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Space complexity

In this chapter, we will focus on another critical resource of algorithms: Memory. In
complexity theory, when talking about memory as a resource, it is more commonly
called memory space or simply space.

We will start by showing how one can measure the memory used by an algo-
rithm. We will then introduce the main complexity classes considered in complexity
theory.

1 Polynomial space

In this section, we will state a set of definitions and results without proofs. The
proofs will be given in next section.

We introduce the analog of TIME(t(n)) for memory:

Definition 1 (SPACE(t(n))) Let t : N→ N be a function. We define SPACE(t(n))
as the class of problems (languages) that are decided by a Turing machine using
O (t (n)) cells of the tape, where n is the size of the input.

1.1 Class PSPACE

We first consider the class of problems decided using polynomial space.

Definition 2 PSPACE is the class of problems (languages) decided in polynomial
space. In other words,

PSPACE = ⋃
k∈N

SPACE(nk) .

Remark 3 As in Chapter 12, we observe that the notion of space is independent
of the computational model we use. Consequently the use of the Turing machine
model as the basis model for measuring space complexity is rather arbitrary in
what follows.

We can also introduce the non-deterministic analog:
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Definition 4 (NSPACE(t(n))) Let t :N→N be a function. We define NSPACE(t(n))
as the class of problems (languages) that are accepted by a non-deterministic
Turing machine using O (t (n)) cells of the tape on every branch of the computa-
tion tree, where n is the size of the input.

It would then natural to define:

NPSPACE = ⋃
k∈N

NSPACE(nk),

but it turns out that the complexity class NPSPACE is nothing but PSPACE.

Theorem 5 (Savitch theorem) NPSPACE = PSPACE.

The proof of this result can be found in Section 23.

1.2 PSPACE-complete problems

The class PSPACE has some complete problems: The problem QBF (sometimes also
called QSAT) consists, given some propositional calculus formula in conjunctive
normal form φwith the variables x1, x2, · · · , xn (that is to say given an instance simi-
lar to an instance of SAT), to determine whether ∃x1∀x2∃x3 · · · φ(x1, · · · , xn)?

Theorem 6 The QBF problem is PSPACE-complete.

We will not prove this result in this document.
Strategic games on graphs lead natural birth to PSPACE-complete problems.
For example, the game GEOGRAPHY consists in taking as input a finite oriented

graph G = (V ,E). Player 1 selects a node u1 of the graph. The player 2 must then
select a node v1 such that there is some arc from u1 to v1. This is then the turn of
player 1 to select another node u2 such that there is an arc from v1 to u2, and so one.
One does not have the right and so on. We don’t have the right to come back twice
to the same node. The first player that cannot continue the path u1v1u2v2 · · · loses.
The problem GEOGRAPHY consists, given some graph G and a node for player 1, in
determining if there exists some winning strategy for player 1.

Theorem 7 The problem GEOGRAPHY is PSPACE-complete.

2 Logarithmic space

It turns out that the class PSPACE is huge and contains all of P and also all NP: Im-
posing a polynomial memory space is practice often little restrictive.

This is why one often considers more restictive space bounds, in particular log-
arithmic space. But this introduces some difficulties which show a problem in the
definitions. Indeed, a Turing machine uses at least the cells that contain its input,
and hence Definition 1 is not able to talk about functions t (n) < n.
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This is why one changes this definition with the following convention: When one
measures the memory space, by convention one does not count the cells containing
the input.

To do so, properly, one must replace Definition 1 by the following.

Definition 8 (SPACE(t(n))) Let t : N→ N be a function. We define SPACE(t(n))
as the class of problems (languages) that are decided by a two tapes Turing ma-
chine:

• the first tape contains the input and is read-only: it can be read, but it
cannot be written;

• the second is initially empty and read-write: it can be read and written,
i.e., it is a usual tape;

using O (t (n)) cells of the second tape, where n is the size of the input.
We define NSPACE(t(n)) with the analogous convention.

Remark 9 This new definition does not change anything to all for the previously
introduced complexity classes. However, it the the following definitions mean-
ingful.

