Fondements de l'informatique Logique, modèles, et calculs

Chapitre: Quelques problèmes NP-complets

Cours CSC_41012_EP

de l'Ecole Polytechnique

Olivier Bournez

bournez@lix.polytechnique.fr

Version du 16 juillet 2024

Quelques problèmes NP-complets

Maintenant que nous connaissons la NP-complétude d'au moins un problème (SAT), nous allons montrer qu'un très grand nombre de problèmes sont NP-complets.

Le livre [Garey & Johnson, 1979] en recensait plus de 300 en 1979. Nous n'avons pas l'ambition d'en présenter autant, mais de décrire quelques problèmes célèbres, de façon à montrer quelques preuves de NP-complétude.

1 Quelques problèmes NP-complets

1.1 Autour de SAT

Définition 1 (3-SAT)

Donnée: Un ensemble de variables $\{x_1, \dots, x_n\}$ et une formule $F = C_1 \wedge C_2 \dots \wedge C_\ell$ avec $C_i = y_{i,1} \vee y_{i,2} \vee y_{i,3}$, où pour tout $i, j, y_{i,j}$ est soit x_k , soit $\neg x_k$ pour l'un des x_k .

Réponse: Décider si F est satisfiable : c'est-à-dire décider s'il existe $x_1, \dots, x_n \in \{0,1\}^n$ tel que F s'évalue en vraie pour cette valeur de ses variables x_1, \dots, x_n .

Théorème 1 Le problème 3-SAT est NP-complet.

Démonstration: Notons tout d'abord que 3-SAT est bien dans NP. En effet, la donnée d'une affectation de valeurs de vérité aux variables constitue un certificat vérifiable en temps polynomial.

On va réduire SAT à 3-SAT. Soit F une formule SAT. Soit C une clause de F, par exemple $C = x \lor y \lor z \lor u \lor v \lor w \lor t$. On introduit de nouvelles variables a, b, c, d associées à cette clause, et on remplace C par la formule

```
(x \lor y \lor a) \land (\neg a \lor z \lor b) \land (\neg b \lor u \lor c) \land (\neg c \lor v \lor d) \land (\neg d \lor w \lor t).
```

Il est facile de vérifier qu'une assignation de x, y, z peut être complétée par une assignation de a, b, c, d de façon à rendre cette formule vraie si et seulement si C

est vraie. En appliquant cette construction à toutes les clauses de F et en prenant la conjonction des formules ainsi produites, on obtient ainsi une formule 3-SAT dont la satisfaction de F' équivalente à celle de F.

Le temps de calcul se réduit à écrire les clauses, dont la longueur est polynomiale. Par conséquent, l'ensemble du processus de réduction se réalise donc bien en temps polynomial, et on a prouvé, à partir de SAT que 3-SAT est NP-complet.

Remarque 1 Le problème 2 – SAT, où l'on considèrerait des clauses avec deux littéraux est lui dans P.

Définition 2 (NAESAT)

Donnée: Un ensemble de variables $\{x_1, \dots, x_n\}$ et un ensemble de clauses $y_{i,1} \vee \dots \vee y_{i,k_i}$, où pour tout $i, j, y_{i,j}$ est soit x_k , soit $\neg x_k$ pour l'un des x_k .

Réponse: Décider s'il existe une affectation des variables $x_i \in \{0,1\}$ de telle sorte que chaque clause contienne au moins un littéral vrai et au moins un littéral faux (c'est-à-dire, pour tout i, il y a un j et un k avec $y_{i,j} = 1$ et $y_{i,k} = 0$).

Théorème 2 Le problème NAESAT est NP-complet.

Démonstration: Le problème est dans NP car la donnée d'une affectation des variables est un certificat valide vérifiable aisément en temps polynomial.

On va réduire le problème SAT au problème NAESAT. Soit F une formule de SAT sur les variables $\{x_1, \cdots, x_n\}$. On ajoute une unique variable distincte z et on forme les clauses pour NAESAT en remplaçant chaque clause $C_i = y_{i,1} \lor \cdots \lor y_{i,k}$ de F en $C_i' = y_{i,1} \lor \cdots \lor y_{i,k} \lor z$.

Cette transformation se réalise bien en temps polynomial.

Si l'instance donnée de SAT est satisfiable, la même affectation des variables tout en fixant pour *z* la valeur 0 fournit une affectation valide pour NAESAT.

