
Foundations of Computer Science
Logic, models, and computations

Chapter: Introduction

Course CSC_41012_EP

of l’Ecole Polytechnique

Olivier Bournez

bournez@lix.polytechnique.fr

Version of August 20, 2024

2

Introduction

Objectives

This course is about algorithms and their efficiency.
More precisely, the objective of this course is to answer to the following ques-

tions: What are the limits of algorithms, and of today’s computers?

Algorithm?

The word “algorithm” comes from the name of mathematician Al-Khwârizmî (La-
tinised at middle age as Algorithmi), who at 9th century wrote several books on the
resolution of equations. We will discuss the notion of algorithm, and the notion of
problem solvable by an algorithm, or of function computed by some algorithm.

We will first prove that there are problems that cannot be solved by an algorithm.
Out of the problems that admit a solution by an algorithm, we will then try to

determine those which admit a solution with reasonable resources: We will discuss
the resources (time, memory, etc) necessary to solve a problem.

Thanks The author of this document would like to thank strongly Stefan Mengel
for many comments on previous versions of this document. I also would like to
thanks warmly the students of the École Polytechnique Bachelor course CSE-304 for
the year 2019-2020 for comments and feedback. Some special thanks to Louis de
Benoist De Gentissart, Agathe De Vulpian, Guillaume Lainé and Skander Moalla for
some detailed feedback, or bugs about previous versions of some of the chapters of
this document, or about related slides.

Some parts of this document are very strongly inspired from a French version,
that has been used for the course INF423, and then INF412 at École Polytechnique.
The author of this document would like to thank strongly Johanne Cohen, Bruno
Salvy and David Monniaux for their comments on preliminary versions of this latter
document in French. I also thank the promotions 2011-2012, 2012-2013, 2013-2014,
2014-2015, 2015-2016, 2016-2017, 2017-2018, 2018-2019, 2019-2020, 2020-2021, 2021-
2022, 2022-2023 of École Polytechnique for their feedback on INF423 and then INF412.
Some special thanks to Louis Abraham, Sariah Al Saati, Olivier Bailleux, Juliette Buet,
Ismaël Cahu, Carlo Ferrari, Léo Gaspard, Estienne Granet, Pierre-Jean Grenier, Roberto

3

4

Moura, Alexis Le Dantec, Denis Langevin, Emmanuel Lazard, Stéphane Lengrand,
Arnaud Lenoir, Louis-François Rigano, Louis Rustenholz, Matthieu Vermeil, and
Zigfrid Zvezdin, for some detailed feedback, with precise suggestions of improve-
ment, or for having pointed out some problems about preliminary versions of previ-
ous French versions of some parts of this document. Thanks also to Romain Cosson
and Rodrigue Lelotte for feedback on corrections of previous exams for INF423 and
INF412.

This document is still in some non-perfect form.
All comments (even language, typographic, orthographic, etc) on this document

are welcome and should be be sent to bournez@lix.polytechnique.fr.

On the exercises Some of the exercises are corrected. The solutions are found and
the end of the document in a chapter devoted to the solutions. The exercises marked
with a star require more thought.

1 Mathematical concepts

1.1 Sets, Functions

Let E be a set and e an element. We write e∈E to mean that e is an element of set E .
If A and B are two sets, we write A⊂B to mean that every element of A is an element
of B . We say in that case that A is a subset of B . When E is a set, the collection of
all the subsets of E constitutes a set, called the power set of E , that we will denote by
P (E). We will write A∪B , A∩B for respectively the union and intersection of the sets
A and B . When A is a subset of E , we will write Ac for the complement of A in E .

Exercise 1 Let A,B be two subsets of E. Prove the Morgan laws: (A ∪B)c =
Ac ∩B c and (A∩B)c = Ac ∪B c .

Exercise 2 Let A,B ,C three subsets of E. Prove that A ∩ (B ∪C) = (A ∩B)∪
(A∩C) and A∪ (B ∩C) = (A∪B)∩ (A∪C).

Exercise 3 (solution on page 203) Let A,B ,C three subsets of E. Prove that
A∩B c = A∩C c if and only if A∩B = A∩C .

We call Cartesian product of two sets E and F , denoted by E×F , the set of all the
pairs made of an element of E and of an element of F :

E×F = {(x, y)|x ∈ E and y ∈ F }.