Definition 10 (LOGSPACE) The class LOGSPACE is the class of languages (prob-
lems) decided by a Turing machine in logarithmic space. In other words,

LOGSPACE = SPACE(log(n)) .

Definition 11 (NLOGSPACE) The class NLOGSPACE is the class of languages
(problems) decided by a non-deterministic Turing machine in logarithmic space.
In other words.

NLOGSPACE = NSPACE(log(n)) .

It turns out that.

Theorem 12 LOGSPACE ⊆ NLOGSPACE ⊆ P ⊆ NP ⊆ PSPACE.

We furthermore know that NLOGSPACE⊊ PSPACE but we do not know which of
the intermediary inclusions are strict.

3 Some results and their proof

This section is devoted to proving some basic results of complexity theory, in partic-
ular to the relations between time and space. Observe that Theorem 12 follows from
the results below.
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Figure 1: Inclusions between complexity classes

3.1 Preliminaries

In order not to uselessly complicate some of the proofs, we will restrict to functions
f (n) of proper complexity: We assume that the function f (n) is non-decreasing, that
is to say f (n + 1) ≥ f (n), and such that there exists a Turing machine that takes as
input w and that outputs 1 f (n) in time O

(
n + f (n)

)
and in space O

(
f (n)

)
, where

n = length(w).

Remark 13 This is not really restrictive, since all the non-decreasing usual func-
tions, such as log(n), n, n2, · · · , n logn, n! satisfy these properties.

Remark 14 We need this hypothesis, since function f (n) could be not computable,
and it could be impossible for example to write a word of length f (n) in the com-
ing proofs and algorithms.

Remark 15 In most of the following statements, one can avoid this hypothesis,
but at the price of complications in the proofs that we will not discuss.

3.2 Trivial relations

Since a deterministic Turing machine is a particular non-deterministic Turing ma-
chine, we have:
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Theorem 16 SPACE(f(n)) ⊆ NSPACE(f(n)).

Furthermore.

Theorem 17 TIME(f(n)) ⊆ SPACE(f(n)).

Proof: A Turing machine writes at most one new cell at every step. The used memory
space hence remains linear in the used time. Remember that the space taken by the
input is not taken into account in the memory space. □

3.3 Non deterministic vs deterministic time

The following result if more interesting.

Theorem 18 For every language in NTIME(f(n)), there exists an integer c such
that this language is in TIME(cf(n)). If one prefers:

NTIME(f(n)) ⊆ ⋃
c∈N

TIME(cf(n)) .

Proof: Let L be a problem in NTIME(f(n)). By using the principle that we used in
previous chapter, we know that there exists a problem A such that to determine if a
word w of length n is in L, it is sufficient to determine whether there exists a word
u ∈Σ∗ with 〈w,u〉 ∈ A. This last test can be done in time f (n), where n = length(w).
Since in time f (n) one cannot read more than f (n) letters from u, we can restrict to
words u of length f (n). Testing if 〈w,u〉 ∈ A for all the words u ∈ Σ∗ of length f (n)
is easily done in time O

(
c f (n)

)∗O
(

f (n)
) = O

(
c f (n)

)
, where c > 1 is the size of the

alphabet Σ of the machine: Generating all words u of a given length, here f (n)), can
be done for example by counting in base c. □

Remark 19 To write the first u to be tested of length f (n), we implicitly use the
fact that this is feasible: This is the case if we assume f (n) to be of proper com-
plexity. We see here the interest of this (implicit) hypothesis. We will avoid dis-
cussing these type of problems in what follows, because they do not arise for usual
functions f (n).

3.4 Non-deterministic time vs space

Theorem 20 NTIME(f(n)) ⊆ SPACE(f(n)).