Réciproquement, supposons que l'instance construite de NAESAT soit satisfaisable. Si la valeur de vérité de z dans l'affectation correspondante est 0, alors les valeurs des variables x_i dans l'affectation donnent une affectation valide pour la formule F d'origine (pour l'instance de SAT). Si au contraire z vaut 1, on change toutes les valeurs de toutes les variables dans l'affectation. L'affectation reste valide pour NAESAT car au moins un littéral par clause dans l'affectation initiale valait 0, et vaut donc maintenant 1, tandis que z vaut 0. On a donc construit une affectation dans laquelle z vaut 0, et en vertu du cas précédent l'instance de SAT initiale est satisfaisable.

On a donc bien prouvé l'équivalence entre satisfaisabilité de F et l'instance correspondante pour NAESAT. Donc NAESAT est NP-complet. \Box

En utilisant la même réduction sur 3 SAT, on prouve que NAE4SAT est NP-complet : NAE4SAT est NAESAT réduit aux formules avec quatre littéraux dans chaque clause. On va utiliser cette remarque pour prouver que cela reste vrai pour la variante avec trois littéraux par clause :

Corollaire 1 NAE3SAT *est* NP-complet.

Démonstration: On va réduire NAE4SAT à NAE3SAT. Soit $C = x \lor y \lor z \lor t$ une clause à 4 littéraux. On introduit une nouvelle variable u_C , et on forme les deux clauses $C_1 = x \lor y \lor \neg u_C$ et $C_2 = z \lor t \lor u_C$. En faisant ainsi pour toutes les clauses, on construit une instance F' de NAE3SAT en temps polynomial.

Supposons que F' soit une instance positive de NAE3SAT, et considérons l'affectation des valeurs de vérité correspondante. Si $u_C = 0$, alors x ou y est 0, et z ou t est 1, donc $x \lor y \lor z \lor t$ a au moins un littéral 1 et au moins un littéral 0; de même, si $u_C = 1$; donc F est une instance positive de de NAE4SAT.

Inversement, si F est une instance positive de NAE4SAT, considérons l'affectation de valeurs de vérité correspondante. Dans $x \lor y \lor z \lor t$, si x et y sont tous deux à 1, on affecte u_C à 1; sinon si x et y sont tous les deux à 0, on affecte u_C à 0; sinon, on affecte à u_C la valeur de vérité adéquate pour la clause $u_C \lor z \lor t$. Cela produit une assignation démontrant que F' est une instance positive de NAE3SAT.

Là encore la réduction est polynomiale, et NAE3SAT est dans NP de façon triviale. $\hfill\Box$

1.2 Autour de STABLE

Définition 3 (STABLE)

Donnée: Un graphe G = (V, E) non-orienté et un entier k.

Réponse: Décider s'il existe $V' \subset V$, avec |V'| = k, tel que $u, v \in V' \Rightarrow (u, v) \notin V'$

E.

Théorème 3 Le problème STABLE est NP-complet.

Démonstration: STABLE est bien dans NP, car la donnée de V' est un certificat facilement vérifiable en temps polynomial.

On va réduire le problème 3-SAT à STABLE, c'est-à-dire, étant donné une formule F du type 3-SAT, construire en temps polynomial un graphe G, de sorte que l'existence d'un stable dans G soit équivalente à l'existence d'une affectation de valeurs de vérité qui satisfait F.

Soit $F = \bigwedge_{1 \le j \le k} (x_{1j} \lor x_{2j} \lor x_{3j})$. On construit un graphe G avec 3k sommets, un pour chaque occurrence d'un littéral dans une clause.

- Pour chaque variable x_i de 3-SAT, G possède une arête entre chaque sommet associé à un littéral x_i et chaque sommet associé à un littéral $\neg x_i$ (ainsi un stable de G correspond à une affectation de valeurs de vérité à une partie des variables);
- Pour chaque clause C, on associe un triangle : par exemple pour une clause de F de la forme $C = (x_1 \vee \neg x_2 \vee x_3)$, alors G possède les arêtes $(x_1, \neg x_2)$, $(\neg x_2, x_3)$, (x_3, x_1) (ainsi un stable de G contient au plus un des trois sommets associés à la clause C).

Soit k le nombre de clauses dans F. On démontre que F est satisfiable si et seulement si G possède un stable de taille k.

En effet, si F est satisfiable, on considère une assignation des variables satisfaisant F. Pour chaque clause C de F, on choisit y_C un littéral de C rendu vrai par l'assignation : cela définit k sommets formant un stable de G.

Réciproquement, si G a un stable de taille k, alors il a nécessairement un sommet dans chaque triangle. Ce sommet correspond à un littéral rendant la clause associée vraie, et forme une assignation des variables cohérente par construction des arêtes.

La réduction est clairement polynomiale.

Deux problèmes classiques sont reliés à STABLE.

Définition 4 (CLIQUE)

Donnée: Un graphe G = (V, E) non-orienté et un entier k.

