
École Polytechnique 2024–2025

CSC_52064 Compilation
Mini Java

version 2 — February 3, 2025

The goal is to build a compiler for a tiny fragment of the Java language, called Mini
Java in the following, to x86-64 assembly. This fragment contains integers, Booleans,
strings, and objects. It is compatible with Java. This means that Java can be used as a
reference when needed.

The syntax of Mini Java is described in Sec. 1. A parser is provided (for both OCaml
and Java). You have to implement static type checking (Sec. 2) and code generation
(Sec. 3).

1 Syntax
We use the following notations in grammars:

⟨rule⟩⋆ repeats ⟨rule⟩ an arbitrary number of times (including zero)
⟨rule⟩⋆t repeats ⟨rule⟩ an arbitrary number of times (including zero), with sep-

arator t
⟨rule⟩+ repeats ⟨rule⟩ at least once
⟨rule⟩+t repeats ⟨rule⟩ at least once, with separator t
⟨rule⟩? use ⟨rule⟩ optionally
(⟨rule⟩) grouping

Be careful not to confuse “⋆” and “+” with “*” and “+” that are Java symbols. Similarly,
do not confuse grammar parentheses with terminal symbols (and).

1.1 Lexical Conventions

Spaces, tabs, and newlines are blanks. Comments are of two kinds:

• delimited by /* and */ (and not nested);

• starting from // and extending to the end of line.

Identifiers follow the regular expression ⟨ident⟩:

⟨digit⟩ ::= 0–9
⟨alpha⟩ ::= a–z | A–Z
⟨ident⟩ ::= (⟨alpha⟩ | _) (⟨alpha⟩ | _ | ⟨digit⟩)⋆

The following identifiers are keywords:

1

boolean class else extends false for if
instanceof int new null public return static
this true void

Integer literals follow the regular expression ⟨integer⟩:
⟨integer⟩ ::= 0 | 1–9 ⟨digit⟩⋆

String literals are written between quotes ("). There are three escape sequences: \" (for
the character "), \n (for a newline character), and \\ (for the character \).

1.2 Syntax

The grammar of source files is given in Fig. 1 and Fig. 2. The entry point is ⟨file⟩.
Associativity and priorities are given below, from lowest to strongest priority.

operation associativity priority
= right lowest
|| left
&& left
==, != left
>, >=, <, <=, instanceof left ↓
+, - left
*, /, % left
- (unary), !, cast right
. left strongest

⟨file⟩ ::= ⟨class⟩⋆ ⟨class_Main⟩ EOF
⟨class⟩ ::= class ⟨ident⟩ (extends ⟨ident⟩)? { decl⋆ }
⟨decl⟩ ::= ⟨type⟩ ⟨ident⟩ ; | ⟨constructor⟩ | ⟨method⟩

⟨constructor⟩ ::= ⟨ident⟩ (⟨params⟩?) { ⟨stmt⟩⋆ }
⟨method⟩ ::= (⟨type⟩ | void) ⟨ident⟩ (⟨params⟩?) { ⟨stmt⟩⋆ }

⟨params⟩ ::= ⟨type⟩ ⟨ident⟩ | ⟨type⟩ ⟨ident⟩ , ⟨params⟩
⟨type⟩ ::= boolean | int | ⟨ident⟩

⟨class_Main⟩ ::= class Main {
public static void main(String ⟨ident⟩ []) { ⟨stmt⟩⋆ }
}

Figure 1: Grammar of Mini Java (files).

Syntactic Sugar.

• if (e1) e2 is sugar for if (e1) e2 else;.

• A call m(e1,...,e2) is sugar for this.m(e1,...,e2).

• In a loop for (e1;e2;e3), the expression e2 is true when omitted.