Proof: We use exactly the same principle as in the previous proof, with the only
difference that we are talking about space. Let L be a problem in NTIME(f(n)). By
using the same idea as before, we know that a problem A such that to determine
whether a word w of length n is in L, it is sufficient to know whether there exists
u ∈ Σ∗ of length f (n) with 〈w,u〉 ∈ A: We use space O

(
f (n)

)
to generate one after
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the other the words u ∈ Σ∗ of length f (n) (for example by counting in base c) and
then test for each of them if 〈w,u〉 ∈ A. This last test can be done in time f (n), hence
space f (n). The same space can be used for each of the words u. The space use is
O

(
f (n)

)
for writing the u’s plus O

(
f (n)

)
for the tests. So this takes space O

(
f (n)

)
in

total. □

3.5 Non-deterministic space vs time

The decision problem REACH will play an important role: Given a directed graph
G = (V ,E), two vertices u and v , one wants to decide if there exists a path between u
and v in G . It is easy to see that REACH is in P.

To every (deterministic or not) Turing machine we associate a directed graph,
its configuration graph, where the vertices correspond to configurations and whose
arcs correspond to the one-step evolution function of the machine M , that is to say
to relation ⊢ between configurations.

Every configuration X can be described by a word [X ] on the alphabet of the
machine M : If the input w of length n is fixed, for a computation in space f (n),
there are less than O

(
c f (n)

)
vertices in this graph Gw , where c > 1 is the size of the

alphabet of the machine.
A word w is accepted by the machine M if and only if there is a path in this graph

Gw between the initial configuration X [w] encoding the input w , and an accepting
configuration. We may assume without loss of generality that there is a unique ac-
cepting configuration X ∗. Deciding the containment of a word w in the language
recognized by M is consequently solving the problem REACH on 〈Gw , X [w], X ∗〉.

We will translate in various forms all that is done on problem REACH. First, it is
clear that the problem REACH can be solved in time and space O

(
n2

)
, where n is the

number of vertices, by for example a depth-first search traversal.
We deduce:

Theorem 21 If f (n) ≥ logn, then

NSPACE(f(n)) ⊆ ⋃
c∈N

TIME(cf(n)) .

Proof: Let L be a problem of NSPACE(f(n)) recognized by a non-deterministic
Turing machine M . By the previous discussion, one can determine whether w ∈ L
by solving decision problem REACH on 〈Gw , X [w], X ∗〉: We said this can be done in

time polynomial (quadratic) time on the number of vertices, hence in time O
(
c2O( f (n))

)
,

where c > 1 is the size of alphabet of the machine.
□

3.6 Non-deterministic space vs deterministic space

We will now show that REACH can be solved in space log2(n).
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Proposition 22 REACH ∈ SPACE(log2n).

Proof: Let G = (V ,E) be the directed graph given as input. Given two vertices
x and y of this graph and an integer i , we write PAT H(x, y, i ) if and only if there is
a path of length than 2i between x and y . We have 〈G ,u, v〉 ∈ REACH if and only if
PAT H(u, v, log(n)), where n is the number of vertices. It is hence sufficient to know
how to decide the relation PAT H in order to decide REACH.

The trick is to compute PAT H(x, y, i ) recursively by observing that we have PAT H(x, y, i )
if and only if there is an intermediate vertex z such that PAT H(x, z, i−1) and PAT H(z, y, i−
1). One tests then at each level of the recursion every possible vertex z.

To represent every vertex, O
(
log(n)

)
bits are sufficient. To represent x, y , and i ,

one hence uses O
(
log(n)

)
bits. The algorithm has a recursion of depth log(n), every

level of the recursion requiring only to store a triple x, y, i and to test every z of length
O

(
log(n)

)
. In total, we hence use space O

(
log(n)

)∗O
(
log(n)

)=O
(
log2(n)

)
. □

Theorem 23 (Savitch) If f (n) ≥ log(n), then

NSPACE(f(n)) ⊆ SPACE(f(n)2) .

Proof: We use the previous algorithm to determine if there is a path in graph Gw

between X [w] and X ∗.
Observe that there is no need to explicitly construct the graph Gw but that one

can use the previous algorithm on-line: Instead of writing down the graph Gw com-
pletely, and then reading in this encoding of the graph if there is an arc between
a vertex X and a vertex X ′, one can in a lazy way, by recompute this information,
determine every time that a test is needed whether X ⊢ X ′. □

Corollary 24 PSPACE = NPSPACE.