Réponse: Décider s'il existe $V' \subset V$, avec |V'| = k, tel que $u, v \in V' \Rightarrow (u, v) \in$

 \boldsymbol{E}

Théorème 4 Le problème CLIQUE est NP-complet.

Démonstration: La réduction à partir de STABLE consiste à passer au complémentaire sur les arêtes. En effet, il suffit de prouver qu'un graphe G=(V,E) a un stable de taille k si et seulement si son graphe complémentaire $\overline{G}=(V,\overline{E})$ (où $\overline{E}=\{(u,v)|(u,v)\notin E\}$) a une clique de taille k.

Définition 5 (RECOUVREMENT DE SOMMETS)

Donnée: Un graphe G = (V, E) non-orienté et un entier k.

Réponse: Décider s'il existe $V' \subset V$, avec |V'| = k, tel que toute arête de G ait au moins une extrémité dans V'.

Théorème 5 *Le problème* RECOUVREMENT DE SOMMETS *est* NP-complet.

Démonstration: La réduction à partir de STABLE consiste à passer au complémentaire sur les sommets. $\hfill\Box$

Définition 6 (COUPURE MAXIMALE)

Donnée: Un graphe G = (V, E) non-orienté et un entier k.

Réponse: Décider s'il existe une partition $V = V_1 \cup V_2$ telle que le nombre d'arêtes entre V_1 et V_2 soit au moins k.

Théorème 6 Le problème COUPURE MAXIMALE est NP-complet.

Démonstration: On réduit NAE3SAT à COUPURE MAXIMALE. Supposons donc donnée une instance de NAE3SAT, dans laquelle on peut supposer sans perte de généralité qu'une clause ne contient pas simultanément une variable et son complémentaire. Quitte à remplacer $u \lor v$ par $((u \lor v \lor w) \land (u \lor v \lor \neg w))$, on peut aussi supposer que chaque clause contient exactement 3 littéraux. Enfin, si l'on a deux clauses $(u \lor v \lor w)$ et $(u \lor v \lor z)$, on peut, en introduisant deux variables t_1 et t_2 et

en procédant comme pour réduire NAE4SAT à NAE3SAT, réécrire ces deux clauses comme $(u \lor t_1 \lor t_2) \land (v \lor w \lor \neg t_1) \land (v \lor z \lor \neg t_2)$. Bref, on peut donc supposer que deux clauses données ont au plus une variable en commun.

On note x_1, \dots, x_n les variables de la formule F.

On va construire un graphe G = (V, E) de la façon suivante : G possède 2n sommets où pour chaque variable u de F, correspondent deux sommets u et $\neg u$. G possède une arête entre chaque couple de sommets (u, v) tels que u et v apparaissent dans la même clause, et une arête entre les sommets u et $\neg u$ pour toute variable u.

Les réductions dans le premier paragraphe de la preuve permettent de voir qu'à chaque clause correspond un triangle et que deux de ces triangles ont des arêtes distinctes.

Si on note n le nombre de variables, et m le nombre de clauses, le graphe G a donc 2n sommets et 3m+n arêtes. Il est alors facile de voir que le nombre d'arêtes dans une coupure correspondant à une affectation NAE3SAT valide est 2m+n: l'arête entre u et $\neg u$ pour chaque variable u, et deux des arêtes du triangle uvw pour chaque clause $u \lor v \lor w$.

Inversement, toute coupure de G a au plus (2m+n) arêtes, car une coupure ne peut inclure que deux arêtes par triangle associé à une clause. Par conséquent, une coupure de valeur 2m+n fournit immédiatement une affectation NAE3SAT valide.

En d'autres termes, résoudre l'instance de NAE3SAT revient à résoudre le problème COUPURE MAXIMALE sur (G, 2m + n).

La réduction étant polynomiale, et puisque COUPURE MAXIMALE est dans NP car la donnée de V_1 est un certificat valide vérifiable en temps polynomial.

1.3 Autour de CIRCUIT HAMILTONIEN

Le problème CIRCUIT HAMILTONIEN est souvent à la base de propriétés liées aux chemins dans les graphes (nous reprenons la définition de ce problème, même s'il a déjà été défini dans le chapitre précédent).

Définition 7 (CIRCUIT HAMILTONIEN)

Donnée: Un graphe G = (V, E) (non-orienté).

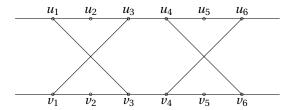
Réponse: Décider s'il existe un circuit hamiltonien, c'est-à-dire un chemin de G passant une fois et une seule par chacun des sommets et revenant à son point de départ.

Théorème 7 Le problème CIRCUIT HAMILTONIEN est NP-complet.