2

⟨expr⟩ ::= ⟨integer⟩ | ⟨string⟩ | true | false
| this
| null
| (⟨expr⟩)
| ⟨ident⟩
| ⟨expr⟩ . ⟨ident⟩
| ⟨ident⟩ = ⟨expr⟩
| ⟨expr⟩ . ⟨ident⟩ = ⟨expr⟩
| ⟨ident⟩ (⟨lexpr⟩?)
| ⟨expr⟩ . ⟨ident⟩ (⟨lexpr⟩?)
| new ⟨ident⟩ (⟨lexpr⟩?)
| ! ⟨expr⟩
| - ⟨expr⟩
| ⟨expr⟩ ⟨binop⟩ ⟨expr⟩
| (⟨type⟩) ⟨expr⟩
| ⟨expr⟩ instanceof ⟨type⟩

⟨binop⟩ ::= == | != | < | <= | > | >= | + | - | * | / | % | && | ||
⟨lexpr⟩ ::= ⟨expr⟩ | ⟨expr⟩ , ⟨lexpr⟩

⟨stmt⟩ ::= ;
| ⟨expr⟩ ;
| ⟨type⟩ ⟨ident⟩ ;
| ⟨type⟩ ⟨ident⟩ = ⟨expr⟩ ;
| if (⟨expr⟩) ⟨stmt⟩
| if (⟨expr⟩) ⟨stmt⟩ else ⟨stmt⟩
| for (⟨expr⟩? ; ⟨expr⟩? ; ⟨expr⟩?) ⟨stmt⟩
| { ⟨stmt⟩⋆ }
| return ⟨expr⟩? ;

Figure 2: Grammar of Mini Java (expressions and statements).

3

2 Static Typing
Static types τ are given by the following grammar:

τ ::= void | boolean | int | C | typenull

where C is a class. It is convenient to consider void as a type, even if it is not a type in
the syntax. Beside, typenull is introduced to give a type to null. We say that a type
τ is well formed, and we write τ wf , if it is either boolean, or int, or Object, or String,
or a class C declared in the source file.

Inheritance and Subtyping. We note C1 −→ C2 the relation “the class C1 is a sub-
class of class C2”, which is the reflexive-transitive closure of the extends declarations.

There are two predefined classes: Object and String. When a class does not inherit
from another class with extends, it implicitly inherits from Object. The class String
inherits from Object. The class Object does not inherit from any other class.

The subtyping relation τ1 ⊑ τ2 means “the type τ1 is a subtype of type τ2” and is
defined as follows:

τ ∈ {boolean, int}
τ ⊑ τ

C1 −→ C2

C1 ⊑ C2 typenull ⊑ C

We can interpret τ1 ⊑ τ2 as “any value of type τ1 can be used when is value of type τ2 is
expected”. We say that types τ1 and τ2 are compatible, and we write τ1 ≡ τ2, if τ1 ⊑ τ2
or τ2 ⊑ τ1. Subtyping extends to lists of types as follows:

(τ1, . . . , τn) ⊑ (τ ′1, . . . , τ
′
n) if and only if τi ⊑ τ ′i for all i ∈ 1, . . . n.

2.1 Attributes, Constructors, and Methods

We write C{ τ x } the fact that class C contains an attribute x of type τ . This attribute
is either declared in class C, or inherited from the super-class of C.

We write C{ C(τ1, . . . , τn) } the fact that class C has a constructor with type C(τ1, . . . , τn).
In Mini Java, each class has exactly one constructor. (There is no overloading of con-
structors.) When no constructor is explicitly declared, an implicit constructor with no
parameters is assumed.

We write C{ τ m(τ1, . . . , τn) } the fact that class C has a method m with parameters
of types τ1, . . . , τn and return type τ . This method is either declared in class C, or
inherited from the super-class of C. In Mini Java, each class has at most one method
with a given name m. (There is no overloading of methods.)

2.2 Typing Rules for Expressions

In the following, C0 stands for the current class, that is the class in which we are currently
performing type checking.