Proof: We have
⋃

c∈NSPACE(nc) ⊆⋃
c∈NNSPACE(nc) by Theorem 16, and

⋃
c∈NNSPACE(nc) ⊆⋃

c∈NSPACE(n2c) ⊆⋃
c∈NSPACE(nc) by the previous theorem. □

4 Separation results

4.1 Hierarchy theorems

We say that a function f (n) ≥ log(n) is space constructible, if the function that maps
1n to 1 f (n) is computable in space O

(
f (n)

)
.

Most of the usual functions are space constructible. For example, n2 is space
constructible since a Turing machine can obtain n in binary by counting the number
of 1s, and writing n2 in binary by using any method to multiply n with itself. The
space used for this is certainly at most O

(
n2

)
.
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Theorem 25 (Space Hierarchy theorem) For every space constructible function
f :N→N, there exists a language L that is decided in space O

(
f (n)

)
but not in

space o( f (n)).

Remark 26 We will prove only a version weaker than the statement above. The
precise above theorem is a generalization of the following idea. The factor log
comes from the construction of a univeral Turing machine really more efficience
that the one considered in this document, introducing only a logarithmic time
speeddown.

Proof:
One considers the (very artificial) language L that is decided by the following

Turing machine B :

• on an input w of size n, B computes f (n) and reserves (marks) a space f (n)
for the coming simulation;

• If w is not of the form 〈A〉10∗, for a Turing machine A, then the Turing ma-
chine B rejects.

• Otherwise, B simulates A on the word w for c f (n) steps to determine whether
A accepts in space at most f (n):

– If A accepts in this time, then B rejects;

– otherwise B accepts.

In other words, B simulates A on w , step by step, and decrements a counter c
at each step. If this counter reaches 0 or if A rejects, then B accepts. Otherwise, B
rejects.

By the existence of a universal Turing machine, there exist integers k and d such
that L is decided in space d × f (n)k .

Suppose that L is decided by a Turing machine A in space g (n) with g (n)k =
o( f (n)). There must exists an integer n0 such that for n ≥ n0, we have d × g (n)k <
f (n).

As a consequence, the simulation of A by B will indeed be complete on every
input of size n0 or more.

Consider what happens when B is run on the input 〈A〉10n0 . Since this input is
of size greater than n0, B answers the opposite of Turing machine A on the same
input. Hence B and A do not decide the same language, and hence Turing machine
A does not decide L, which is a contradiction.

As a consequence L is not decidable in space g (n) for any function g (n) with
g (n)k = o( f (n)).

□
In other words:
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Theorem 27 (Space Hierarchy theorem) Let f , f ′ : N → N be two space con-
structible functions such that f (n) = o( f ′(n)).
Then the inclusion SPACE(f)⊊ SPACE(f’) is strict.

Using the same principle, one can prove.

Theorem 28 (Nondeterminstic Hierarchy theorem) Let f , f ′ : N → N be two
space constructible functions such that f (n) = o( f ′(n)).
Then the inclusion NSPACE(f)⊊NSPACE(f’) is strict.

4.2 Applications

We deduce.

Theorem 29 NLOGSPACE⊊ PSPACE.

Proof: The class NLOGSPACE is completely included in SPACE(log2 n) by Sav-
itch’s theorem. But the latter is a strict subclass of SPACE(n), which is included in
PSPACE. □

Analogously, we obtain.

Definition 30 Let
EXPSPACE = ⋃

c∈N
SPACE(2nc

) .

Theorem 31 PSPACE⊊ EXPSPACE.

Proof: The class PSPACE is completely included in, say, SPACE(nlog(n)). The latter
is a strict subset of SPACE(2n), that is in turn included in EXPSPACE. □

5 Exercices

Exercise 1 (solution on page 242) Prove that if every NP-hard language is
PSPACE-hard, then PSPACE = NP.

6 Bibliographic notes

Suggested readings To go further on the notions in this chapter, we suggest [Sipser, 1997],
[Papadimitriou, 1994] and [Lassaigne & de Rougemont, 2004].

A reference book on the last results of the field is [Arora & Barak, 2009].

Bibliography This chapter contains some standard results in complexity theory.
We mostly used their presentation in the books [Sipser, 1997] and [Papadimitriou, 1994].
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