1. MATHEMATICAL CONCEPTS 5

Given some integer n ≥ 1, we write E n = E ×·· ·×E for the Cartesian product of E
by itself n times: E n can also be defined1 recursively by E 1 = E , and E n+1 = E ×E n .

Intuitively, a application f from a set E to a set V is an object which associates
to every element e of a set E a unique element f (e) in F . Formally, a function f (one
also talks of partial function) from a set E to a set F is a subset Γ of E ×F , such that
for all x ∈ E there is at most one y ∈ F with (x, y) ∈ Γ. Its domain is the set of the
x ∈ E such that (x, y) ∈ Γ for a certain y ∈ F . Its image is the set of the y ∈ F such
that (x, y) ∈ Γ for a certain x ∈ E . An application f (this is also called a total function)
from a set E to a set F is a function whose domain is E .

A family (xi)i∈I of elements of a set X is some application from a set I to X . I is
called the set of indices and the image by its application of element i ∈ I is denoted
xi .

The Cartesian product generalizes to a family of sets:

E1 ×·· ·×En = {(x1, . . . , xn)|x1 ∈ E1, · · · , xn ∈ En}.

The union and intersection generalize to some arbitrary family of subsets of a set
E . Let (Ai)i∈I be a family of subsets of E .⋃

i∈I
Ai = {e ∈ E |∃i ∈ I e ∈ Ai };⋂

i∈I
Ai = {e ∈ E |∀i ∈ I e ∈ Ai }.

Exercise 4 Let A be a subset of E, and (Bi)i∈I a family of subsets of E. Prove
the two following equalities:

A
⋃(⋂

i∈I
Bi

)
= ⋂

i∈I
(A∪Bi)

A
⋂(⋃

i∈I
Bi

)
= ⋃

i∈I
(A∩Bi)

We will write N for the set of natural integers, Z for the set of (positive, null, or
negative) integers, R for the set of reals, and C for the set of complex numbers. Z is a
ring. R and C are fields. We will write R>0 for the set of non-negative reals.

1.2 Alphabets, Words, Languages

We now recall some basic definitions about words and languages. The terminology,
borrowed from linguistics, remind that historically first works on the concepts of
formal languages were on the modeling of natural language.

A finite set Σ is fixed: In this context, such a set is also called an alphabet. and
the elements of Σ are called letters or symbols.

1There is a bijection between the objects defined by the two definitions

6

Example 1 • Σbi n = {0,1} is the binary alphabet.

• ΣLati n = {A,B ,C ,D, . . . , Z , a,b,c,d , . . . , z} is the alphabet which consists of
the letters of the Latin alphabet.

• Σnumber = {0,1,2, · · · ,9} is the alphabet which consists of digits in radix 10.

• The set of the printable ASCIIa characters, or set of printed characters is an
alphabet, that one can write ΣASC I I .

• Σexp = {0,1,2, · · · ,9,+,−,∗,/, (,)} is the alphabet of arithmetic expressions.

aWe will not go here to discussions about whether this is precisely what is called the ASCII char-
acters in all generality. We assume ΣASC I I is the set of symbols that can be printed with a keyboard
of a computer. It contains symbols such as é, ö, etc. Actually the original 7-bit version of ASCII
did it fact not contain accents and those were added later on and there were lots of different in-
compatible version for different languages, and we do not intend in this document to go to these
discussions: For us, it contains symbols that can be printed with a keyboard of a computer.

A word w on alphabet Σ is a finite sequence w1w2 · · ·wn of letters (i.e. elements)
of the alphabet Σ. The integer n is called the length of word w . It will be denoted
length(w).

Example 2 • 10011 is a word on alphabet Σbi n of length 5.

• 9120 is a word on alphabet Σnumber ,but not a word on the alphabet Σbi n .

• Bon j our is a word of length 6 on alphabetΣLati n ; azr dd f b is also a word
of length 7 on the same alphabet. ;−) is not a word on this alphabet, since
the symbol ; is not in the alphabet ΣLati n defined above.

• Student, El ephant and ££z ′!!!" are words on the alphabet ΣASC I I .

• 243+ (5∗ (1+6)) is a word on alphabet Σexp .

• 24∗ ((((5/+)//+ is a word on alphabet Σexp .

A language on alphabet Σ is a set of words on alphabet Σ. The set of all the words
on alphabet Σ is denoted by Σ∗. The empty word ϵ is the unique word of length 0.
The empty word is a particular word: Similarly to what happens for any other word,
It is possible that a language contains the empty word (which is a particular word),
or that a language doesn’t contain the empty word. Σ∗ contains by definition the
empty word.