A typing environment Γ is a sequence of variable declarations τ1 x1, . . . , τn xn. It
is used only for local variables, parameters of constructors and methods, and this. The

4

judgment Γ ⊢ e : τ means “in environment Γ, expression e is well typed of type τ ”. It is
defined as follows:

c constant of type τ

Γ ⊢ c : τ Γ ⊢ null : typenull
C this ∈ Γ

Γ ⊢ this : C

τ x ∈ Γ

Γ ⊢ x : τ

x ̸∈ Γ C0{ τ x }
Γ ⊢ x : τ

Γ ⊢ e : C C{ τ x }
Γ ⊢ e.x : τ

τ1 x ∈ Γ Γ ⊢ e2 : τ2 τ2 ⊑ τ1
Γ ⊢ x = e2 : τ1

x ̸∈ Γ C0{ τ1 x } Γ ⊢ e2 : τ2 τ2 ⊑ τ1
Γ ⊢ x = e2 : τ

Γ ⊢ e1 : C C{ τ1 x } Γ ⊢ e2 : τ2 τ2 ⊑ τ1
Γ ⊢ e1.x = e2 : τ1

Γ ⊢ e : int
Γ ⊢ - e : int

Γ ⊢ e : boolean
Γ ⊢ !e : boolean

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2 τ1 ≡ τ2 op ∈ {==, !=}
Γ ⊢ e1 op e2 : boolean

Γ ⊢ e1 : int Γ ⊢ e2 : int op ∈ {<, <=, >, >=}
Γ ⊢ e1 op e2 : boolean

Γ ⊢ e1 : int Γ ⊢ e2 : int op ∈ {+, -, *, /, %}
Γ ⊢ e1 op e2 : int

Γ ⊢ e1 : boolean Γ ⊢ e2 : boolean op ∈ {&&, ||}
Γ ⊢ e1 op e2 : boolean

Γ ⊢ e1 : String Γ ⊢ e2 : τ2 τ2 ∈ {int, String}
Γ ⊢ e1 + e2 : String

Γ ⊢ e1 : τ1 Γ ⊢ e2 : String τ1 ∈ {int, String}
Γ ⊢ e1 + e2 : String

Γ ⊢ e : String
Γ ⊢ System.out.print(e) : void

Γ ⊢ e1 : String Γ ⊢ e2 : String
Γ ⊢ e1.equals(e2) : boolean

Γ ⊢ e : C Γ ⊢ ei : τi C{ τ m(τ ′1, . . . , τ
′
n) } ∀i, τi ⊑ τ ′i

Γ ⊢ e.m(e1, . . . , en) : τ

Γ ⊢ ei : τi C{ C(τ ′1, . . . , τ
′
n) } ∀i, τi ⊑ τ ′i

Γ ⊢ new C(e1, . . . , en) : C

Γ ⊢ e : τ ′ τ ≡ τ ′

Γ ⊢ (τ)e : τ
Γ ⊢ e : τ ′ τ ≡ τ ′ τ ′ ∈ {C, typenull}

Γ ⊢ e instanceof τ : boolean

5

2.3 Typing Rules for Statements

The judgment Γ ⊢ s → Γ′ means “in environment Γ, the statement s is well typed and
defines a new environment Γ′”. It is defined as follows:

Γ ⊢ e : τ

Γ ⊢ e; → Γ

x ̸∈ Γ τ wf

Γ ⊢ τ x; → Γ, τ x

x ̸∈ Γ τ wf Γ ⊢ e : τ ′ τ ′ ⊑ τ

Γ ⊢ τ x = e; → Γ, τ x

Γ ⊢ e : boolean Γ ⊢ s1 → Γ1 Γ ⊢ s2 → Γ2

Γ ⊢ if (e) s1 else s2 → Γ

Γ ⊢ e1; → Γ Γ ⊢ e2 : boolean Γ ⊢ e3; → Γ Γ ⊢ s → Γ1

Γ ⊢ for(e1; e2; e3) s → Γ

Γ ⊢ ; → Γ

Γ ⊢ s1 → Γ1 Γ1 ⊢ s2 → Γ2

Γ ⊢ s1; s2 → Γ2

Γ ⊢ i → Γ′

Γ ⊢ {i} → Γ Γ ⊢ return; → Γ

Γ ⊢ e : τ

Γ ⊢ return e; → Γ

2.4 Typing Rules for Classes

2.4.1 Existence and Uniqueness

To be well typed, a file must satisfy the following constraints:

• each class is defined only once;

• a class must inherit from an existing class, different from String;

• the inheritance relation must not contain a cycle.

