
Foundations of Computer Science
Logic, models, and computations

Chapter: Basic of complexity analysis of algorithms

Course CSC_41012_EP

of l’Ecole Polytechnique

Olivier Bournez

bournez@lix.polytechnique.fr

Version of August 20, 2024

2

Basic of complexity analysis of
algorithms

The previous discussions have been concerned with the existence or non-existence
of algorithms for solving a given problem, but ignoring an essential practical aspect:
the resources needed for its execution, that is to say for example the computation
time or the memory that is required on the machine for its execution.

The objective of the next chapter is to focus on one resource, the computation
time. In the later chapters, we will evoke other resources such as memory space.
We could also talk about parallel time, that is to say the time required on a parallel
machine.

Let us however start by better understanding the difference between previous
chapters and the following chapters. In previous chapters, we were talking about
computability, that is to say we asked about the existence of an algorithmic solution
to a given problem. We will now focus on complexity: That is to say, we focus now on
decidable problems, i.e., problems for which an algorithm is known. The question
is to decide whether there is an efficient algorithm.

This leads first to the question what one calls efficient, and how this efficiency
can be measured. First of all, we think it is important that our reader has clear ideas
on what is called the complexity of an algorithm and the complexity of a problem,
which are not the same concept.

Remark 1 Even if we will talk about average case complexity in this chapter, we
will not need this in the coming chapters : We introduce it here mainly to explain
why average case complexity is not used much in practice (at least in complexity
theory).

1 Complexity of algorithm

In this chapter, we mostly consider a (decision or general) problem P for which one
knows an algorithm A : This algorithm is known to be correct, and is terminating. It
takes as input some data d , and it produces as its output a result A (d) by using some
resources (so we will only talk about decidable problems for decision problems).

3

4

Example 1 The problem P could for example consist in determining if a given
number v is among a list of nb numbers.

It is clear that one can come up with an algorithm A to solve this problem.
For example:

• one uses a variable res initially set to 0;

• one scans the list, and for each element:

– one checks if this element is the number v:

* it this is the case, one sets the variable res to 1;

• at the end of the loop, on returns r es.

This algorithm certainly is not the most efficient that one can think of. First,
we could stop as soon as one sets res to 1, since the answer is known. Further-
more, one can clearly do something different, such as a dichotomic search (a
recursive algorithm) if one knows that the list is sorted.

1.1 First considerations

One always measures the efficiency, that is to say the complexity of an algorithm in
terms of an elementary measure with integer value: This can be the number of in-
structions executed, the size of the memory that is used, the number of comparisons
made, or any other measure.

One just needs that, given an input d , one knows how to associate the value of
this measure, denoted by µ(A ,d), to the algorithm A on input d . For example, for
a sorting algorithm working with comparisons, if the elementary measure µ is he
number of comparisons done, µ(A ,d) is the number of comparison performed on
the input d (a sequence of integers) by an algorithm A to produce the result A (d)
(the sorted list).

The function µ(A ,d) depends of A , but also of the input d . The quality of an
algorithm A is hence not an absolute criterion, but a quantitative function µ(A , .)
from the inputs to the integers.

1.2 Worst case complexity of an algorithm

In practice, to understand the function µ(A , .), one often aims to evaluate the com-
plexity for the inputs of a given size: There is often a function size that maps to every
input data d , an integer size(d), that corresponds to some natural parameter. For ex-
ample, this function can be the number of elements for a sorting algorithm, the size
of a matrix for computing the determinant, or the sum of the lengths of the strings
for a concatenation algorithm.

To go from a function from the inputs to the integers to a function from the in-
tegers (the sizes) to the integers, one then considers the worst case complexity: The

2. COMPLEXITY OF A PROBLEM 5

complexity µ(A ,n) of algorithm A on inputs of size n is defined as

µ(A ,n) = max
d input with size(d)=n

µ(A ,d).

In words, the complexity µ(A ,n) is the worst complexity observed on inputs of
size n.

By default, when one talks about the complexity of an algorithm, one considers
the worst case complexity as above.

If one does not know more on the inputs, there is no real hope to do better than
this pessimistic view of life, and evaluating the complexity in the worst case (the best
case has no particular practical meaning, and in this context, pessimism is far more
significant).

1.3 Average case complexity of some algorithm

In order to say more, one must know more about the inputs. For example, that they
are distributed according to some probabilistic distribution.