Example 3 • {0,1}∗ denotes the set of words over alphabet Σbi n = {0,1}. For
example, 00001101 ∈ {0,1}∗. We have also ϵ ∈ {0,1}∗.

• {hel l o, g oodbye} is a language on ΣLati n . This language contains two
words.

1. MATHEMATICAL CONCEPTS 7

• The set of words of English dictionary is a language on the alphabetΣLati n .

• The set of words of French dictionary is a language on the alphabetΣASC I I ,
since a word such as élève can be written using accentuated letters.

• The set of the phrases of this document is a language on the alphabet of
ASCII characters. Note that the character “ ”, that is to say the blank (space)
character, used to separate the words in a sentence is a particular character
of ASCII alphabet.

• Σexp
∗ contains words such as 24∗ ((((5/+)//+ which is not a valid arith-

metic expression. The set of words which are valid arithmetic expressions,
such as 5+ (2∗ (1−3)∗3), is a particular language on alphabet Σexp .

One then defines an operation of concatenation on words: The concatenation of
word u = u1u2 · · ·un and of word v = v1v2 · · ·vm is the word denoted by u.v defined
by

u1u2 · · ·un v1v2 · · ·vm ,

that is to say the words whose letters are obtained by appending the letters of v
after those of u. The operation of concatenation denoted by . is associative, but not
commutative. The empty word is a right and left neutral element for this operation.
Σ∗ is also called the free monoid on alphabetΣ (since the operation of concatenation
provides a structure of monoid.

We will also write uv for the concatenation u.v . Actually, every word w1w2 · · ·wn

can be seen as w1.w2 · · · .wn , where wi represents the word of length 1 consisting
only of the letter wi . This interpretation of letters as words of length 1 is often very
useful.

Example 4 If Σ is the set {a,b}, then aaab is the word of length 4 whose first
three letters are a, and the last is b. It is also the concatenation of four words of
length one: a, a, a and b.

When i is some integer, and w is a word, we write w i for the word obtained
by concatenating the word w i times: If you prefer, w0 is the empty word ϵ, and
w i+1 = w i w = w w i for every integer i .

Example 5 By interpreting letters as words of length 1, aaabbc can also be writ-
ten a3b2c.

A word u is some prefix of a word w , if there exists a word z such that w = u.z.
This is a proper!prefix if u ̸= w . A word u is a suffix of a word w if there exists some
word z such that w = z.u. This is a proper!suffix if u ̸= w .

1.3 Change of alphabet

It is often useful to rewrite a word on a given alphabet into a word on some other
alphabet. For example, in computer science one often needs to code in binary, that
is to say with alphabet Σ= {0,1}.

8

One way to change the alphabet is to proceed one letter after the other.

Example 6 If Σ is the alphabet {a,b,c}, and Γ = {0,1}, then one can encode Σ∗
in Γ∗ by the function h such hat h(a) = 01, h(b) = 10, h(c) = 11. The word abab
is then encoded by h(abab) = 01100110, that is to say by the word encoded by
coding letter after letter.

Very formally, given two alphabets Σ and Γ, an homomorphism is an application
from Σ∗ into Γ∗ such that

• h(ϵ) = ϵ

• h(u.v) = h(u).h(v) for every words u and v .

Obviously, every homomorphism is perfectly determined by its image on the let-
ters of Σ. It then extends to words of Σ∗ by

h(w1w2 · · ·wn) = h(w1).h(w2).h(wn)

for every word w = w1w2 · · ·wn .

1.4 Graphs

A graph G = (V ,E) consists of a set V , whose elements are called vertices and a subset
of E ⊂ V ×V , whose elements are called arcs. In some books, vertices are called
nodes.

If the arcs are undirected, that is say, if one assumes that every time that there is
the arc (u, v) there is also the arc (v,u), one says that the graph G is undirected and
the elements of E are called edges.

By default, all considered graphs will all be undirected. An edge will then be
denoted uv or {uv}.

When there is an edge between u and v , that is to say when {u, v} ∈ E , one says
that u and v are neighbours. The degree of a vertex u is the number of its neighbours.

