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Some NP-complete problems

Now that we have established the NP-completeness of a few problems, we are going
to prove that a very huge number of problems are NP-complete.

The book [Garey & Johnson, 1979] listed more than 300 NP-complete problems
in 1972. We do not have the ambition of presenting so many problems, but we will
list some famous NP-complete problems: Our main purpose is actually to provide
some examples of proofs of NP-completeness.

1 Some NP-complete problems

1.1 Around SAT

Recall the following theorem proved in previous chapter.

Definition 1 (3-SAT)

Input: A set of variables {x1, · · · , xn} and a formula F =C1 ∧C2 · · ·∧Cℓ with Ci =
yi ,1 ∨ yi ,2 ∨ yi ,3, where for every i , j , yi , j is either xk , or ¬xk for one of the
xk .

Answer: Decide whether F is satisfiable: that is, decide if there exist x1, · · · , xn ∈
{0,1}n such that F evaluates to true with this value of its variables x1, · · · , xn .

Theorem 1 The problem 3-SAT is NP-complete.

Remark 1 The problem 2−SAT, where we would consider clauses with two lit-
erals, is in P.

Definition 2 (NAESAT)

Input: A set of variables {x1, · · · , xn} and a set of clauses yi ,1 ∨·· ·∨ yi ,ki , where for
all i , j , yi , j is either xk , or ¬xk for some of the xk .

Answer: Decide if there is some assignment of the variables xi ∈ {0,1} in such a way
that every clause contains at least one true literal and at least one false
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literal (that is, for every i , there is a j and a k with yi , j = 1 and yi ,k = 0).

Theorem 2 The problem NAESAT is NP-complete.

Proof: The problem is in NP since, given some assignment of the variables, it
is easy to check in polynomial time that the property holds for these values of the
variables.

We will reduce SAT to NAESAT. Let F a formula of S AT on the variables {x1, · · · , xn}.
We add a unique distinct variable z and we construct the clauses for NAESAT by re-
placing each clause Ci = yi ,1 ∨·· ·∨ yi ,k of F by C ′

i = yi ,1 ∨·· ·∨ yi ,k ∨ z.
This transformation can be realized in polynomial time.
If the given instance of SAT is satisfiable, the same assignment of variables fixing

for z the value 0 is a valid assignment for NAESAT.
Conversely, suppose that the constructed instance of NAESAT is satisfiable. If

the truth value of z in the corresponding assignment is 0, then the values of the
variables xi in the assignment give some valid assignment for the original formula F
(for the instance of SAT). If, on the contrary z values 1, then change all the values of
all the variables in the assignment. The assignment remains valid for NAESAT since
at least one literal by clause in the initial assignment values 0, and hence values now
1, whereas z values 0. We have built an assignment in which z values 0, and by
previous case the initial instance of SAT is satisfiable.

We have indeed proved the equivalence between satisfiability of F and the cor-
responding instance of NAESAT. Hence NAESAT is NP-complete. □

By using the same reduction for instances 3SAT, we get that NAE4SAT is NP-
complete: NAE4SAT is NAESAT restricted to formulas with 4 literals in each clause.
We can actually prove, that this holds for the version with three literals.

Corollary 1 NAE3SAT is NP-complete.

Proof: We will reduce NAE4SAT to NAE3SAT. Let C = x ∨ y ∨ z ∨ t be a clause
with 4 literals. We introduce a new variable uC , and we construct the two clauses
C1 = x∨y∨¬uC and C2 = z∨t ∨uC . Doing so for all the clauses, we clearly construct
an instance F ′ of NAE3SAT in polynomial time.

Suppose that F ′ is some positive instance of NAE3SAT, and consider the assign-
ment of the corresponding truth value. If uC = 0, then x or y is 0, and z or t is 1, so
x ∨ y ∨z ∨ t has at least a literal 1 and at least one literal 0; Similarly, if uC = 1; So F is
a positive instance of NAE4SAT.

Conversely, if F is a positive instance of NAE4SAT, consider the corresponding
truth assignment. In x ∨ y ∨z ∨ t , if x and y are both set to 1, set uC to 1; otherwise if
x and y are both set to 0, set uC to 0; otherwise, set uC to the suitable truth value for
the clause uC ∨ z ∨ t . That produces an assignment that proves that F ′ is a positive
instance of NAE3SAT.