In that case, we can then talk about average case complexity: The average case
complexity µ(A ,n) of algorithm A of inputs of size n is defined as

µ(A ,n) = E[µ(A ,d)|d inputs with size(d) = n],

where E denotes expectation (the average).
This is equivalent to

µ(A ,n) = ∑
d inputs with size(d)=n

π(d)µ(A ,d),

where π(d) denotes the probability of having this input of size n.
In practice, if the worst case might be rare, and the average case analysis may

seem more appealing.
But first, it is important to know that one cannot talk about expectation/average

without a probability distribution on the inputs. This implies on the one hand that
the distribution of the data given as input must be known, something which is very
delicate to predict or estimate in practice. How to anticipate for example the lists
that will be given to a sorting algorithm?

One sometimes makes the hypothesis that the inputs have same probability (when
this makes sense, as in the case where one wants to sort n numbers between 1 and
n) but this is often very arbitrary, and not totally justifiable.

On the other hand, as we will see, computing the average case complexity is often
more delicate to deal with than worst case analysis.

2 Complexity of a problem

One can also talk about the complexity of a problem which provides a way to talk
about the optimality of an algorithm to solve a given problem.

6

One fixes a problem P , for example, the problem of sorting a list of integers. Let
Al g (P) be the class of all algorithms that solves P : an algorithm A of Al g (P) is an
algorithm that answers to the specification of the problem P : For every input d , it
produces a correct answer A (d).

The complexity of the problem P is defined as the infinimum1 of the complexity
of the algorithms of Al g (P). Consequently, an algorithm A is optimal if its com-
plexity is equal to the optimal complexity of Al g (P): That is to say, there is no other
algorithm B ∈ Al g (P) with a smaller complexity. We write µ(P ,n) for the complex-
ity of some optimal algorithm2 on inputs of size n .

In other words, we do not only make the inputs of size n vary, but also the algo-
rithm. One considers the best algorithm that solves the problem. The best being the
one with the best complexity in terms of previous definition, and hence in the worst
case. This is hence the complexity of the best algorithm in the worst case.

The interest of this definition is to be able to state that some algorithm is optimal:
That is to say, that an algorithm is such that any other correct algorithm would be
less efficient by definition.

3 Example : Computing the maximum

We will illustrate the previous discussion with an example: The problem of comput-
ing the maximum. The problem is the following: We are given a list of non-negative
integers e1,e2, · · · ,en , with n ≥ 1, and we want to output M = max1≤i≤n ei , that is the
maximum of these integers.

3.1 Complexity of a first algorithm

Assuming that the input is in an array, the following Java function solves the prob-
lem:

s t a t i c int max(int T []) {
int l = T . length −1;
int M = T[l] ;
l = l −1;
while (l ≥ 0) {

i f (M < T[l]) M = T[l] ;
l = l −1;

}
return M;

}

Assume that our elementary measure is the number of comparisons. We make
2 comparisons per iteration of the loop, which is executed n −1 times, plus 1 last of
type l ≥ 0 when l has the value 0. We therefore make µ(A ,n) = 2n −1 comparisons

1If it exists.
2Assuming it exists. It may not exist.

3. EXAMPLE : COMPUTING THE MAXIMUM 7

for this algorithm A , where n is the size of the input, that is to say the number of
integers in the list e1,e2, · · · ,en . This number is independent of the input d , and
hence µ(A ,n) = 2n −1.

In contrast, if our elementary measure µ is the number of assignments, we ana-
lyze the complexity as follows: we make 3 assignments before the while loop. Each
iteration of the loop does either 1 or 2 assignments according to the result of the
test M<T[l]. We hence have for an input d of size n, n + 2 ≤ µ(A ,d) ≤ 2n + 1: The
minimal value is reached for a list that has its maximum in its last element, and the
maximum value for a list of n different numbers sorted in decreasing order. So here
µ(A ,d) depends on the input d . The worst case complexity is hence µ(A ,n) = 2n.

3.2 Complexity of a second algorithm

If the input is in an array, defined for example by:

class L i s t {
int val ; / / The element
L i s t next ; / / La s u i t e

L i s t (int val , L i s t next) {
t h i s . val = val ; t h i s . next = next ;

}
}

the following function solves the problem.

s t a t i c int max(L i s t a) {
int M = a . val ;
for (a = a . next ; a ̸= null ; a = a . next) {

i f (a . val > M)
M = a . val ; }

return M;
}

Assume that our elementary measure is the number of comparisons between
integers (we are not counting the comparisons between variables of type “reference”
on the type List). We make one comparison per iteration of the loop, that is executed
n −1-times, so n −1 comparisons in total.