Démonstration: On va réduire RECOUVREMENT DE SOMMETS à ce problème. Partant d'une instance de RECOUVREMENT DE SOMMETS, la technique consiste à chercher à construire, un graphe dans lequel chaque arête initiale sera remplacée par un "motif" admettant exactement deux chemins hamiltoniens, c'est-à-dire des chemins visitant une fois et une seule chaque sommet. L'un de ces deux chemins correspondra au cas où le sommet correspondant appartient à la couverture, l'autre au cas où il n'y appartient pas.

Il reste ensuite à préciser comment recoller ces différents motifs pour qu'un circuit hamiltonien global corresponde exactement à une réunion de chemins hamiltoniens à travers chaque motif, et pour assurer qu'on obtient bien le bon résultat au problème de décision RECOUVREMENT DE SOMMETS initial en résolvant CIRCUIT HAMILTONIEN dans ce graphe.

Notons (G = (V, E), k) l'instance de RECOUVREMENT DE SOMMETS étudiée. Le motif que nous allons utiliser est le suivant :



Pour obtenir un parcours de ce motif traversant une fois et une seule chaque sommet, seules deux solutions sont possibles : soit un passage en deux fois, une fois $u_1u_2u_3u_4u_5u_6$ puis ultérieurement $v_1v_2v_3v_4v_5v_6$ (dans un sens ou dans l'autre); ou alors un passage en une seule fois $u_1u_2u_3v_1v_2v_3v_4v_5v_6u_4u_5u_6$ (ou le même en inversant les u et les v).

À chaque arête (u, v) du graphe de départ, on associe un motif de ce type, en faisant correspondre le sommet u au côté u et le sommet v au côté v. On raccorde ensuite entre eux bout à bout tous les côtés de tous les motifs correspondant à un même sommet; on forme donc une chaîne associée à un sommet donné, avec encore deux "sorties" libres. On raccorde alors chacune de ces deux sorties à k nouveaux sommets s_1, \dots, s_k . On note le graphe ainsi construit H dans la suite.

Supposons maintenant donné un recouvrement du graphe initial de taille k, dont les sommets sont $\{g_1, \dots, g_k\}$. On peut alors construire un circuit hamiltonien de H de la façon suivante :

- partir de s_1 ;
- parcourir la chaîne g_1 de la façon suivante. Quand on traverse une arête (g_1, h) , si h est aussi dans la couverture, on traverse simplement le côté g_1 , sinon, on parcourt les deux côtés simultanément;
- une fois la chaîne g_1 finie, on revient en s_2 et on repart par g_2 et ainsi de suite. Il est clair que tous les sommets s_k sont atteints une fois et une seule.

Considérons un sommet h du motif correspondant à une arête (u,v). On peut toujours supposer que u est dans la couverture, disons $u=g_1$. Il s'ensuit que si h est du côté de u, h sera atteint une fois au moins. On voit en vertu du second item qu'il ne sera plus atteint dans la suite. Si h est du côté de v, et que v n'est pas dans la couverture, h est parcouru lors du parcours de u. Si $v=g_i$, h est parcouru lors du parcours de la chaîne correspondant à g_i et à ce moment-là seulement. On a donc bien un circuit hamiltonien.

Réciproquement, supposons que l'on dispose d'un circuit hamiltonien de H. La construction de notre motif impose que venant d'un sommet s_i , on traverse entièrement une chaîne u puis l'on passe à un autre des sommets s_i . On traverse ainsi

k chaînes; les k sommets correspondants forment alors une couverture. En effet, si (u, v) est une arête, le motif correspondant est parcouru par le chemin hamiltonien; or il ne peut l'être que lors du parcours d'une boucle correspondant à une des deux extrémités de l'arête.

Enfin, la réduction est trivialement polynomiale. CIRCUIT HAMILTONIEN est donc bien NP-complet. $\hfill\Box$

Comme dans la section précédente, on peut alors en déduire la NP-complétude de nombreuses variantes.

Définition 8 (VOYAGEUR DE COMMERCE)

Donnée: Un couple (n, M), où M est une matrice $n \times n$ d'entiers et un entier k.

Réponse: Décider s'il existe une permutation π de $[1,2,\cdots,n]$ telle que

$$\sum_{1 \le i \le n} M_{\pi(i)\pi(i+1)} \le k.$$

Corollaire 2 Le problème VOYAGEUR DE COMMERCE est NP-complet.

Ce problème porte ce nom, car on peut voir cela comme l'établissement de la tournée d'un voyageur de commerce devant visiter n villes, dont les distances sont données par la matrice M de façon à faire moins de k kilomètres.