Once again, NAE3SAT is in NP from definition, as a value for the variable is
clearly a certificate that can be checked in polynomial time. □
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1.2 Around INDEPENDANT SET

Definition 3 (INDEPENDANT SET)

Input: An (undirected) graph G = (V ,E) and some integer k.

Answer: Decide whether there exists V ′ ⊂ V , with |V ′| = k, such that u, v ∈ V ′ ⇒
(u, v) ̸∈ E.

Theorem 3 The problem INDEPENDANT SET is NP-complete.

Remark 2 Such an independent set V ′ is sometimes also called a stable set (or
stable).

Proof: INDEPENDANT SET is indeed in NP, since giving V ′ provides a certificate
that can be easily checked in polynomial time.

We reduce the problem 3-SAT to INDEPENDANT SET, that is to say, given some
formula F of type 3-SAT, we construct in polynomial time a graph G in such a way
that the existence of a stable set in G is equivalent to the existence of a truth assign-
ment that satisfies F .

Let F =∧
1≤ j≤k (x1 j ∨ x2 j ∨ x3 j ). We construct a graph G with 3k vertices, one for

each occurrence of a literal in a clause.

• For every variable xi of 3-SAT, G has an edge between every vertex associated
to a literal xi and every vertex associated to a literal ¬xi (and so an indepen-
dent set of G corresponds to a truth assignment of a subset of variables);

• For every clause C , we associate a triangle: for example for a clause of F of
the form C = (x1 ∨¬x2 ∨ x3), then G has the edges (x1,¬x2), (¬x2, x3), (x3, x1)
(by doing, an independent set of G must contain at most one of the vertices
associated to clause C ).

Let k be the number of clauses in F . One proves that F is satisfiable if and only if
G has an independent set of size k.

Indeed, if F is satisfiable, consider an assignment of the variables that satisfies F .
For every clause C of F , select yC a literal of C that is set to true by the assignment:
that defines k vertices defining an independent set of G .

Conversely, if G has an independent set of size k, then it has necessarily a ver-
tex in every triangle. This vertex corresponds to a literal that makes the associated
clause true, and this forms an assignment of the variables that is consistent by con-
struction of the edges.

The reduction is clearly polynomial. □
Two classical problems are related to INDEPENDANT SET.
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Definition 4 (CLIQUE)

Input: An (undirected) graph G = (V ,E) and some integer k.

Answer: Decide if there exists V ′ ⊂V , with |V ′| = k, such that u, v ∈V ′ ⇒ (u, v) ∈ E.

Theorem 4 The problem CLIQUE is NP-complete.

Proof: The reduction from INDEPENDANT SET consists in going to the comple-
mentary on the edges. Indeed, it is sufficient to observe that a graph G = (V ,E) has
an independent set of size k if and only if complementary graph G = (V ,E) (where
E = {(u, v)|(u, v) ∉ E }) has a clique of size k. □

Definition 5 (VERTEX COVER)

Input: An (undirected) graph G = (V ,E) and some integer k.

Answer: Decide if there exists V ′ ⊂V , with |V ′| = k, such that every edge of G has at
least one of its extremity in V ′.

Theorem 5 The problem VERTEX COVER is NP-complete.

Proof: The reduction from INDEPENDANT SET consists in considering the com-
plementary on the vertices. □

Definition 6 (MAXIMAL CUT)

Input: An (undirected) graph G = (V ,E) and some integer k.

Answer: Decide if there exists a partition V =V1∪V2 such that the number of edges
between V1 and V2 is at least k.

Theorem 6 The problem MAXIMAL CUT is NP-complete.

Proof: We reduce NAE3SAT to MAXIMAL CUT. Suppose an instance of NAE3SAT
is given, in which we can suppose without loss of generality that every clause does
not contain simultaneously a variable and its complementary. Replacing u ∨ v by
((u ∨ v ∨ w)∧ (u ∨ v ∨¬w)) if needed, we can suppose that every clause contains
exactly 3 literals. Furthermore, if we have (u ∨ v ∨w) and (u ∨ v ∨ z), we can, by in-
troducing two variables t1 and t2 and by proceeding as we did to reduce NAE4SAT
to NAE3SAT, rewrite these two clauses as (u ∨ t1 ∨ t2)∧ (v ∨w ∨¬t1)∧ (v ∨ z ∨¬t2).
In other words, we can suppose that two given clauses have at most one variable in
common.