A path from s to t is a sequence (s = s0, . . . , sn = t) of vertices such that, for all
1 ≤ i ≤ n, (si−1, si) is an arc. A simple path is a path that does not go twice through
the same vertex, i.e. si ̸= s j for i ̸= j . Its origin is the vertex s = s0. Its end is the vertex
sn = t . A circuit is a path of non-null length whose origin coincides with its end, i.e.
s0 = sn .

Example 7 The (undirected) graph G = (V ,E) with

• V = {0,1, . . . ,6}

• E = {(0,1), (3,4), (5,1), (6,3), (6,4)}.

is represented as below.

2. THE DIAGONALISATION METHOD 9

0

1

2

3

4

5

6

A graph is said to be connected if any two vertices are connected by a path.

Example 8 The graph of Example 7 is not connected since there is no path be-
tween vertices 1 and 6.

2 The diagonalisation method

Remember thatN2 =N×N is countable: It is possible to build a bijection betweenN
and N2. Below, we illustrate one way of running through all the pairs of integers, in
order to realize a bijection betweenN andN2.

(0,0)

(0,1)

(0,2)

(0,3)

(1,0)

(1,1)

(1,2)

(1,3)

(2,0)

(2,1)

(2,2)

(2,3)

(3,0)

(3,1)

(3,2)

(3,3)

(4,0) (5,0)

(0,4)

(0,5)

(1,4)

(4,1)

. . .

. . .

. . .

. . .

. . .

. . .

Exercise 5 (solution on page 203) Prove formally that N×N is countable
by giving the bijection f :N2 →N of the above figure.

By contrast, the set of subsets of N is not countable: This can be shown with the
diagonalisation method due to Cantor.

The reasoning is as follows: Suppose for contradiction that we can enumerate
the subsets of N. Then write these subsets as T1, T2, . . . Tn Every subset Ti of
N can be seen as the row i of an (infinite) matrix M = (Mi , j)i , j whose entries are in
{0,1} and whose element Mi , j is 1 if and only if element j is in the i th subset ofN.

10

0 1 j . . .

T0

T1

...

Ti

...

Mi , j

We consider then the subset T ∗ obtained by “inverting the diagonal of M”. For-
mally, one considers T ∗ = { j |M j , j = 0}. This subset of N is not among the enumer-
ation, since otherwise it would have some index j0: if j0 ∈ T j0 = T ∗, then we should
have M j0, j0 = 1 by definition of M , and M j0, j0 = 0 by definition of T ∗, which is im-
possible. If j0 ̸∈ T ∗, then we should have M j0, j0 = 0 by definition of M , and M j0, j0 = 1
by definition of T ∗, which is again impossible.

This argument is at the basis of various reasoning in computability theory, as we
will see.

Exercise 6 Prove that the set of sequences (un)n∈N with values in {0,1} is not
countable.

Exercise 7 Prove that the set R of real numbers is not countable.

Index

(V ,E), 8
., 7
Ac , 4
Σ, 5
Σ∗, 6, 7
ΣASC I I , 6
ΣASC I I , 6
Σexp , 6
Σl at i n , 6
Σnumber , 6
∩, 4
∪, 4
ϵ, 6
P (E), 4
⊂, 4
×, 4, 5
w i , 7
Σbi n , 6

alphabet, 5
binary, 6
Latin, 6

application, 5
arcs, 8

binary
alphabet, 6

C, 5
Cartesian product, 4

of a family of sets, 5
circuit, 8
complement, 4
concatenation, 7
connected, 9
countable, 9

degree of a vertex, 8

diagonalisation method, 9
domain

of an application, 5

edges, 8
empty

word, 6

family of elements of a set, 5
field, 5
function

total, see total function

graph, 8
undirected, see undirected graph

homomorphism
between languages, 8

image
of an application, 5

intersection, 4

language, 5, 6
Latin alphabet, 6
length, 6
letters, 5

monoid, 7

N, 5
nodes, 8

of a graph
synonym: vertex, see vertex

partial function, 5
path, 8
power set of E , 4

11

12 INDEX

prefix, 7
proper

prefix, 7
suffix, 7

R, 5
R>0, 5
ring, 5

set
of words over an alphabet, 6

notation, see Σ∗
simple path, 8
suffix, 7
symbols, 5

total function, 5

undirected graph, 8
union, 4

vertices, 8

word, 5, 6
empty, see empty word

Z, 5

Bibliography

13

	Mathematical concepts
	Sets, Functions
	Alphabets, Words, Languages
	Change of alphabet
	Graphs

	The diagonalisation method