Démonstration:

On réduit CIRCUIT HAMILTONIEN à VOYAGEUR DE COMMERCE. Pour ce faire, étant donné un graphe G = (V, E), on pose $V = \{x_1, \dots, x_n\}$. On considère alors la matrice M $n \times n$ d'entiers telle que

$$M_{i,j} = \begin{cases} 1 & \text{si } (i,j) \in E; \\ 2 & \text{sinon.} \end{cases}$$

Montrons alors que l'on a la relation CIRCUIT HAMILTONIEN(V, E) si et seulement si l'on a la relation VOYAGEUR DE COMMERCE(n, M, n).

S'il existe un circuit hamiltonien dans G on peut en effet construire la permutation π comme décrivant l'ordre de parcours des sommets du graphe G: par construction, la somme des distances des arêtes sur ce circuit vaudra n.

Inversement, étant donnée une permutation avec cette propriété, le fait que les n-1 termes de la somme soient au moins égaux à 1 implique qu'ils sont tous égaux à 1, et donc que les arêtes $(\pi(i), \pi(i+1))$ existent dans le graphe G: on a donc bien un circuit hamiltonien.

Définition 9 (CIRCUIT LE PLUS LONG)

Donnée: Un graphe G = (V, E) non-orienté, avec des distances sur chaque arête, un entier r.

Réponse: Décider s'il existe un circuit de G ne passant pas deux fois par le même sommet dont la longueur est $\geq r$.

Corollaire 3 Le problème CIRCUIT LE PLUS LONG est NP-complet.

Démonstration: La réduction est à partir de CIRCUIT HAMILTONIEN : pour cela, à un graphe G pour CIRCUIT HAMILTONIEN, on associe à chaque arête le poids 1. La recherche d'un cycle hamiltonien est alors trivialement identique à la recherche d'un circuit de longueur $\geq n$ dans le graphe.

1.4 Autour de 3-COLORABILITE

Nous avons déjà défini ce que nous appelions un (bon) coloriage de graphes dans le chapitre précédent. Le plus petit entier k tel qu'un graphe soit (bien) coloriable est appelé le nombre chromatique du graphe.

Il est connu que les graphes planaires sont toujours coloriables avec 4 couleurs.

Définition 10 (3-COLORABILITE)

Donnée: Un graphe G = (V, E) non-orienté.

Réponse: Décider s'il existe un coloriage du graphe utilisant au plus 3 cou-

leurs.

Théorème 8 *Le problème* 3-COLORABILITE *est* NP-complet.

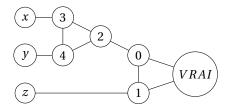
Démonstration: 3-COLORABILITE est dans NP, car la donnée des sommets colorés par chacune des 3 couleurs constitue un certificat vérifiable en temps polynomial.

On va réduire 3-SAT à 3-COLORABILITE. On se donne donc une conjonction de clauses à 3 littéraux, et il nous faut à partir de là construire un graphe. Comme dans les autres réductions de 3-SAT, il faut parvenir à traduire deux contraintes : une variable peut prendre la valeur 0 ou 1 d'une part, et les règles d'évaluation d'une clause d'autre part.

On construit un graphe ayant 3+2n+5m sommets, les trois premiers sont notés VRAI, FAUX, NSP. Ces trois sommets sont reliés deux à deux en triangle, de sorte qu'ils doivent être tous trois de couleurs différentes. On appellera les couleurs correspondantes VRAI, FAUX, NSP.

On associe un sommet à chaque variable et au complémentaire de chaque variable. Pour assurer qu'une variable prenne la valeur VRAI ou FAUX, pour chaque variable x_i on construit un triangle dont les sommets sont x_i , $\neg x_i$, et NSP. Cela impose que soit $couleur(x_i) = couleur(VRAI)$ et $couleur(\neg x_i) = couleur(FAUX)$, ou alors $couleur(x_i) = couleur(FAUX)$ et $couleur(\neg x_i) = couleur(VRAI)$, où, bien entendu, couleur(v) désigne la couleur du sommet v.

Il nous reste donc à encoder les règles d'évaluation d'une clause. Pour ce faire, on introduit le sous-graphe suivant, qui correspond à une clause $x \lor y \lor z$:



Il est facile de voir que si ce motif (où les trois sommets distingués et les triangles construits sur les variables sont implicites) est 3-coloriable, alors les sommets 0 et 1 sont couleur(FAUX) et couleur(NSP). Si 1 est couleur(FAUX), comme un sommet correspondant à une variable doit être couleur(VRAI) ou couleur(FAUX), on a couleur(z) = couleur(VRAI). Si 0 est couleur(FAUX), alors 2 ne peut pas être couleur(FAUX), donc 3 ou 4 l'est, et la variable correspondante est coloriée couleur(VRAI).