We denote by x1, · · · , xn the variables of the formula F .
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We will construct a graph G = (V ,E) in the following way: G has 2n vertices and
every variable u of F is corresponding to two vertices u and ¬u. G has an edge
between every couple of vertices (u, v) such that u and v appear in the same clause,
and an edge between the vertices u and ¬u for every variable u.

The reductions in the first paragraph of the proof permit to state that to every
clause corresponds a triangle and that two of these triangles have distinct edges.

If we denote by n the number of variables and by m the number of clauses, the
graph G has 2n vertices and 3m +n edges. It is easy to see that the number of edges
in a cut corresponding to a valid NAE3SAT assignment is 2m+n: The edge between
u and ¬u for every variable u, and two edges of the triangle uv w for every clause
u ∨ v ∨w .

Conversely, every cut of G has at most 2m +n edges, since a cut can not include
more than the number of edges for a given triangle associated to a clause. Conse-
quently, a cut of value 2m +n provides immediately a valid NAE3SAT assignment.

In other words, solving an instance of NAE3SAT is equivalent to solve MAXIMAL CUT
on (G ,2m +n).

The reduction is polynomial. Now MAXIMAL CUT is in NP since giving V1 is a
valid certificate that can be checked in polynomial time. □

1.3 Around HAMILTONIAN CIRCUIT

The problem HAMILTONIAN CIRCUIT is often at the source of the proof of NP-
completeness of properties related to paths in graphs.

Definition 7 (HAMILTONIAN CIRCUIT)

Input: An (undirected) graph G = (V ,E).

Answer: Decide if there exists a Hamiltonian circuit that is to say a path of G that
goes exactly once through every vertex and that comes back to its starting
point.

Theorem 7 The problem HAMILTONIAN CIRCUIT is NP-complete.

Proof: We will prove that fact by reducing VERTEX COVER to this problem.
The idea consists, starting from an instance of VERTEX COVER, in constructing

a graph in which every initial edge will be replaced by a “pattern” that admits exactly
two Hamiltonian paths, that is to say paths that visit exactly once every vertex. One
of this path will correspond to the case where the corresponding vertex belongs to
the cover, the other where it does not belong.

There will remain to tell how to glue all these patterns so that a global Hamil-
tonian circuit corresponds exactly to a union of Hamiltonian paths through every
pattern, and to ensure that one obtains the good result to problem VERTEX COVER
by solving HAMILTONIAN CIRCUIT in this graph.

We now go to the details: Denote (G = (V ,E),k) the considered instance of VERTEX COVER.
The pattern that we will use is the following:
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v1

u1

v2

u2

v3

u3

v4

u4

v5

u5

v6

u6

To obtain a traversal of this pattern that goes exactly once through every vertex,
only two solutions are possible: either a traversal in two steps, first u1u2u3u4u5u6

then later v1v2v3v4v5v6 (in one direction or the other); or a traversal in only one
step u1u2u3v1v2v3v4v5v6u4u5u6 (or the same but switching the role of the u’s and
of the v ’s).

To every edge (u, v) of the graph G , we associate a pattern of this type, by putting
in correspondence the vertex ui ’s at side u and the vertex vi ’s at side v . We then link
together all the sides of all the patterns corresponding to a same vertex. We con-
struct consequently a chain associated to a given vertex, with still two free “outputs”.
We then link again these two “outputs” to k new vertices s1, · · · , sk . We denote by H
the graph constructed in that way in the remaining part of this proof.

Suppose now that a cover of the initial graph of size k, whose vertices are {g1, · · · , gk }
is given. One can then construct a Hamiltonian circuit of H in the following way:

• starts from s1;

• follow the chain g1 in the following way. When one traverses an edge (g1,h),
if h is also in the cover, simply cross the side g1; otherwise, cross the two sides
simultaneously;

• once the chain g1 is finished, come back to s2 and restart by g2 and so on.

It is clear that every vertex sk is traversed exactly once.
Consider a vertex h of the pattern corresponding to an edge (u, v). One can al-

ways suppose that u is in the cover, say u = g1. It follows that if h is on the same side
as u, h will be reached at least once. We see, according to second item, that it will
not be reached later on. If h is on the same side as v , and if v is not in the cover, h
is visited along the traversal of u. If v = gi , h is crossed by the traversal of the chain
corresponding to gi and at this moment only. We hence have indeed a Hamiltonian
circuit.