Classes can appear in any order. At any point we can refer to a class which is declared
later in the file. Other constraints are as follows:

• attributes of a given class must be distinct;

• each class has at most one constructor (no overloading);

• each class has at most one method of a given name (no overloading).

Overriding. If a method m in class C is overridden is class C ′, then it must have the
same type parameters and the same return type in both classes.

2.4.2 Typing Rules for Attributes, Constructors, and Methods

Let C0 be the current class. The initial typing environment is Γ0 = C0 this.

Typing Attributes. For the declaration of an attribute τ x, the type τ must be well
formed.

6

Typing Constructors. A constructor C0(τ1 x1, . . . , τn xn){s} if well typed if identi-
fiers xi are pairwise distinct, if all types τi are well formed, and if the block s is well typed
in the environment Γ0, τ1 x1, . . . , τn xn.

Typing Methods. A method τ m(τ1 x1, . . . , τn xn){s} is well typed if all identifiers
xi are pairwise distinct, if all types τi are well formed, and if the block s is well typed in
the environment Γ0, τ1 x1, . . . , τn xn.

Beside, any occurrence of return in s must return a value of a subtype of τ . Finally,
when τ is not void, any execution flow is s must contain a return statement.

2.5 Hints

It is strongly advised to proceed in three steps:

1. declare all classes and check for uniqueness of classes;

2. declare inheritance relations (extends) attributes, constructors, and methods;

3. type check the body of constructors and methods.

3 Code Generation
The aim is to produce a simple but correct compiler. In particular, we do not attempt
to do any kind of register allocation, but simply use the stack to store any intermediate
calculations. Of course, it is possible, and even desirable, to use some x86-64 registers
locally. Memory is allocated using malloc and no attempt will be made to free memory.

Value Representation. We propose a simple compilation scheme but you are free to
use any other. Any value is a 64-bit word. The value null is the integer 0. Values of
type int and boolean are immediate (though Java’s int are 32-bit integers, we use 64-bit
integers internally). The values false and true are the integers 0 and 1, respectively.
An object is a pointer to a of heap-allocated block of n+ 1 words.

class v1 v2 . . . vn

The first word of this block is a pointer to the class descriptor. The remaining words are
the values of the object attributes. There is a particular layout for strings (class String).
For a string of length n, we have a block of n + 9 bytes where the first word contains a
pointer to the class descriptor and the remaining n + 1 bytes contains the 0-terminated
string (we assume ASCII strings in Mini Java).

String 0-terminated string

7

Attributes. Attributes are organized in such a way that the offset of an attribute x of
a class C within the block is the same for the class C and other subclass of C. (This is
possible since Java only has single inheritance.) For instance, the following classes

class A { int x; boolean b; }
class B extends A { int d; }

induce an object layout as follows:

A x b B x b d

The compiler maintains, for each attribute, its offset within the object.

Class descriptors. Each class is represented by a class descriptor, which is statically
allocated in the data segment. It contains

• a pointer to the descriptor of the super class;

• the list of codes for the methods.

As for the objects layout, the list of codes uses a prefix rule: the code for method f of
class A must be located at the same place in the descriptor of A and in any descriptor of
a subclass of A where method f is overridden. For instance, the following classes

class A { int f() { ... } boolean g() { ... } }
class B extends A { int f() { ... } boolean h() { ... } }

induce class descriptors as follows:

for A: Object A_f A_g for B: A B_f A_g B_h

As for attributes, the compiler maintains, for each method, its offset within the class
descriptors.

Cast and instanceof. The operations of cast and instanceof, when not solved stat-
ically, must be performed at runtime. In that case, we use the fact that each object
contains a pointer to its class descriptor, which itself contains a pointer to its super class.
This way, we can move upward in the class hierarchy, until we reach the expected class or
we reach Object without success. In the latter case, the cast fails (with an error message
such as cast failure and exit code 1) and instanceof returns false. The simplest
solution is to implement such a routine in x86-64 assembly. Note that the object must
be compared to null in the first place.