Réciproquement, si l'une des variables est vraie, on peut facilement construire une 3-coloration du motif.

Considérons alors le graphe formé des trois sommets distingués, des triangles formés sur les variables, et des motifs donnés. Si ce graphe est 3-coloriable, alors en particulier tout sous-graphe est coloriable. Les triangles de variables sont en particulier coloriables. À partir d'une 3-coloration du graphe, on construit une affectation de valeurs de vérité en mettant à 1 toutes les variables coloriées par la valeur *couleur(VRAI)*. Cette affectation est cohérente (une variable et son complémentaire ont bien une valeur opposée) et au moins une variable par clause est à 1, en vertu des propriétés du motif ci-dessus. Inversement, étant donné une affectation de valeurs de vérité, il est aisé de déduire une 3-coloration du graphe.

L'existence d'une 3-coloration du graphe est donc équivalente à la satisfaisabilité de la formule initiale.

La réduction est manifestement polynomiale; on a donc bien prouvé que 3-SAT se réduisait à 3-COLORABILITE; ce dernier est donc bien NP-complet. \Box

1.5 Autour de SOMME DE SOUS ENSEMBLE

Définition 11 (SOMME DE SOUS ENSEMBLE)

Donnée: Une suite fini d'entiers $x_1, x_2, ..., x_n$ et un entier t. **Réponse**: Décider s'il existe $E \subset \{1, 2, ..., n\}$ tel que $\sum_{i \in E} x_i = t$.

Théorème 9 Le problème SOMME DE SOUS ENSEMBLE est NP-complet.

Démonstration: Le fait que SOMME DE SOUS-ENSEMBLE est dans NP vient du fait que la donnée de E' constitue un certificat vérifiable en temps polynomial.

On utilise une réduction à partir de RECOUVREMENT DE SOMMETS.

Supposons qu'un graphe G=(V,E) est donné pour lequel on souhaite déterminer s'il existe une couverture de sommes de taille k. Numérotons les sommets et les arêtes. Soit $B=(b_{ij})$ la matrice d'incidence sommet-arête, en d'autres termes $b_{ij}=1$ si l'arête i est incidente au sommet j, $b_{ij}=0$ sinon.

Considérons $b \ge 4$. On va construire une suite F d'entiers : pour chaque arrête i, on ajoute l'entier b^i à F. Pour tout sommet j, on ajoute l'entier a_j à F, où $a_j = b^m + \sum_{i=0}^{m-1} b_{i,j} b^i$.

On considère alors

$$t = kb^m + \sum_{i=0}^{m-1} 2b^i. {1}$$

Considérons une couverture S de G de cardinal k. Construisons la sous suite constituée des a_j tels que $j \in S$, et des b^i tels qu'exactement une des deux extrémités de l'arête i est dans S. Alors la somme des elements de cette sous-suite est t: En effet, on ajoute k fois le terme b^m et chaque arête i avec deux extrémités dans S contribue pour b^i pour chacune de ses extrémités pour la partie de la somme qui concerne les a_j , et chaque arête i avec une extrémité dans S contribue pour b^i , une fois par la partie de la somme liée aux a_j , et une autre fois par l'entier b^i .

Réciproquement, supposons que l'on a une sous-suite de somme t. On divise la sous suite en X_1 constitué des éléments $x_i \ge m$, et en X_2 constitué des éléments $x_i < b^m$. Pour chaque élément de X_1 , on associe un sommet j: on prend S égal a l'ensemble des tels sommets associés aux éléments de X_1 . Puisque $kb^m \le t < (k+1)b^m$, nécessairement la taille de S est k.

Il reste à prouver que S est une couverture de sommets. Comme dans toute somme d'éléments de F, il y a au plus trois termes b^i pour i < m, et puisque $b \ge 4$, aucune retenue peut se produire dans l'addition (sauf possiblement pour les coefficients de b^m qui peuvent excéder b-1). Par conséquent, le nombre d'occurrences de termes b^i peut se lire sur l'équation (1), et il doit être nécessairement 2 pour i < m.

Cela signifie que chaque arête i doit nécessairement avoir au moins une extrémité dans S, puisque sinon le nombre d'occurrences de termes b^i serait 0 ou 1.

On a donc réduit le problème RECOUVREMENT DE SOMMETS au problème de décision SOMME DE SOUS ENSEMBLE.

Il est en effet facile de vérifier que la réduction se fait en temps polynomial, et donc que l'on a prouvé le théorème. $\hfill\Box$

On peut en déduire :

Définition 12 (SAC A DOS)

Donnée: Un ensemble de poids a_1, \dots, a_n , un ensemble de valeurs v_1, \dots, v_n , un poids limite A, et un entier V.