Conversely, suppose that we have a Hamiltonian circuit of H . The construction
of our pattern implies that, coming from vertex si , one traverses completely a chain
u and then one goes to a vertex s j . One then traverses k chains; the k correspond-
ing vertices form a cover. Indeed, if (u, v) is an edge, the corresponding pattern is
traversed by the Hamiltonian path; But it can be only a traversal of a loop corre-
sponding to one of the extremities of the edge.

Finally, the reduction is trivially polynomial. HAMILTONIAN CIRCUIT is hence
NP-complete. □

As in previous section, we can then deduce the NP-completeness of many vari-
ants.
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Definition 8 (TRAVELING SALESMAN)

Input: A couple (n, M), where M is a matrix n ×n of integers and some integer k.

Answer: Decide if there exists some permutation π of [1,2, · · · ,n] such that∑
1≤i≤n

Mπ(i )π(i+1) ≤ k.

(here indices are taken modulo n so that it makes sense)

Corollary 2 The problem TRAVELING SALESMAN is NP-complete.

Remark 3 This problems has its name, since it can be seen as establishing the
planning of visits of a traveling salesman that must visit n town, whose distances
are given by matrix M, in less than k kilometers.

Proof:
We reduce HAMILTONIAN CIRCUIT to TRAVELING SALESMAN. To do so, given

a graph G = (V ,E), consider V = {x1, · · · , xn}. We consider then the matrix M n ×n of
integers such that

Mi , j =
{

1 if (i , j ) ∈ E ;
2 otherwise.

We then claim that HAMILTONIAN CIRCUIT(V ,E) is true if and only if TRAVELING SALESMAN(n, M ,n).
Indeed:

If there exists a Hamiltonian circuit in G , one can then indeed construct the per-
mutation π as description the order of traversal of the vertices of graph G : By con-
struction, the sum of the distances of the edges on this circuit will value n.

Conversely, given some permutation with this property, the fact that the n terms
of the sum value at least 1 implies that they are all equal to 1, and so that the edges
(π(i ),π(i +1)) exist in the graph G : we hence have a Hamiltonian circuit. □

Definition 9 (LONGEST CIRCUIT)

Input: An (undirected) graph G = (V ,E), with a distance on each edge, and some
integer r .

Answer: Decide if there exists a circuit G that does not visit twice the same vertex
whose length is ≥ r .

Corollary 3 The problem LONGEST CIRCUIT is NP-complete.

Proof: We construct a reduction from HAMILTONIAN CIRCUIT: to do so, to
every graph for HAMILTONIAN CIRCUIT, we associate the length 1 to every edge.
Finding a Hamiltonian cycle is then trivially identical to finding a circuit of length
≥ n in the graph. □
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1.4 Around 3-COLORABILITY

We have defined what is called a (well) colouring of a graph in the previous chapter.
The smallest integer k such that a graph can be (well) colored is called the chromatic
number of the graph.

It is known that planar graphs are always colorable with 4 colors.
We recall the following result established in previous chapter.

Definition 10 (3-COLORABILITY)

Input: An (undirected) graph G = (V ,E).

Answer: Decide if there exists a colouring of the graph that uses at most 3 colors.

Theorem 8 The problem 3-COLORABILITY is NP-complete.

1.5 Around SUBSET SUM

Definition 11 (SUBSET SUM)

Input: A finite sequence of integers x1, x2, . . . , xn and some integer t .

Answer: Decide if there exists E ⊂ {1,2, . . . ,n} such that
∑

i∈E xi = t .

Theorem 9 The problem SUBSET SUM is NP-complete.

Proof: SUBSET SUM is in NP since giving E is a certificate that can be checked
in polynomial time.

We use a reduction from VERTEX COVER.
Suppose that a graph G = (V ,E) is given in which one wants to determine if there

exist a vertex cover of size k. Number the vertices and the edges. Let B = (bi j ) the
incident matrix vertex-edges, that is to say bi j = 1 if edge i is incident to vertex j ,
bi j = 0 otherwise.

