
TD7 - Pale machine (midterm)
INF411

1 Images and hash functions

1.1 Checking equality between two images

1.2 Removing duplicates

2 Red-Black binary trees

2.1 Validity for red nodes

2.2 Validity for black nodes

2.3 Validity of a Red-Black tree

2.4 Construction of a tree from a sorted list: height computation

2.5 Construction of the tree starting from a sorted list

Before starting :

Create a new project “TD7”.

Download TD7.zip and extract the files in the project folder.

Remark: the exercices 1 and 2 are independent.

The Java documentation is available via the provided link on the french webpage

1 Images and hash functions
The goal of this exercise is to implement an efficient solution for removing duplicates in a
collection of input images.

We will deal with binary images (pixels are either blakc or white) that we will represent with the
class BinaryImage.

class BinaryImage {

 public static final boolean WHITE = false;

 public static final boolean BLACK = true;

 /** 2D array representing the image pixels */

file:///home/amturing/Dropbox/doc/Enseignement/2023/INF411b/2023/TD7/TD7.zip

In order to efficiently check the existence of duplicates we will make use of hash tables. We
remind you the existence of the class HashSet<K> provided by Java, allowing us to store a set of
elements whose type is K.

1.1 Checking equality between two
images
In the class BinaryImage, implement method boolean equals(Object o) which returns true if
the current image if equal to the image o (the color of their pixels do coincide), false otherwise.

Test your code with the class Test11.

Submit the file BinaryImage.java via the form on the french webpage.

1.2 Removing duplicates
In the class BinaryImage, complete method int hashCode() which return the hash value of the
image. Two images that are equal should have the same hash value.

In the class BinaryImage, complete method BinaryImage[]
deleteDuplicates(BinaryImage[] t) which takes as input an array t of images and returns a
new array without duplicates. More precisely is the array t has size k and contains d distinct
images then the output array will have size d and it will do not contain any duplicate.

Suggestion : the class HashSet<K> provides an implementation, based on hash tables, of a set storing
elements of type K (in particular, this class provides methods for adding a new element and checking
whether a given element does exist in the set).

The your code with the class Test12.

Submit the file BinaryImage.java via the form on the french webpage.

2 Red-Black binary trees

 final boolean[][] pixels;

 /** Create an image of n rows and m columns */

 BinaryImage(int n, int m) {

 assert n >= 1 && m >= 1;

 this.pixels = new boolean[n][m];

 }

}

In this exercise we consider red-black trees which are a variant of binary search trees allowing to
get well balanced trees: the height of a red-black tree containing n nodes is O(log2n).

A red-black tree is defined as binary search tree whose node have colors (red or black) satisfying
the conditions below:

1. the root node is black and all leaves are black,

2. the children of a red nodes are black,

3. for each node v in the tree, all paths from v to the leaves contain the same number of black
nodes.

A tree (of a sub-tree) is represented by its root using the class RBT (Red-Black Tree). A node
contains a field String element (the data to store), and tow references to the left and right
children. Each node also stores the information concerning its color (field boolean color). The
colors red and black are encoded by two constants final static boolean RED and final
static boolean BLACK.

As already done (see TD6 and related lecture), the empty tree is represented by the null
reference. The leaves (which must be black) are represented by sentinel nodes, encoded by null
(please refer to small black squares in the image below).

Two examples of Red-Black trees:

class RBT extends IntegerPoint2D {

 final static boolean RED = true;

 final static boolean BLACK = false;

 boolean color;

 RBT left, right;

 String element;

 /* Construct a node of a Red-Black tree */

 RBT(boolean color, RBT left, String element, RBT right) {

 this.color = color;

 this.left = left;

 this.element = element;

 this.right = right;

 }

}

For the debugging of your code it could be useful to get a visual layout of a given tree t. It
suffices to use the instruction

new DrawBinaryTree(t);

which computes a visual layout of the tree as depicted in the images aboe.

The main goal of this exercise is to implement a function for checking whether an input tree is a
valid red-black tree (we assume that the tree is a valid binary search tree).

2.1 Validity for red nodes
In the class RBT, complete method boolean isRedValid(RBT t) which returns true if the tree t
satisfies condition (2) for all red nodes.

The your code with the class Test21.

Submit the file RBT.java (go to the french webpage).

2.2 Validity for black nodes
In the class RBT, complete method boolean isBlackValid(RBT t) which returns true if the
tree t satisfies condition (3) of the definition given above.

Test your code wih the class Test22.

Submit RBT.java (go to the french webpage).

2.3 Validity of a Red-Black tree

In the class RBT, complete method boolean isValid(RBT t) which returns true if the tree t is
a red-black tree.

Test your code wih the class Test23.

Submit RBT.java (go to the french webpage).

2.4 Construction of a tree from a sorted
list: height computation
In order to construct a red-black tree starting from a sorted list a simple solution is to proceed in
the following way (illustrated by the pictures below). First we estimate the height of the red-
black tree (assuming that we seek for a perfect balance). Then we construct a binary search tree
whose nodes are all black: the only exception is represented by nodes in the last level (the one
that could be not full) which could be red.

A few examples of red-black trees of different sizes are depicted below:

In the class RBT, complete method int estimateBlackHeight(int n) which returns the integer
h ≥ 0 satisfying (for n ≥ 0) :

2h − 1 ≤ n < 2h + 1 − 1

Remak : the function above allows to estimate the number of full levels in the tree. We assume that for the
empty tree the function above returns 0 (no inner nodes) and for the tree of size 1 (only one inner node, the
root) it returns 1.

Test your code wih the class Test24.

Submit RBT.java (go to the french webpage).

2.5 Construction of the tree starting from
a sorted list
In the class RBT, complete method RBT ofList(LinkedList<String> l) which returns a red-
black tree containing all elements of the list l as described above.

Remarke : the function ofList(LinkedList<String> l) is allowed to modify the list l (if this is useful for
you).

Test your code wih the class Test25.

Submit RBT.java (go to the french webpage).

