idea being that since addition is associative, this
is not important.

Example 21 To avoid this potential problem, let’s define the set Ar i th′ of the
parenthesised arithmetic expressions as the subset of Σexp

∗, defined inductively
by

(B) 0 ∈ Ar i th;

(B) N ⊂ Ar i th′;

(I) g ,d ∈ Ar i th′ ⇒ (g +d) ∈ Ar i th′;

(I) g ,d ∈ Ar i th′ ⇒ (g ∗d) ∈ Ar i th′;

(I) g ,d ∈ Ar i th′ ⇒ (g /d) ∈ Ar i th′;

(I) g ,d ∈ Ar i th′ ⇒ (g −d) ∈ Ar i th′;

(I) g ∈ Ar i th′ ⇒ (g) ∈ Ar i th′;

This times, 1+2+3 is not a word of Ar i th′. By opposition (1+(2+3)) ∈ Ar i th′
and ((1+2)+3) ∈ Ar i th′.

The interest of this writing is that we now have some non-ambiguous rules.

7 Functions defined inductively

We will need sometimes to defined functions on some sets X defined inductively.
This can be done easily when X admits some non-ambiguous definition.

Theorem 5 (Inductively defined function) Let X ⊂ E be a set defined induc-
tively in a non-ambiguous way from a the base set B and from rules R. Let Y
be a set.

For an application f from X to Y is perfectly defined, it suffices that the fol-
lowing are given:

7. FUNCTIONS DEFINED INDUCTIVELY 17

(B) the value of f (x) for each of the elements x ∈ B;

(I) for reach rule ri ∈ R, the value of f (x) for x = ri (x1, · · · , xni) as a function
of the values x1, . . . , xni , f (x1), . . . , and f (xni).

In other words, informally, if one knows how to “program recursively”, that is to
say “describe in a recursive way the function” then the function is perfectly defined
on the inductive set X .

Proof: The statement above means that there exists a unique application f from
X to Y that satisfies these constraints. It suffices to prove that for every x ∈ X ,
the value of f in x is defined in a unique way. This is proved easily by induction:
This is true for the elements x ∈ B . If this is true in x1, · · · , xni , this is true in x =
ri (x1, · · · , xni): The definition of X being non-ambiguous, x can obtained only by
the rule ri from x1, · · · , xni . Its value is hence perfectly defined by the constraint for
the rule ri . □

Example 22 The factorial function F act fromN intoN is defined inductively by

(B) F act (0) = 1;

(I) F act (n +1) = (n +1)∗F act (n).

Example 23 The height h of a labeled binary tree is defined inductively by

(B) h(;) = 0;

(I) h((g , a,d)) = 1+max(h(g),h(d)).

Example 24 The value v of an arithmetic expression of Ar i th′ is defined induc-
tively by (v is a function that goes from words to the rational numbers)

(B) v(0) = 0;

(B) v(x) = h(x) pour x ∈N ;

(I) v((g +d)) = v(g)+ v(d);

(I) v((g ∗d)) = v(g)∗ v(d);

(I) v((g /d)) = v(g)/v(d), if v(d) ̸= 0;

(I) v((g −d)) = v(g)− v(d);

(I) v((g)) = v(g);

where h is the function that, to a word of N maps its value as a rational number:
h is defined inductively by

(B) h(a) = a for each a ∈ {1,2, . . . ,9};

18

(I) h(g a) = 10∗h(g)+a for each a ∈ {0,1,2, . . . ,9}.

We observe that all these definitions are essentially only the translation on how
their can be programmed in some recursive way. The use of non-ambiguous
definitions avoids any ambiguity on the evaluation.

Remark 8 For the arithmetic expressions, 1+2∗3 ∈ Ar i th is also ambiguous. A
computer program that would take as input a word of Ar i th and supposed to
return the value of the expression would have to manage the priorities, and un-
derstand that 1+2∗3 is not the result of the multiplication of 1+2 by 3. By using
the definition of Ar i th′, we avoid completely this difficulty, since the expressions
are encoding explicitly how their must be evaluated, and an inductive definition
becomes possible. At first sight, the value of an expression of Ar i th cannot be
defined simply inductively, if only because the value of x + y ∗ z is not obtained
directly from the one of x + y and from z only.

8 Bibliographic notes

Suggested readings To go further on the notions of this chapter, we suggest to read
[Arnold & Guessarian, 2005]. For a more general presentation of inductive defini-
tions, and of fix point theorems, we suggest to read [Dowek, 2008].

Bibliography This chapter has been written by using [Dowek, 2008] as well as [Arnold & Guessarian, 2005].

Index

(Ag ,r, Ad), 9
⇒, 7
Σexp , 10
Σexp , 10
N , 10
N , 11, 15–17

AB , 9, 13
ABS, 13
ambiguous, see definition
Ar i th, 11, 13, 15, 16, 18
Ar i th′, 16–18
arithmetic

expressions, 10, 11
notation, see Ar i th

arity, 11

balanced, 13
base set, 6
binary

tree, 9
binary tree, 9
bottom-up, 14

definition, 14

closed, 6
conclusion of a deduction rule, 7
constant, 11

deduction rule, 7
definition

inductive, 6, 16
various notations, 7

non-ambiguous, 15
derivation, 13, 15

explicit definition, 5

first principle of induction, 3
fix point theorem, 6, 14

first theorem, 6
second theorem, 14

free
tree, 9

function
defined inductively, 16
symbols, 11

hereditary, 4, 12
hypothesis, 7

inductive, 3, 4
definition, 5–7, 9
proof, 4
rule, 6
steps, 6

inductively defined, 6

labeled binary tree, 9
left sub-tree, 9

non-ambiguous, 15, 16
definition, 16

parenthesised arithmetical expression, 16
predicate, 4, 12
proof

by (structural) induction, 3, 12
by recurrence, 3, 4

ranked tree, 9
recursive

definition, 3
right sub-tree, 9
rule

deduction, 7

19

20 INDEX

inductive, see inductive rule

set
base set of an inductive definition, 6
closed by a set of rules

synonym: set stable by a set of rules,
see ensemble stable by a set of
rules, see set stable by a set or
rules

stable by a set of rules, 12
theory, 5

stable, 6
structural induction, 3

term, 11
tree

binary
labeled, 9
strict, 13

derivation, 14
ranked, 3

Bibliography

[Arnold & Guessarian, 2005] Arnold, A. & Guessarian, I. (2005). Mathématiques
pour l’informatique. Ediscience International.

[Dowek, 2008] Dowek, G. (2008). Les démonstrations et les algorithmes. Polycopié
du cours de l’Ecole Polytechnique.

21

	Motivation
	Reasoning by recurrence over N
	Inductive definitions
	General principle of an inductive definition
	Formalisation: First fix point theorem
	Various notations of an inductive definition

	Applications
	A few examples
	Labeled binary trees
	Arithmetic expressions
	Terms

	Proofs by induction
	Derivations
	Explicit expression of the elements: Second fix point theorem
	Derivation trees

	Functions defined inductively
	Bibliographic notes