Consider b ≥ 4. We will construct a sequence F of integers: For every edge i ,
we add integer bi to F . For every vertex j we add integer a j to F , where a j = bm +∑m−1

i=0 bi , j bi .
We consider then

t = kbm +
m−1∑
i=0

2bi . (1)

Consider a cover S of G of cardinality k. Construct the subsequence made of the
a j ’s such that j ∈ S, and of the bi ’s such that exactly one of the two extremities of
edge i is in S. Then the sum of the elements of this subsequence is t : Indeed, we
sum k times the term bm and each edge i with two extremities in S contributes to
bi for each of its two extremities by the part of the sum related to the a j ’s, and each
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edge i with one extremity in S contributes to bi once by the part of the sum related
to the a j ’s, and once by the integer bi .

Conversely, suppose that we have a subsequence of sum t . We split the subse-
quence into X1 made of the elements xi ≥ m, and into X2 made of the elements
xi < bm . To every element of X1, is associated some vertex j : We take S to be the set
of such vertices associated to elements of X1. Since kbm ≤ t < (k +1)bm , necessarily
the size of S is k.

It remains to show that S is a cover. As in every sum of elements of F , there are at
most three terms bi for i < m, and as b ≥ 4, no carry can be produced in the addition
(except possibly for the coefficient of bm that can exceed b −1). Consequently, the
number of occurrences of term bi can be read on equation (1), and it must neces-
sarily be 2 for i < m.

That means that each edge i must necessarily have at least one of its extremity
in S, since otherwise the number of occurrences of term bi would be 0 or 1.

We have indeed reduced VERTEX COVER to SUBSET SUM.
Indeed, it is easy to see that the reduction is done in polynomial time, and hence

we have proved the theorem. □
We can deduce:

Definition 12 (KNAPSACK)

Input: A set of weights a1, · · · , an , a set of values v1, · · · , vn , a weight limit A, and
some integer V .

Answer: Decide if there exists E ′ ⊂ {1,2, · · · ,n} such that
∑

i∈E ′ ai ≤ A and
∑

i∈E ′ vi ≥
V .

Corollary 4 The problem KNAPSACK is NP-complete.

Proof: From SUBSET SUM: Given E = {e1, · · · ,en} and t an instance of SUBSET SUM,
one considers vi = ai = ei , and V = A = t . □

Definition 13 (PARTITION)

Input: A finite sequence of integers x1x2 . . . xn .

Answer: Decide if there exists E ⊂ {1,2, . . . ,n} such that
∑

i∈E xi =∑
i ̸∈E xi .

Theorem 10 The problem PARTITION is NP-complete.

Proof: We will reduce SUBSET SUM to PARTITION. Let (x1x2 . . . xn , t ) be an in-
stance of SUBSET SUM. We set S = ∑

1≤i≤n xi . Changing t in S − t if needed (which
is equivalent to change the obtained set in its complement), we can suppose that
2t ≤ S.

A first natural idea would consist in adding the element u = S − 2t to the se-
quence. The result of a partition would then be two subsequences of sum S− t . One
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of the two would contain the element S − 2t , and hence by suppressing the latter,
we would find a subsequence of sum t . Unfortunately, this reasoning fails if S−2t is
already in the sequence.

Instead of doing so, we take the number X = 2S and X ′ = S +2t , and we apply
PARTITION to the sequence x1, x2, . . . , xn , X , X ′. There exists a partition of this se-
quence if and only if there exists a subsequence of x1, x2, . . . , xn of sum t . Indeed, if
there exists a partition of x1, x2, . . . , xn , X , X ′, there exists two subsets complemen-
tary of sum 2S + t . Each of this two subsets must contain either X , or X ′, since oth-
erwise its sum would exceed 2S+t ; So one of the two subsets contains X and not X ′.
By suppressing X in it, we must then obtain a subsequence F of x1, x2, . . . , xn of total
sum t . Conversely, given such a subsequence F of total sum t , then the subsequence
made of F and X , and its complement, constitutes a partition of x1, x2, . . . xn , X , X ′.
We have indeed reduced SUBSET SUM to PARTITION.

It remains to justify that the reduction is indeed polynomial. The main part of the
reduction is the computation of A and A′, and this is indeed polynomial in the size
of the inputs (the addition of k numbers of n bits can be done in time O

(
k logn

)
). □

2 Exercises

2.1 Polynomial variants

Exercise 1 A graph G = (V ,E) is said Eulerian if there exists a cycle that goes
through every edge of G exactly once.