8

Stack Layout. We suggest a compilation scheme where this and all parameters are
passed on the stack (each of them being a 64-bit word), and where the return value is in
register %rax. The stack frame is as follows:

parameter n
...

parameter 1
this

return address
%rbp → saved %rbp

local variables
...

temporary values

%rsp → ...
↓

Local variables are allocated on the stack. The top of the stack is used to store inter-
mediate computations, such as the value of e1 during the evaluation of e2 in a binary
operation e1 ⊕ e2.

Stack alignment. With recent versions of the libc, it is important to have a 16-byte
stack alignment when calling library functions such as malloc or printf (this is required
by the System V Application Binary Interface). Since it is not always easy to ensure
stack alignment when calling library functions (because of intermediate computations
temporarily stored on the stack), it may be convenient to introduce wrappers around
library functions, as follows:

my_malloc:
pushq %rbp
movq %rsp, %rbp
andq $-16, %rsp # 16-byte stack alignment
call malloc
movq %rbp, %rsp
popq %rbp
ret

These wrappers are simply concatenated to the generated assembly code — and of course
any call to malloc is replaced with a call to my_malloc.

Here is a list of functions from the C standard library that you may want to use (feel
free to use any other):

9

void *malloc(size_t size);
malloc(n) returns a pointer to a freshly heap-allocated block of size n
You don’t have to free memory.

int printf(const char *format, ...);
printf(f,...) writes to standard output according to the format string
(ignore the return value). Register %rax must be set to zero before calling printf.

int sprintf(char *s, const char *format, ...);
sprintf(s, f,...) writes into string s according to the format string
(ignore the return value). Register %rax must be set to zero before calling sprintf.

int strlen(const char *s);
returns the length of the string s

int strcmp(const char *s1, const char *s2);
compares strings s1 and s2, returning 0 if they are equal, a negative value
if s1 is smaller than s2, and a positive value if s1 is greater

char *strcpy(char *dest, const char *src);
copies the 0-terminated string src to dest, including the ’\0’ character
(ignore the return value)

char *strcat(char *dest, const char *src);
appends the 0-terminated string src at the end of string dest, assuming there is
enough space (ignore the return value)

void exit(int n);
terminates the program with exit code n

Hints. It is advised to proceed in several steps:

1. build the class descriptors;

2. set the offsets of attributes (within objects) and local variables (within the stack);

3. compile the body of methods and constructors.

Important Notice. Grading involves (for one part only) some automated tests using
small Java programs with print commands. They are compiled with your compiler, and
the output is compared to the expected output. This means you should be careful in
compiling calls to print.

4 Project Assignment (due March 16, 6pm)
The project must be done alone or in pair, in Java or OCaml. It must be deliv-
ered on Moodle, as a compressed archive containing a directory with your name(s) (e.g.
dupont-durand). Inside this directory, source files of the compiler must be provided (no
need to include compiled files). The command make must create the compiler, named
minijava. The compilation may involve any tool (such as dune for OCaml) and the
Makefile can be as simple as a call to such a tool. The command minijava may be a
script to run the compiler, for instance if the compiler is implemented in Java.

10

The archive must also contain a short report explaining the technical choices and,
if any, the issues with the project and the list of whatever is not delivered. The report
can be in format ASCII, Markdown, or PDF.

The command line of minijava accepts an option (among --parse-only and --type-only)
and exactly one file with extension .java. If the file is parsed successfully, the compiler
must terminate with code 0 if option --parse-only is on the command line. Otherwise,
the compiler moves to static type checking. Any type error must be reported as follows:

file.java:4:6:
bad arity for method m

The location indicates the filename name, the line number, and the column number. Feel
free to design your own error messages. The exit code must be 1.

If the file is type-checked successfully, the compiler must exit with code 0 if option
--type-only is on the command line. Otherwise, the compiler generates x86-64 assembly
code in file file.s (same name as the input file, but with extension .s instead of extension
.java). The x86-64 file will be compiled and run as follows

gcc file.s -o file
./file

possibly with option -no-pie on the gcc command line. Any runtime error must be
reported, but no location nor a detailed message is expected so it is fine to simply output

error

and terminate with exit code 1.

11