Réponse: Décider s'il existe $E' \subset \{1, 2, \dots, n\}$ tel que $\sum_{i \in E'} a_i \le A$ et $\sum_{i \in E'} v_i \ge V$

Corollaire 4 Le problème SAC A DOS est NP-complet.

Démonstration: A partir de SOMME DE SOUS ENSEMBLE : étant donnée $E = \{e_1, \dots, e_n\}$ et t une instance de SOMME DE SOUS ENSEMBLE, on considère $v_i = a_i = e_i$, et V = A = t.

2. EXERCICES 13

Définition 13 (PARTITION)

Donnée: Une suite fini d'entiers $x_1, x_2, ..., x_n$.

Réponse: Décider s'il existe $E \subset \{1, 2, ..., n\}$ tel que $\sum_{i \in E} x_i = \sum_{i \notin E} x_i$.

Théorème 10 Le problème PARTITION est NP-complet.

Démonstration: On réduit le problème SOMME DE SOUS ENSEMBLE au problème PARTITION. Soit $(x_1x_2...x_n, t)$ une instance de SOMME DE SOUS ENSEMBLE. On pose $S = \sum_{1 \le i \le n} x_i$. Quitte à changer t en S - t (ce qui revient à changer l'ensemble obtenu en son complémentaire), on peut supposer que $2t \le S$.

L'idée naturelle consisterait à ajouter l'élément u = S - 2t à E à la suite; le résultat de partition serait alors deux sous-suites (A' et son complémentaire) de somme S - t; l'une des deux contient l'élément S - 2t, donc en enlevant ce dernier, on trouve une sous-suite de x_1, x_2, \ldots, x_n de somme t. Malheureusement, cette technique échoue si S - 2t est déjà dans la suite x_1, x_2, \ldots, x_n .

Au lieu de cela, on prend le nombre X = 2S et X' = S + 2t, et on applique le problème PARTITION à $E' = E \cup \{X, X'\}$. Il existe une partition de E' si et seulement s'il existe une sous-suite de $x_1, x_2, ..., x_n$ de somme t. En effet, s'il existe une partition de $x_1, x_2, ..., x_n$, il existe deux sous-suites complémentaires de somme 2S + t. Chacun des deux sous-suites doit contenir soit X, soit X', car sinon sa somme ne peut excéder 2S + t; donc un des deux sous-suites contient X et non X', et on obtient en enlevant X une sous-suite E de E de taille E

Reste à justifier que la réduction est bien polynomiale. L'essentiel de la réduction est le calcul de A et A', qui est bien polynomial en la taille des entrées (l'addition de k nombres de n bits se fait en temps $\mathcal{O}(k \log n)$).

2 Exercices

2.1 Variantes polynomiales

Exercice 1 *Un graphe G* = (V, E) *est dit* Eulérien *s'il existe un cycle empruntant exactement une fois chaque arête du graphe G.*

Montrer qu'un graphe connexe est Eulérien si et seulement si chacun de ses sommets a un degrée pair.

Proposer un algorithme polynomial qui détermine si le graphe est Eulérien.

Exercice 2 On s'intéresse à 2SAT.

- 1. Proposer une valuation t qui satisfait $\phi_1(u_1, u_2, u_3) = (u_2 \vee \neg u_3) \wedge (\neg u_2 \vee u_3) \wedge (u_2 \vee \neg u_1)$.
- 2. Que se passe-t-il pour $\phi_2(u_1, u_2) = (u_2 \lor u_3) \land (\neg u_2 \lor u_3) \land (\neg u_3 \lor u_1) \land (\neg u_3 \lor \neg u_1)$?
- 3. Montrer que $u \lor v = (\neg u \Rightarrow v) \land (\neg v \Rightarrow u)$.

A partir d'une instance de 2SAT nous construisons un graphe orienté $G_{\phi} = (V, E)$ avec

- un sommet par littéral
- et un arc par implication (en transformant chaque clause par deux implications)
- 4. Dessiner les graphes G_{ϕ_1} et G_{ϕ_2} .
- 5. Montrer qu'il existe une variable u telle que G_{ϕ} contient un cycle entre u vers $\neg u$ dans G, si et seulement si ϕ n'est pas satisfiable.
- 6. Montrer que 2-SAT peut se résoudre en temps polynomial.

Exercice 3 (corrigé page 245) [Chevaliers de la table ronde] Etant donnés n chevaliers, et connaissant toutes les paires de féroces ennemis parmi eux, est-il possible de les placer en temps polynomial autour d'une table circulaire de telle sorte qu'aucune paire de féroces ennemis ne soit côte à côte?