Prove that a connected graph is Eulerian if and only if all its vertices are
of degree two.

Propose a polynomial algorithm to determine if a graph is Eulerian.
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Exercise 2 We consider 2SAT.

1. Propose an evaluation t that satisfies φ1(u1,u2,u3) = (u2 ∨¬u3) ∧
(¬u2 ∨u3)∧ (u2 ∨¬u1).

2. What happens for φ2(u1,u2) = (u2 ∨u3)∧ (¬u2 ∨u3)∧ (¬u3 ∨u1)∧
(¬u3 ∨¬u1)?

3. Prove that u ∨ v = (¬u ⇒ v)∧ (¬v ⇒ u).

Starting from an instance of 2SAT we construct a directed graph Gφ =
(V ,E) with

• a vertex for every literal;

• and an arc for every implication (by transforming every clause
into two implications).

4. Draw the graphs Gφ1 and Gφ2 .

5. Prove that there exists a variable u such that Gφ contains a cycle be-
tween u towards ¬u in G, if and only if φ is not satisfiable.

6. Prove that 2-SAT can be solved in polynomial time.

Exercise 3 (solution on page 235) [Knights of the round table] Given n
knights, and knowing all the pairs of fierce enemies among them, is it pos-
sible to position them in polynomial time around some round table in such
a way that no pair of fierce enemy are sitting near each other.

2.2 NP-completeness

Exercise 4 (solution on page 235) A Hamiltonian path is a path that goes
through every vertex of the graph exactly once.

Prove that the following problem is NP-complete:

Input: A (undirected) graph G of n vertices, two distinct vertices u and v of
G.

Answer: Decide if G contains a Hamiltonian path whose extremities are ver-
tices u and v.
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Exercise 5 (solution on page 236) Prove that the following problem is NP-
complete.

Input: An (undirected) graph G with n vertices, two distinct vertices u and v
of G.

Answer: Decide if G contains a path of length n/2 between u and v.

Exercise 6 (solution on page 237) Prove that the following problem is NP-
complete.

Input: A graph G = (V ,E), and some integer k.

Answer: Decide if there exists a tree covering all the vertices of G with at least k
leaves.
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Exercise 7 (solution on page 237) Let G = (V ,E) be a graph.

• A vertex cover S of graph G is a subset of vertices such that all edges
of G are incident to at least a vertex of S.

• A dominating set C of graph G is a subset of vertices such that every
vertex is either in C or neighbour of a vertex of C .

Let G = (V ,E) be a connected graph. We are going to construct a graph
G ′ = (V ′,E ′) from G such that

• V ′ =V ∪E ;

• E ′ = E ∪ {(v, a)|v ∈V , a ∈ E , v is a extremity of a in G}

sv

u

zt

1

2

3 4

5

6

s vu z t

654321

Graph G Graph G ′ (without the edges of G)

1. Prove that if S is a vertex cover of G, then S is a dominating set of G ′.

2. Prove that if S′ is a dominating set of G ′, then there exists some vertex
cover S ⊆V of graph G of cardinal less or equal to S′.

3. Express the problem of minimization of the dominating set as a deci-
sion problem.

4. Prove that this problem is in NP.

5. Prove that the problem is NP-complete.
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Exercise 8 (solution on page 237) We will focus on the problem of k-centre:
Given a set of towns whose distances are given, select k towns in order to put
some warehouses in order to minimize the maximal distance from a town
to the closest warehouse. Such a set of k town is called a k-center.

The associated decision problem is the following:

Input: A complete graph K = (V ,E) having a weight function w on the edges,
and some strictly positive integers k and b.

Answer: Decide if exists a set S of vertices such that |S| = k and such that every
vertex v of V satisfies the following condition

mi n{w(v,u) : u ∈ S} ≤ b.

1. Prove that k-CENTRE is in NP.

2. Prove that k-CENTRE is NP-complete, knowing that DOMINANT is
NP-complete.

3 Bibliographic Notes

Suggested readings The book [Garey & Johnson, 1979] provides a list of more than
300 NP-complete problems, and is rather pleasant to read. One can find updates of
lists of complete problems on the web.

Bibliography This chapter is reproduced, and adapted from course book [Cori et al., 2010]
from course INF550 of École Polytechnique.
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