The complexity µ(A ,n) of this algorithm A on the inputs of size n is hence n−1.

3.3 Complexity of the problem

One can wonder if it is possible to do better, and solve the problems with less than
n −1 comparisons: The answer is no, under the condition that one restricts to algo-
rithms that work only with comparisons3. Indeed, this algorithm is optimal in terms
of number of comparisons.

3If the inputs are integers, and arithmetic is authorized, it may be possible to decrease the number of
comparisons. We will not discuss this type of algorithms here.

8

Consider the class C of algorithms that solve the problem of finding the maxi-
mum of n elements by using as decision criteria the comparisons between elements,
with the above hypothesis.

Let us start by stating the following property:

Lemma 1 Any algorithm A of C is such that any element distinct from the max-
imum is compared at least once to an element greater then itself.

Proof: Indeed, let i0 be the index of the maximum M returned by the algorithm
on a list L = e1e2 · · ·en , that is ei0 = M = max1≤i≤n ei . We reason by contradiction:
Let j0 ̸= i0 such that e j0 is not compared to any element greater than itself. Then the
element e j0 has then not been compared to the maximum ei0 .

Consider the list L′ = e1e2 · · ·e j0−1M +1e j0+1 · · ·en obtained from L by replacing
the element of index j0 by M +1.

The algorithm A will do exactly the same comparisons on L and on L′, without
comparing L′[j0] with L′[i0] and hence will return L′[i0], so an incorrect result. We
reach a contradiction which proves the property. □

It follows from this lemma that it is not possible to find the maximum of n el-
ements with less than n − 1 comparisons between integers. In other words, the
complexity of the problem P of computing the maximum on the inputs of size n
is µ(P ,n) = n −1.

The previous algorithm works with n −1 such comparisons and is thus optimal
for this measures of complexity.

3.4 Average case complexity of the algorithm

If our elementary measure µ is the number of assignments inside the for loop, one
sees that the complexity depends on the input.

To evaluate its average case complexity, one needs to make some hypothesis on
the distribution of inputs. Suppose that the lists given as inputs are permutations of
{1,2, · · · ,n}, and that the n! permutations all have same probability.

One can prove [Sedgewick & Flajolet, 1996, Froidevaux et al., 1993] that the av-
erage case complexity on inputs of size n for this elementary measure µ is then Hn ,
the nth harmonic number: Hn = 1+ 1

2 + 1
3 + . . .+ 1

n . The number Hn is of order logn
when n tends to infinity.

However, the computation is rather technical and would be laborious in the
framework of this course.

Let us simplify the discussion, and let us focus on an even simpler problem: In-
stead of finding the maximum in the list e1,e2, . . . ,en , with n ≥ 1, suppose we are
given a list of integers of {1,2, . . . ,k} and some integer 1 ≤ v ≤ k, and we want to
determine if there is some index 1 ≤ i ≤ n with ei = v .

The following algorithm solves the problem:

s t a t i c boolean f ind (int [] T , int v) {
for (int i = 0 ; i < T . length ; i ++)

i f (T[i] == v)

4. ASYMPTOTICS 9

return true ;
return f a l s e ;

}

Its worst case complexity in terms of elementary instructions is linear in n, since
the loop is executed n times in the worst case.

Observe that the lists given as inputs are functions from {1,2, . . . ,n} to {1,2, . . . ,k},
that we will call array. Suppose that each of these arrays has the same probability to
be the input.

Observe that there are kn arrays. Among those, (k −1)n do not contain the ele-
ment v and in that case, the algorithm performs exactly n iterations. In the contrary
case, the integer is in the array, and its first occurrence is then i with probability

(k −1)i−1

k i

and the algorithms stops after i iterations.
In total, we have a average case complexity of

C = (k −1)n

kn ×n +
n∑

i=1

(k −1)i−1

k i
× i

But for all x we have
n∑

i=1
i xi−1 = 1+xn(nx −n −1)

(1−x)2

(to establish this result, it is sufficient to take derivative of
∑n

i=1 xi = 1−xn+1

1−x) and
hence

C = n
(k −1)n

kn +k

(
1− (k −1)n

kn (1+ n

k
)

)
= k

(
1−

(
1− 1

k

)n)

4 Asymptotics

4.1 Asymptotic complexity

As we have seen in the previous example, a precise and complete study of the com-
plexity of a problem can be very fastidious, and often hard. This is why the focus
in computer science is often on the order of growth of the (asymptotic) complex-
ity when the size n of the inputs becomes very big. Such an analysis is often quite
representative of the performance of the algorithm, even if of course, talking about
asymptotics up to some constants has its limits.