2.2 NP-complétude

Exercice 4 (corrigé page 245)

Définition : *une* chaîne hamiltonienne *est une chaîne qui passe une fois et une seule par chaque sommet du graphe.*

Prouver que le problème suivant est NP-complet.

Donnée: Un graphe non-orienté G de n sommets, deux sommets u et v distincts de G.

Réponse: Décider si G contient une chaine hamiltonienne dont ses extrémités sont les sommets u et v.

2. EXERCICES 15

Exercice 5 (corrigé page 246) Prouver que le problème suivant est NP-complet.

Donnée: Un graphe non-orienté G de n sommets, deux sommets u et v distincts de G.

Réponse: Décider si G contient une chaine de longueur n/2 entre u et v.

Exercice 6 (corrigé page 246) Prouver que le problème suivant est NP-complet. **Donnée**: Un graphe G = (V, E), et un entier k.

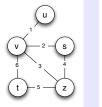
Réponse: Décider s'il existe un arbre couvrant tous les sommets de G ayant moins de k feuilles.

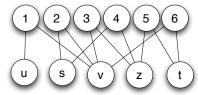
Exercice 7 (corrigé page 247) Soit G = (V, E) un graphe.

- Une couverture de sommets S du graphe G est un sous-ensemble de sommets tel que toutes les arêtes de G sont incidentes à au moins un sommet de S.
- Un ensemble dominant C du graphe G est un sous-ensemble de sommets tel que tout sommet est soit dans C soit voisin d'un sommet de C.

Soit G = (V, E) un graphe connexe. Nous allons construire un graphe G' = (V', E') à partir de G tel que

- $-V'=V\cup E$;
- $E' = E \cup \{(v, a) | v \in V, a \in E, v \text{ est extremité de l'arête a dans } G\}$





Graphe G

Graphe G' (sans les arêtes de G)

- 1. Montrer que si S est une couverture de sommets du graphe G, alors S est un ensemble dominant de G'.
- 2. Montrer que si S' est un ensemble dominant de G', alors il existe une couverture $S \subseteq V$ du graphe G et de cardinalité inférieure ou égale à S'.
- 3. Exprimer le problème de minimisation de l'ensemble dominant sous forme de problème de décision.
- 4. Montrer que ce problème est dans NP.
- 5. Montrer que ce problème est dans NP-complet.

Exercice 8 (corrigé page 247) Nous allons nous concentrer sur le problème du k-centre : étant donné un ensemble de villes dont les distances sont spécifiées, choisir k villes afin d'installer des entrepôts de façon à minimiser la distance maximale d'une ville à l'entrepôt le plus proche. Un tel ensemble de k villes est appelé k-centre.

Le problème associé de décision est le suivant :

Donnée: Un graphe complet K = (V, E) muni d'une fonction de poids w sur les arêtes, et des entiers strictement positifs k et b.

Réponse: Décider s'il existe un ensemble S de sommets tel que |S| = k et tel que tout sommet v de V satisfait la condition suivante $min\{w(v,u): u \in S\} \leq b$.

- 1. Montrer que k-centre est dans NP.
- 2. *Montrer que k-*CENTRE *est NP-complet sachant que* DOMINANT *est NP-complet.*

3 Notes bibliographiques

Lectures conseillées Le livre [Garey & Johnson, 1979] recense plus de 300 problèmes NP-complets et est d'une lecture assez agréable. On peut trouver plusieurs mises à jour de cette liste sur le web.

Bibliographie Ce chapitre est repris du polycopié [Cori et al., 2010] du cours INF550 de l'école polytechnique.

Index

```
2 – SAT, 4
3-COLORABILITE, 10
3-SAT, 3
```

circuit

hamiltonien d'un graphe, 7 CIRCUIT HAMILTONIEN, 7 CIRCUIT LE PLUS LONG, 9 CLIQUE, 6 coloriage d'un graphe, 10 COUPURE MAXIMALE, 6

NAE3SAT, 5 NAESAT, 4 nombre chromatique d'un graphe, 10 NP, 3 NP-complétude, 3–7, 9–13

PARTITION, 12

RECOUVREMENT DE SOMMETS, 6

SAC A DOS, 12 SAT, 3, 4 satisfaction d'une formule, 3 SOMME DE SOUS ENSEMBLE, 11 STABLE, 5

VOYAGEUR DE COMMERCE, 9

Bibliographie

[Cori et al., 2010] Cori, R., Hanrot, G., Kenyon, C., & Steyaert, J.-M. (2010). Conception et analyse d'algorithmes. Cours de l'Ecole Polytechnique, Cours de l'Ecole Polytechnique.

[Garey & Johnson, 1979] Garey, M. R. & Johnson, D. S. (1979). *Computers and Intractability: A Guide to the Theory of NP-Completeness*. W. H. Freeman.