4.2 Landau notations

As it is the custom in computer science, one often reasons on the order of growth
using the O (.) notation. We recall the following notations:

10

Definition 1 (Notation O (.)) Let f and g be two functions f , g : N→ R>0. We
write f (n) =O

(
g (n)

)
if there exist integers c and n0 such that for all n ≥ n0,

f (n) ≤ cg (n).

Intuitively, this means that f is lower than g up to some multiplicative constant,
for sufficiently big input instances.

In a similar way, one defines:

Definition 2 (Notations o,Ω,Θ) Let f and g be two functions f , g :N→R>0.

• We write f (n) = o(g (n)) if for all positive real numbers c there exists an
integer n0 such that for all n ≥ n0,

f (n) ≤ cg (n).

• We write f (n) = Ω(g (n)) if there exist integers c and n0 such that for all
n ≥ n0,

cg (n) ≤ f (n).

(we have in this case g =O
(
(f)

)
)

• We write f (n) =Θ(g (n)) when f (n) =O
(
g (n)

)
and f (n) =Ω(g (n)) hold.

Exercise 1 (solution on page 233) Let f and g be two functions such that

lim
n→∞

f (n)

g (n)

exists and is a number c > 0. Prove that f (n) =Θ(g (n)).

Exercise 2 Prove:

• If f =O
(
g
)

and g =O (h) then f =O (h).

• If f =Ω(g) and g =Ω(h) then f =Ω(h).

• If f =Θ(g) and g =Θ(h) then f =Θ(h).

5. BIBLIOGRAPHIC NOTES 11

Exercise 3 (solution on page 233) Give some examples of algorithms of re-
spective complexity (in terms of number of instructions):

• linear, that is O(n)

• O(n logn)

• cubic, that is O(n3)

• non-polynomial

Exercise 4 (solution on page 234) Suppose that one has algorithms with
the complexities listed below (assuming that this corresponds to some exact
times). How much are these algorithms slowed down when (a) the size of
the input is doubled (b) the size of the input is increased by 1.

1. n2

2. n3

3. 100n2

4. n logn

5. 2n

5 Bibliographic notes

Suggested readings To go further on the notions of this chapter, we suggest to read
the first chapters of [Kleinberg & Tardos, 2006], or of the course INF421 (old version)
of École Polytechnique.

Bibliography The text of this chapter is taken from a text that we wrote for the lec-
ture notes of INF412. It is inspired by the introduction of the textbook [Kleinberg & Tardos, 2006].
The analysis of the computation of the maximum and its variations is based on the
book [Froidevaux et al., 1993].

Index

Ω, see Landau notations, 10
Θ, see Landau notations, 10
A (d), 3
µ(A ,d), 4, see elementary measure
µ(A ,n), 5, see complexity of an algorithm

at the average case, see complex-
ity of an algorithm at the worst
case

o, see Landau notations, 10

algorithm, 3
average case complexity, 5

complexity, 3
asymptotic, 9
of a problem, 5
of an algorithm, 5

computability, 3
computation

time, 3

dichotomic search, 4

efficient, 3
elementary measure, 4

notation, see µ(A ,d)

memory, 3

optimal, 6

problem, 3

resources, 3

size, 4

worst case complexity, 4

12

Bibliography

[Froidevaux et al., 1993] Froidevaux, C., Gaudel, M., & Soria, M. (1993). Types de
donnees et algorithmes. Ediscience International.

[Kleinberg & Tardos, 2006] Kleinberg, J. M. & Tardos, É. (2006). Algorithm design.
Addison-Wesley.

[Sedgewick & Flajolet, 1996] Sedgewick, R. & Flajolet, P. (1996). Introduction à
l’analyse d’algorithmes. International Thomson Publishing, FRANCE.

13

	Complexity of algorithm
	First considerations
	Worst case complexity of an algorithm
	Average case complexity of some algorithm

	Complexity of a problem
	Example : Computing the maximum
	Complexity of a first algorithm
	Complexity of a second algorithm
	Complexity of the problem
	Average case complexity of the algorithm

	Asymptotics
	Asymptotic complexity
	Landau notations

	Bibliographic notes

